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Phylogenetic relationships within Tanaidacea were analyzed based on sequence data for the 18S 

rRNA gene. Our results strongly supported a monophyletic group composed of Neotanaidae, 

Tanaoidea, and Paratanaoidea, with the first two taxa forming a clade. These results contradict three 

previously suggested hypotheses of relationships. Based on the molecular results, and consider-

ing morphological similarities/differences between Neotanaidomorpha and Tanaidomorpha, we 

demoted Suborder Neotanaidomorpha to Superfamily Neotanaoidea within Tanaidomorpha; with 

this change, the classification of extant tanaidaceans becomes a two-suborder, four-superfamily 

system. This revision required revision of the diagnoses for Tanaidomorpha and its three super-

families. The results for Apseudomorpha were ambiguous: this taxon was monophyletic in the max-

imum likelihood and Bayesian analyses, but paraphyletic in the maximum parsimony and minimum 

evolution analyses.
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INTRODUCTION

Order Tanaidacea is a group of aquatic crustaceans 

belonging to Superorder Peracarida, which also contains the 

common orders Amphipoda, Cumacea, and Isopoda (Martin 

and Davis, 2001). Most tanaidaceans are marine, having 

been reported from around the world, ranging in depth from 

coastal areas (1–2 m) to the deep-sea bottom at about 9000 

m (cf. Kudinova-Pasternak, 1972); a few freshwater and 

brackish species are also known (Kakui et al., 2010). At 

present, more than 1000 extant and 13 fossil species are 

classified into 35 families (Anderson, 2010; Larsen, 2011).

For the suborder-level classification in Order Tanaidacea, 

two different systems have been proposed: Lang’s (1956) 

two-suborder system and Sieg’s (1980b) four-suborder sys-

tem. Lang’s (1956) two suborders, Monokonophora and 

Dikonophora, were based on male external genitalia, with 

monokonophorans having only a single genital cone and 

dikonophorans having two. As diagnostic characters for the 

two suborders, Lang (1956) also suggested the number of 

antennular flagella, the presence or absence of the mandib-

ular palp, and the number of oostegites, to which Lauterbach 

(1970) proposed additional 18 characters. Sieg (1980b) 

abolished Lang’s (1956) classification, presenting a new 

system comprising Anthracocaridomorpha, Apseudomorpha, 

Neotanaidomorpha, and Tanaidomorpha. Sieg’s (1980b) 

action was based on the facts that 1) several fossil species 

express very different characters from extant species, e.g., 

the pleon consisting of six pleonites and one telson; 2) there 

are several extant and fossil species contradicting Lang’s 

(1956) male genitalia-rule, i.e., the dikonophorans 

Hexapleomera robusta (Moore, 1894) and Pancoloides 

litoralis (Vanhöffen, 1914) have a single genital cone, and a 

monokonophoran-like fossil species, Jurapseudes 

friedericianus (Malzