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ABSTRACT

 

—Germ cells, represented by male sperm and female eggs, are specialized cells that transmit
genetic material from one generation to the next during sexual reproduction. The mechanism by which mul-
ticellular organisms achieve the proper separation of germ cells and somatic cells is one of the longest
standing issues in developmental biology. In many animal groups, a specialized portion of the egg cyto-
plasm, or germ plasm, is inherited by the cell lineage that gives rise to the germ cells (germline). Germ
plasm contains maternal factors that are sufficient for germline formation. In the fruit fly, 

 

Drosophila

 

, germ
plasm is referred to as polar plasm and is distinguished histologically by the presence of polar granules,
which act as a repository for the maternal factors required for germline formation. Molecular screens have
so far identified several of these factors that are enriched in the polar plasm. This article focuses on the
molecular functions of two such factors in 

 

Drosophila

 

, mitochondrial ribosomal RNAs and Nanos protein,
which are required for the formation and differentiation of the germline progenitors, respectively. 
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GERMLINE DEVELOPMENT IN 

 

DROSOPHILA

 

In many organisms, the germline progenitors are
formed in an embryonic region distinct from the gonads,
where they will eventually differentiate into germ cells.
These cells move along different tissues to associate with
the somatic component of the gonad. In 

 

Drosophila

 

, the
germline is derived from pole cells, which are formed at the
posterior pole of the embryo (Zalokar and Erk, 1976; Tech-
nau and Campos-Ortega, 1986; Campos-Ortega and
Hartenstain, 1997; Williamson and Lehmann, 1996; Santos
and Lehmann, 2004) (Fig. 1). After fertilization, nine nuclear
divisions take place in the absence of cytokinesis in the cen-
tral yolk region of the embryo (the cleavage stage). The
nuclei then migrate to the periphery (the syncytial blasto-
derm stage). The subsequent penetration of these nuclei
into the posterior polar plasm (polar plasm, or germ plasm)
leads to the formation of cytoplasmic protrusions known as
pole buds, which then segregate to form pole cells (Fig. 1).

The nuclei that penetrate the periplasm, which is distinct
from the germ plasm, divide four more times and are then
surrounded by the cell membrane to form somatic cells (the
cellular blastoderm stage). During morphogenesis, the pole
cells migrate through the midgut epithelium into the hemo-
coel, where they separate into two bilateral groups, con-
dense in the embryonic gonads (Fig. 1), and differentiate
into germ cells (Mahowald and Kambysellis, 1980; Lindsley
and Tokuyasu, 1980; Williamson and Lehmann, 1996).

 

 

 

In many animal groups, the factors required for germ-
line establishment have been postulated to be localized in
germ plasm (Beams and Kessel, 1974; Eddy, 1975;
Extavour and Akam, 2003). Experimental studies in frogs
and in 

 

Drosophila

 

 have demonstrated that factors which are
both necessary and sufficient to establish the germline are
localized in the germ plasm. It has been shown that the
germ plasm can induce the formation of the germline when
transplanted into an ectopic region of an embryo (Illmensee
and Mahowald, 1974, 1976; Ikenishi 

 

et al

 

., 1986). Further-
more, transplantation of germ plasm, but no other part of the
egg cytoplasm, restores fertility to UV-sterilized embryo
(Smith, 1966; Okada 

 

et al

 

., 1974). Within the germ plasm,
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specialized organelles known as polar granules have been
identified, and these structures and their derivatives are
present in the germline throughout most of the life cycle in

 

Drosophila

 

. In electron micrographs, polar granules appear
as electron dense, fibro-granular structures (Mahowald,
1962, 1968, 1971a, 1992) (Fig. 2). The granular component
of the germ plasm in mature oocytes and early cleavage
embryos is composed of RNA and proteins. The RNA fac-
tors disappear by the time pole cells are formed, and it has
therefore been proposed that maternal RNAs in the polar
granules function during pole cell formation (Mahowald,
1968, 1971b). Hence, the polar granules are regarded as a
repository of the factors required for germline establishment.

Assembly of the polar granules requires the function of
maternal effect genes (Boswell and Mahowald, 1985;
Lehmann and Nüsslein-Volhard, 1986; Schüpbach and
Wieschaus, 1986; Manseau and Schüpbach, 1989; Boswell

 

et al

 

., 1991; Williamson and Lehmann, 1996; Mahowald,
2001; Starz-Gaiano and Lehmann, 2001; Santos and Leh-
mann, 2004). Among these, 

 

oskar 

 

(

 

osk

 

)

 

, vasa 

 

(

 

vas

 

) and

 

tudor 

 

(

 

tud

 

) are all essential for the formation of pole cells.
These genes produce proteins that localize at the polar

granules in a stepwise and hierarchical manner (Hay 

 

et al

 

.,
1988; Ephrussi and Lehmann, 1992; Bardsley 

 

et al

 

., 1993;
Breitwieser 

 

et al

 

., 1996; Williamson and Lehmann, 1996;
Mahowald, 2001; Santos and Lehmann, 2004). These gene
products are synthesized in the nurse cells and then later
translocated to the posterior pole region of the oocytes dur-
ing oogenesis. The first molecule to localize at the posterior
pole of the oocyte is 

 

osk

 

 mRNA (Ephrussi 

 

et al

 

., 1991; St
Johnston 

 

et al

 

., 1991). After 

 

osk

 

 transcript localizes at the
posterior region, it is translated 

 

in situ

 

, and its protein prod-
uct directs the localization of Vas and Tud proteins until
stage 10 of oogenesis (Ephrussi 

 

et al

 

., 1991; Bardsley 

 

et al

 

.,
1993; Liang 

 

et al

 

., 1994).
Mahowald 

 

et al

 

. (1976) have reported that polar plasm
from stage 13–14 oocyte can induce ectopic pole cell forma-
tion when injected into the anterior pole of recipient embryo,
whereas cytoplasm from stage 10–12 oocyte does not exert
this effect. This strongly indicates that additional molecules
other than Osk, Vas and Tud are required for polar plasm
function, and that these factors accumulate in the posterior
pole region of oocyte, late in oogenesis. The completion of
polar granule assembly is accompanied by the localization

 

Fig. 1.

 

Schematic representation of 

 

Drosophila 

 

embryogenesis. 

 

Drosophila

 

 embryogenesis is divided into 17 stages according to Campos-
Ortega and Hartenstein (1997). 

 

Stages1-4

 

: black dots and magenta cytoplasm at the posterior represent the nuclei and polar plasm, respec-
tively. 

 

Stage 2

 

 (cleavage stage): the nuclei multiply in the central region of the embryo in the absence of cytokinesis. 

 

Stage 4

 

 (syncytial blasto-
derm stage): the nuclei migrate to the periphery of the embryo. In the posterior region, pole cells (magenta) are formed. 

 

Stage 5

 

 (cellular
blastoderm stage): the nuclei at the periphery are surrounded by the cell membrane and then cellularized. 

 

Stage 7

 

: pole cells migrate into the
embryo with the posterior midgut primordium (pm); am, anterior midgut primordium; ms, mesoderm. 

 

Stage 9

 

: pole cells are in the pouch of the
posterior midgut epithelium. 

 

Stage 10

 

: pole cells migrate through the midgut epithelium into the haemocoel. 

 

Stage 11/12

 

: pole cells are
attached to the overlying mesoderm. 

 

Stage 14

 

: pole cells form gonads (go), together with the gonadal mesodermal cells.
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of various RNA species at the granules. These include mito-
chondrial ribosomal RNAs (mtrRNAs) and 

 

germ cell-less

 

(

 

gcl

 

) mRNA, which are localized via the activities of 

 

osk

 

,

 

vas,

 

 and

 

 tud

 

 (Jongens 

 

et al

 

., 1992; Kobayashi 

 

et al

 

., 1993;
Amikura 

 

et al

 

., 1996; Kashikawa 

 

et al

 

., 1999; Amikura 

 

et al

 

.,
2001a). In contrast to Osk, Vas and Tud, however, individual
RNA molecules that are localized at the granules at a later
stage are only required for a part of polar plasm function.

 

DISTRIBUTION OF MITOCHONDRIAL RIBOSOMAL

RNAs IN THE POLAR PLASM

 

Mitochondria originated from an eubacterial symbiont
and became functionally integrated into eukaryotic cells dur-
ing evolution (Blackstone, 1995; Margulis, 1996). Whereas
the primary roles of the mitochondria include oxidative phos-
phorylation and the biosynthesis of a number of metabolites,
it has now become evident that they are also involved in cel-
lular events that play critical roles in development. One
remarkable example of this is their involvement in germline
formation. Ultrastructural studies have previously shown that
the germ plasm is primarily composed of germinal granules
and mitochondria (Beams and Kessel, 1974; Eddy, 1975).
Furthermore, earlier ultrastructural studies have shown that
these two organelles form an association with each other
prior to pole cell formation (Mahowald, 1962, 1968, 1971a,

1971b), suggesting that mitochondria contribute to this pro-
cess. 

 

In situ

 

 hybridization studies at the ultrastructural level
have further revealed that mtrRNAs, namely mitochondrial
large ribosomal RNA (mtlrRNA) and mitochondrial small
ribosomal RNA (mtsrRNA), are present on the surface of
polar granules during the cleavage stage and are thus no
longer localized on the granules in pole cells (Kobayashi 

 

et
al

 

.,1993; Amikura 

 

et al

 

., 1996; Kashikawa 

 

et al

 

., 1999) (Fig.
2). Since mtrRNAs are encoded exclusively by the mito-
chondrial genome and are transcribed 

 

in situ

 

, it is reason-
able to postulate that they are transported out of the mito-
chondria to the polar granules only in the polar plasm
(Kobayashi and Okada, 1989; Kobayashi 

 

et al

 

., 1993). This
transportation occurs after the completion of oogenesis
(Amikura 

 

et al

 

., 1996; Kashikawa 

 

et al

 

., 1999; Amikura 

 

et al

 

.,
2001a). No mtrRNAs are discernible on the polar granules
in mature oocytes (stage 14), unless they are activated
within the oviducts. In freshly laid eggs at embryonic stage
1, both the polar granules and the mitochondria are closely
associated with each other, and the mtrRNAs are localized
at the boundaries between them. At stage 2, when polar
granules are detached from the mitochondria, mtrRNAs
remain associated with polar granules until pole cell forma-
tion.

 

Fig. 2.

 

Distribution of mitochondrial rRNAs in polar plasm. Electron micrographs showing a well-developed polysome on the surface of a
polar granule at stage 2 (upper left), and sections hybridized with probes for mtlrRNA (upper middle) and mtsrRNA (upper right). Signals are
arranged linearly from the surfaces of polar granules (arrowheads). The lower panel summarizes our results on the distribution and function of
mtrRNAs (see text). 
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THE ROLE OF MITOCHONDRIAL RIBOSOMAL RNAs

IN POLE CELL FORMATION

 

mtlrRNA has been identified as a molecule which
restores the pole-cell-forming ability of embryo in which this
has been abolished by treatment with UV (Kobayashi and
Okada, 1989). This observation suggests that mtlrRNA is
required for pole cell formation. This is supported by the fact
that a reduction in the levels of extra-mitochondrial mtlrRNA,
by injection of targeted ribozymes into the polar plasm,
results in the failure to form pole cells (Iida and Kobayashi,
1998). These findings show that the extra-mitochondrial mtl-
rRNA on the polar granules has an essential role in pole cell
formation, presumably in cooperation with mtsrRNA.

Since both mtrRNAs are major components of mito-
chondrial ribosomes, it has been speculated that they func-
tion to form ribosomes on the polar granules. This idea is
consistent with a previously proposed model in which the
transcripts encoding proteins that function in pole cell forma-
tion are stored in the polar granules and are translated on
the developing polysomes at their surface (Mahowald, 1968,
1971b, 1992). Ultrastructural analysis has revealed that both
mtrRNAs are localized at the polysomes that form on the
surface of the polar granules during the short period prior to
pole cell formation at stage 3 (Amikura 

 

et al

 

., 2001b) (Fig.
2). Furthermore, the mitochondrial ribosomal proteins S12
and L7/L12 are enriched both in the polysomes at the polar
granules and in mitochondria (Amikura 

 

et al

 

., 2001b).
Smaller ribosomes exist in the polysomes around the polar
granules; they are almost identical in size to the mitochon-
drial ribosomes, but are smaller than those of the cytosol
(Amikura 

 

et al

 

., 2001b). These observations strongly sug-
gest that mtrRNAs form mitochondrial-type ribosomes on
polar granules, cooperating with mitochondrial ribosomal
proteins.

Based on these previous findings, we now speculate
that the mitochondrial-type ribosomes that are localized on
polar granules are specifically required for the production of
the proteins necessary for pole cell formation (Fig. 2). This
idea is supported by our observations that inhibitors of mito-
chondrial (prokaryotic)-type translation, kasugamycin (KA)
and chloramphenicol (CH), suppress pole cell formation
when injected into early embryos (Amikura 

 

et al

 

., 2005).
Since KA is known to inhibit the initiation step of prokaryotic
translation (Poldermans 

 

et al

 

., 1979), it is expected that it
would act to eliminate mitochondrial-type ribosomes from
the polysomes. Indeed, KA treatment significantly decreases
the number of mitochondrial, but not cytosolic, ribosomes
around the polar granules.

 

mRNAs TRANSLATED BY MITOCHONDRIAL

RIBOSOMES

 

The above observations strongly suggest that the
impairment of pole cell formation by specific inhibitors is a
result of the suppression of translation by mitochondrial-type

ribosomes in the polar granule polysomes. We therefore
speculate that the mRNAs encoding the proteins required
for pole cell formation are translated on these ribosomes.
The most probable candidate transcript is 

 

germ cell-less

 

(

 

gcl

 

), which encodes a protein known to be necessary for
pole cell formation (Jongens 

 

et al

 

., 1992, 1994; Robertson

 

et al

 

., 1999). 

 

gcl

 

 mRNA is stored in the polar granules, and
their translation is initiated at about stage 2 (Jongens 

 

et al

 

.,
1992; Amikura 

 

et al.

 

, 2005). Furthermore, this coincides with
the appearance of mitochondrial ribosomes in the polar
granule polysomes (Amikura 

 

et al

 

., 2001b). As the nuclei
penetrate the polar plasm, the Gcl protein becomes associ-
ated with them, and its localization persists around these
pole cell nuclei until they begin migration. In mutant embryos
lacking maternal 

 

gcl

 

 transcripts, pole cell formation and pole
cell survival are disrupted (Jongens 

 

et al

 

., 1992; Robertson

 

et al

 

., 1999). In addition, females overexpressing 

 

gcl

 

 mRNA
produce progeny with an increased number of pole cells
(Jongens 

 

et al

 

., 1994).
In KA- and CH-treated embryos, the nuclear accumula-

tion of Gcl is significantly impaired (Amikura 

 

et al

 

., 2005),
even in pole cells that are successfully formed, showing that
these compounds inhibit its production. Since 

 

gcl

 

 mRNA
accumulates at normal levels in the pole cells of KA- and
CH-treated embryos, this inhibition must occur at the level
of translation. In contrast, KA and CH do not affect the pro-
duction of Nanos (Nos) protein. Maternal 

 

nos

 

 mRNA is
enriched in the polar plasm (Wang 

 

et al

 

., 1994) and is trans-
lated by cytosolic ribosomes immediately following fertiliza-
tion (Amikura 

 

et al

 

., 2005). Taken together, these results
suggest that mitochondrial-type translation on polar gran-
ules is necessary for the production of proteins involved in
pole cell formation, such as Gcl. Further studies will be
required, however, to determine whether the translation of

 

gcl

 

 transcripts uses the mitochondrial genetic code and
whether the factors involved in translational initiation or
polypeptide elongation in mitochondria also participate in
these translational pathways.

 

TRANSPORT OF mtrRNAs FROM THE MITOCHONDRIA 

TO THE POLAR GRANULES

 

The transport of mtrRNAs from the mitochondria to the
polar granules is a critical step in pole cell formation. It has
been reported previously that the localization of mtrRNAs in
polar plasm is impaired by mutations of any one of the
maternal genes 

 

osk, vas

 

, or

 

 tud 

 

(Ding 

 

et al

 

., 1994; Koba-
yashi 

 

et al

 

., 1995; Kashikawa 

 

et al

 

., 1999). The most down-
stream of these genes, 

 

tud

 

, encodes a protein that is local-
ized in both the mitochondria and the polar granules
(Bardsley 

 

et al

 

., 1993). This observation leads to the hypoth-
esis that the Tud protein may mediate the transport of
mtrRNAs from the mitochondria to the polar granules. This
idea is supported by a number of findings (Amikura 

 

et al

 

.,
2001a). In early embryo derived from 

 

tud

 

 mutant female,
Vas protein is normally localized in the polar plasm, whereas
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extra-mitochondrial mtrRNAs are undetectable throughout
the cytoplasm. Consistent with this observation, 

 

tud

 

 mutant
embryo contains polar granules, although their number and
size are both reduced. These polar granules in the mutant
are associated with mitochondria during the early cleavage
stage, but no mtrRNA signals are detectable. In normal
embryos, Tud protein and mtrRNAs colocalize at the bound-
aries between the mitochondria and polar granules, when
the transport of mtrRNAs occurs. These ultrastructural data
strongly suggest that Tud mediates the transport of mtrRNAs
from the mitochondria to the polar granules. At present,
however, it is not known how mtrRNAs move across the
mitochondrial membranes, which are impermeable to mac-
romolecules. In addition, it remains to be elucidated whether
these rRNAs are transferred to the polar granules as ribo-
somes, and how this is mediated by Tud. Further studies will
be required to identify the factors that interact with Tud, as
this is likely to address some of these questions.

 

THE ROLE OF MITOCHONDRIA IN GERMLINE

FORMATION IN 

 

DROSOPHILA

The above observations strongly suggest that there is
an important functional role for mitochondria during germline
formation. However, it remains unclear why the RNA mole-
cules involved in germline development are encoded by the
mitochondrial genome. As mitochondria are symbionts
derived from ancestral microbes (Margulis, 1996), they have
likely developed a strong association with the germline in
order to propagate themselves to subsequent generations.
An example of this is a Rickettsia observed to be incorpo-
rated into pole cells in Drosophila embryos (O’Neill and Karr,
1990). It is probable, therefore, that mitochondria have
adopted an effective strategy for their survival, in which they
produce factors to form the germline as a vehicle to carry
them to the next generation. Alternatively, this mechanism
might be a selective step to ensure that the germline pro-
genitors are supplied with “intact” mitochondria. The mito-
chondrial genome has a high rate of mutation. It has been
proposed that a bottleneck in the number of mitochondria
that pass through the germline and a selection of hosts with
fewer deleterious mutations are required for the mainte-
nance of viable mitochondria (Bergstrom and Pritchard,
1998). During Drosophila oogenesis, a fraction of the mito-
chondria form aggregates known as Balbiani bodies that
associate with the polar plasm, and these bodies may act as
a mitochondrial bottleneck (Cox and Spradling, 2003). Sub-
sequently, if the polar plasm contains mostly intact mito-
chondria, the pole cells that form will transmit these compe-
tent organelles to the next generation.

THE ROLE OF MATERNAL NANOS PROTEIN

IN POLE CELL MIGRATION

The pole cells induced by mtlrRNA in UV-irradiated
Drosophila embryo never develop into functional germ cells,

suggesting that additional factors in the germ plasm are
required and that these are essential for the differentiation
of pole cells (Kobayashi and Okada, 1989). Nos, a CCHC
zinc-finger protein, has been identified as the critical factor
both for pole cell differentiation and abdomen formation
(Lehmann and Nüsslein-Volhard, 1991; Wang and Lehmann,
1991; Wang et al., 1994; Kobayashi et al., 1996; Forbes and
Lehmann, 1998; Arrizabalage and Lehmann, 1999). Mater-
nally transcribed nos mRNA is concentrated in the polar
plasm at a late stage of oogenesis via the actions of osk and
vas. After egg laying, it is translated in situ to form a Nos
protein gradient with the highest concentration in the polar
plasm (Baker et al., 1992; Ephrussi and Lehmann, 1992;
Smith et al., 1992; Wang et al., 1994; Thomson and Lasko,
2004). The Nos gradient then specifies the abdomen by
repressing the translation of maternal hunchback (hb)
mRNA, which otherwise inhibits abdomen formation (Tautz,
1988; Hülskamp et al., 1989; Irish et al., 1989; Struhl, 1989;
Tautz and Pfeifle, 1989; Baker et al., 1992). Nos protein is
only transiently present in the abdominal anlage, however,
and becomes undetectable by the cellular blastoderm stage.
In contrast, Nos protein in the polar plasm is incorporated
into the pole cells and remains detectable throughout pole
cell migration (Wang et al., 1994).

Pole cells that lack Nos protein are unable to develop
into functional germ cells (Kobayashi et al., 1996; Forbes
and Lehmann, 1998). Embryo derived from female homozy-
gous for the nos mutation do form pole cells (nos pole cells),
and when transplanted into normal embryo, these cells
migrate through the midgut epithelium into the hemocoel;
however, they are never incorporated into the gonads of the
host embryo (Kobayashi et al., 1996) (Fig. 3). Furthermore,
these mutant pole cells are unable to contribute to egg pro-
duction in adult female (Kobayashi et al., 1996; Forbes and
Lehmann, 1998). These results indicate that the autono-
mous deficiency of maternal nos activity in pole cells leads
to their inability to penetrate into the gonads and, conse-
quently, to their failure to become functional germ cells.

In the pathways leading to abdomen formation, Nos
protein acts in concert with the RNA binding protein Pumilio
(Pum), which is distributed ubiquitously in the embryo, to
repress translation of maternal hb mRNA (Tautz, 1988; Hül-
skamp et al., 1989; Irish et al, 1989; Struhl, 1989; Tautz and
Pfeifle, 1989; Baker et al., 1992). Translational repression of
hb is mediated by discrete target sites known as nos
response elements (NREs) in its 3’ UTR (Wharton and
Struhl, 1991; Wharton et al., 1998). Pum binds directly to the
hb NREs in a sequence-specific manner, and the interaction
of Nos with Pum is essential for the translational repression
of hb (Murata and Wharton, 1995; Wharton et al., 1998;
Sonoda and Wharton, 1999). In pole cells, Pum, in a similar
manner to Nos, is autonomously required for pole cell migra-
tion (Asaoka-Taguchi et al., 1999) (Fig. 3). Thus, we spec-
ulate that Nos acts together with Pum to regulate germline-
specific events in pole cells by repressing the translation of
specific transcripts in these cells.
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MITOTIC ARREST OF MIGRATING POLE CELLS BY 

MATERNAL NOS

One of the regulatory targets of both Nos and Pum in
pole cells is maternal cyclin B (cycB) mRNA (Asaoka-Tagu-
chi et al., 1999), which contains NRE-like sequences within
its 3’ UTR (Dalby and Glover, 1993). This transcript is local-
ized in the polar plasm and is partitioned into the pole cells,
but its translation is repressed until the pole cells reach the
gonads (Dalby and Glover, 1993). Consistent with this
observation, pole cells cease mitosis at gastrulation and
remain quiescent in the G2 phase of the cell cycle, whereas
somatic cells continue to proliferate. Moreover, in embryo
lacking either Nos or Pum, the migrating pole cells produce
CycB, and are then released from G2 arrest and enter into
mitosis (Asaoka-Taguchi et al., 1999) (Fig. 4). Furthermore,
the induction of CycB in wild-type pole cells is sufficient to
drive them from the G2 phase through mitosis and into G1
(Asaoka-Taguchi et al., 1999). In addition, Nos and Pum
bind cycB mRNA in NRE-dependent manner (Sonoda and
Wharton, 2001). These findings clearly demonstrate that
Nos and Pum inhibit the transition from G2 to mitosis in
migrating pole cells by repressing CycB production, and this
leads us to speculate that the inhibition of sequential cell
cycling has an important role in early germline development.
One possible role of this mechanism is to prevent dilution of
the maternal factors that have been incorporated in the pole
cells. Nos and Pum may thus repress the G2/M transition to
maintain a sufficiently high concentration of these factors to
facilitate proper pole cell migration and zygotic gene regula-

tion. Since pole cells that are deficient in either Nos or Pum
undergo a G1 arrest after mitosis, the G1/S transition may
also be suppressed by another maternal factor(s) to ensure
that these cells remain quiescent.

REPRESSION OF APOPTOSIS BY MATERNAL NOS

Pole cells lacking either Nos or Pum fail to properly
migrate into the embryonic gonads. However, the repression
of CycB by Nos and Pum is not required for pole cell migra-
tion, and its induction does not affect pole cell migration,
although it does initiate a single round of mitosis (Asaoka-
Taguchi et al., 1999). These findings suggest that CycB is
not the only regulatory target of Nos and Pum in pole cells.
Our observations (Hayashi et al, unpublished) further sug-
gest that an additional target of Nos and Pum is head invo-
lution defective (hid) mRNA, which also contains an NRE in
its 3’ UTR and encodes a protein required for the induction
of apoptosis (Grether et al., 1995). In the absence of Nos or
Pum, migrating pole cells are eliminated by an apoptotic
mechanism which is initiated at stage 9/10 in the developing
embryo (Hayashi et al., 2004, unpublished) (Fig. 5). We
have also found that Df(3L)H99 (H99), a small deletion
within the genomic region that includes the hid gene, sup-
presses apoptosis in nos pole cells (Hayashi et al., 2004).
In embryo lacking both maternal Nos and zygotic H99 activ-
ity (nos-H99 embryo), there is no apoptotic death of any
pole cells (Hayashi et al., 2004). In addition, and to our sur-
prise, nos-H99 pole cells have the ability to migrate into the
gonads when transplanted into normal host embryo

Fig. 3. Nos is essential in pole cells for their migration into the gonads. Photomicrographs showing pole cells (arrows) transplanted from con-
trol (normal) (left), nos (middle) and pum (right) embryos into host embryos. Control pole cells are observed within the gonad of the host at
stage 15. In contrast, nos and pum pole cells are outside the gonads. Square brackets indicate the gonads.

Fig. 4. Nos is required to repress mitosis of pole cells during their migration.  Confocal images of migrating pole cells in control (left), nos
(middle) and pum (right) embryos at stage 12, double-stained with antibodies against a phosphorylated form of histone H3 (PH3) (magenta) as
a mitotic marker, and Vas (green) as a germline marker. Arrows show PH3-positive pole cells.
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(Hayashi et al., 2004) (Fig. 5). Hence, the ability of nos pole
cells to migrate into the gonads is fully restored by the sup-
pression of apoptosis in our transplantation experiments.
This clearly demonstrates that Nos inhibits the apoptotic
response in pole cells to permit their proper migration into
the gonads.

The above observations suggest that pole cells have
the potential to enter into apoptosis, which somewhat con-
tradicts the notion that the germline is fundamentally immor-
tal, as it is required for the propagation of any given species.
We speculate, however, that this apoptotic pathway may be
part of a mechanism that eliminates “aberrant pole cells”
that have inherited an insufficient quantity of germ plasm
components, such as maternal Nos protein.

nos-H99 pole cells that are incorporated within the
embryonic gonads appear to be intact, as they express the
Vas germline marker (Hayashi et al., 2004). However, they
do not complete the gametogenic process, which suggests
that maternal Nos has an additional function in the later
stages of germline development (Hayashi et al., 2004). It
has been reported that maternal nos activity is required for
the formation of a germline-specific organelle, the spec-
trosome, that plays an important role in the asymmetric divi-
sion of germline stem cells (Deng and Lin, 1997; Wawersik
and Van Doren, 2005). Furthermore, zygotic Nos has been
shown to be required by germline cells to prevent their pre-
mature entry into oogenesis during larval development
(Wang and Lin, 2004). In larvae lacking zygotic Nos, the
germline cells form premature cyst aggregates but fail to

execute oogenesis and eventually degenerate. It is possible
therefore that maternal Nos may also be required by the
pole cells to repress their premature differentiation. Alterna-
tively, the defect that characterizes nos-H99 pole cells could
simply result from their failure to establish proper germline
fates (see below).

TRANSCRIPTIONAL QUIESCENCE IN POLE CELLS

In addition to their mitotic arrest and migration to the
gonads, pole cells can be distinguished by their transcrip-
tional regulation. Pole cells are transcriptionally quiescent
until the onset of gastrulation, whereas transcription is initi-
ated in the soma during the syncytial blastoderm stage
(Lamb and Laird, 1976; Zalokar and Erk, 1976; Kobayashi
et al., 1988; Pritchard and Schbiger, 1996; Van Doren et al.,
1998). Consistent with this, RNA polymerase II (RNAP II)
remains inactive in early pole cells (Seydoux and Dunn,
1997; Leatherman and Jongens, 2003; Martinho et al.,
2004). Furthermore, pole cells lack a subset of nucleosomal
histone modifications, such as methylated lysine 4 on his-
tone H3 (H3meK4), that correlates well with transcriptional
ability (Schaner et al., 2003; Martinho et al., 2004). Hence,
the ability to express zygotic mRNA-encoding genes is sup-
pressed only in pole cells in early embryo.

Within pole cells, Nos is involved in maintaining tran-
scriptional quiescence (Deshpande et al., 1999) and is also
required for the maintenance of a germline-specific chroma-
tin status that correlates with transcriptional inactivity
(Schaner et al., 2003). In the absence of maternal Nos activ-
ity, somatic genes such as fushi tarazu (ftz), even-skipped
(eve) and Sex-lethal (Sxl) are expressed ectopically in pole
cells (Deshpande et al., 1999). In this instance, the phos-
phorylation of serine resides 2 and 5 in the carboxy-terminal
domain (CTD) of RNAPII, both of which are required for
transcriptional activation, and also the methylation of histone
H3 on lysine 4 (H3meK4) are derepressed (Schaner et al.,
2003; Deshpande et al., 2005). These findings indicate that
Nos is a component of the mechanism that maintains tran-
scriptional quiescence in pole cells.

We have found that maternal Nos, along with Pum,
maintains transcriptional quiescence in pole cells by
repressing the production of Importin-α2 (Impα2) protein
(Asaoka et al., unpublished). Impα2 is a Drosophila homo-
logue of Importin α required for the nuclear import of karyo-
philic proteins, including transcription factors, and impα2
mRNA has an NRE-like sequence in its 3’ UTR (Török et al.,
1995). At the blastoderm stage, Impα2 protein is distributed
throughout the soma but not the pole cells, although impα2
transcripts are detectable in pole cells. Moreover, the
ectopic expression of Impα2 in pole cells causes nuclear
import of a transcriptional factor, Ftz-F1, which in turn acti-
vates ftz. These data suggest that Nos and Pum repress
somatic gene expression in pole cells by inhibiting nuclear
import of transcriptional activators.

It is noteworthy that somatic genes are not activated in

Fig. 5. Nos prevents apoptosis of pole cells. Confocal images of
pole cells in control (upper left) and nos (upper right) embryos at
stage 13, stained with TUNEL labeling (magenta) and an antibody
against Vas (green). Arrowheads show TUNEL-positive pole cells.
Lower panels: Photomicrographs showing pole cells (arrowheads)
transplanted from control (lower left) and nos-H99 (lower right)
embryos into host embryos. The transplanted control and nos-H99
pole cells are observed within the gonads of the host at stage 15-17. 
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every pole cell lacking maternal Nos. Increased H3meK4
signal and elevated phosphorylation of RNAPII CTD serines
2 and 5 are observed in a subset of nos pole cells (Desh-
pande et al., 1999, 2005; Schaner et al., 2003). These
observations suggest that additional factors contribute to the
transcriptional quiescence of pole cells. Indeed, Gcl and
Polar granule component (Pgc) RNA have also now been
shown to be required for transcriptional quiescence
(Martinho et al., 2004; Letherman et al., 2002; Deshpande
et al., 2004). In the absence of maternal gcl activity, the
expression of the somatic genes, sisterless A (sisA) and sis-
terless B (sisB), and the phosphorylation of RNAPII CTD
serine 5 can be detected ectopically in the nuclei of the pole
buds (Leatherman et al., 2002). The failure of transcriptional
repression thus appears to cause a defect in pole cell for-
mation (Leatherman et al., 2002).

Immediately after pole cell formation, Pgc is required for
transcriptional repression (Deshpande et al., 2004; Martinho
et al., 2004). Pgc has been identified as a RNA that is highly
concentrated in the polar plasm of cleavage embryo and is
incorporated only into pole cells (Nakamura et al., 1996).
During early pole cell development, Pgc represses somatic
genes such as zerknullt (zen), tailless (tll) and slow as
molasses (slam), and is also required for the suppression of
both phosphorylation of CTD on serine 2 and methylation of
histone H3 on lysine 4 (Martinho et al., 2004). Pgc RNA
appears to act independently of Nos to repress transcription
in early pole cells, as eve expression is still repressed in the
absence of Pgc activity, and zen and tll are not activated in
pole cells that lack Nos (Deshpande et al., 1999; Martinho
et al., 2004). In contrast, in later pole cells, Pgc appears to
be required for nos function, as a reduction in its activity
decreases the concentration of nos mRNA and causes
defects in pole cell migration and survival, similar to nos
mutation (Nakamura et al., 1996).

REPRESSION OF THE SOMATIC DIFFERENTIATION OF 

POLE CELLS BY MATERNAL NOS

Previous findings lead us to speculate that pole cells
lacking Nos may adopt a somatic cell fate. To test this
hypothesis, nos-H99 pole cells are utilized, as most nos pole
cells are eliminated by apoptosis in developing embryo.
When transplanted into normal host embryo, nos-H99 pole
cells are integrated within somatic tissues, such as the
midgut epithelium, tracheal epithelium and gastric caeca
(Hayashi et al., 2004) (Fig. 6). Furthermore, nos-H99 pole
cells within the somatic tissues are observed to be morpho-
logically indistinguishable from their neighboring host
somatic cells. Moreover, these transplanted pole cells
express somatic markers ectopically (Fig. 6). Conversely,
the germline marker Vas is not detectable or is found to be
significantly reduced in these transplanted cells. These
results clearly show that nos pole cells can differentiate into
somatic cells when their normal apoptotic pathways are sup-
pressed.

These results also indicate that pole cells are multipo-
tent, as they are capable of adopting both germline and
somatic cell fates, and of undergoing apoptosis. Nos is
required to repress the pathways that promote somatic dif-
ferentiation and apoptosis, and thus to direct germline
development. Consequently, the removal of Nos and H99
activities causes some pole cells to differentiate into soma.
However, not all nos-H99 pole cells become somatic cells in
these experiments. This suggests that they must be separa-
ble into two distinct types, those with and those without the
ability to adopt a somatic cell fate. Apoptosis is suppressed
in both types of pole cell by maternal Nos. When apoptosis
is experimentally suppressed in Nos-negative pole cells by
H99, the existence of these two populations of pole cells
becomes evident. A possible alternative explanation may be
that the different behaviors of nos-H99 pole cells are due to
differences in the cellular environments encountered by
them. The former explanation of pole cell behavior is sup-
ported by the observation that they possess Nos-indepen-
dent transcriptional repression mechanisms (Deshpande et
al., 1999, 2005; Schaner et al., 2003). Nos represses
somatic gene expression in a subset of pole cells by sup-
pressing Impα2 production (see above). We therefore pro-
pose that transcriptional derepression of pole cells is a pre-
requisite for their somatic differentiation. This is further
supported by our preliminary data showing that the somatic
differentiation of nos-H99 pole cells is suppressed by the
reduction of Impα2 activity (Hayashi et al., unpublished).

Fig. 6. nos-H99 pole cells are able to adopt somatic fate.  Photo-
micrograph showing pole cells (upper left) transplanted from a nos-
H99 embryo into a host embryo. The transplanted pole cells, identi-
fied by expression of β−galactosidase (β-gal), are integrated within
the midgut epithelium of the host at stage 17. nos-H99 pole cells
within the midgut epithelium (mg) of the host embryo at stage 14
(upper right) are able to express midgut marker genes (CG11267/
dGATAe) (magenta) (lower right), as well as β-gal (green) (lower
left). Arrowheads show nos-H99 pole cells integrated within the mid-
gut epithelium.
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THE WIDESPREAD ROLE OF NOS DURING GERMLINE 

FORMATION IN MULTICELLULAR ORGANISMS

The proper segregation of the germline and somatic
line is a phylogenetically very old phenomenon and probably
represents the primary step in the differentiation of multicel-
lular organisms. This necessarily implies that molecules
involved in germline establishment are highly and widely
conserved in animal groups from invertebrates to verte-
brates. Indeed, nos-like genes are widely conserved across
the Metazoa and play an important role in germline devel-
opment (Extavour and Akam, 2003; Extavour et al., 2005).
In nematodes, zebrafish and mouse embryos, nos
homologs are required for the maintenance of the germline
progenitors (Subramaniam and Seydoux, 1999; Köprunner,
et al., 2001; Tsuda et al., 2003). These results, and those
we have presented here, indicate that nos is involved in evo-
lutionarily conserved mechanisms that are required for
germline maintenance. Moreover, in C. elegans and in
Drosophila, nos is required for the establishment of germ-
line-specific histone modifications that correlate with tran-
scriptionally inactive chromatin (Schaner et al., 2003). We
propose that nos also acts as part of a conserved mecha-
nism that represses somatic gene expression and differen-
tiation in order to establish the germ/soma dichotomy. It has
also been reported that Pie1 and Blimp1 repress somatic
programming in the germline progenitors to guide them
towards germline development in nematode and mouse,
respectively (Seydoux et al., 1996; Seydoux and Strome,
1999; Unhavaithaya et al., 2002; Ohinata et al., 2005).
These data are consistent with the idea that germline cells
are restricted to locations and/or stages that will exclude
them from body patterning processes, and that the role of
the germ plasm is to protect them from somatic develop-
ment (Dixon, 1994). 

There are thus at least two distinct modes of germline
specification in animals (Dixon, 1994; Extabour and Akam,
2003). The germline is specified either by maternally inher-
ited molecules (preformation), as in Drosophila, or by induc-
tive signals from surrounding somatic tissues (epigenesis).
The most striking example of epigenesis is seen in the
mouse embryo, in which the primordial germ cells are spec-
ified in the proximal epiblast by signals from the neighboring
extraembryonic tissues (Lawson et al., 1999). In mouse
embryo, nos genes are zygotically expressed in the primor-
dial germ cells (Tsuda et al., 2003). This is in contrast to
Drosophila, where nos mRNA is maternally supplied to the
embryos and is partitioned into pole cells (Wang et al,
1994). It has been proposed that epigenesis might be of
early Metazoan origin, and that preformation might have
then evolved from this ancestral mechanism (Extavour and
Akam, 2003; Extavour et al., 2005). Further studies on the
expression of nos-related genes and their functions during
embryonic and post-embryonic development, in a variety of
animal groups other than model organisms, will provide a
better understanding of the evolution of epigenesis and pre-

formation, as well as of the molecular mechanisms underly-
ing germline specification.
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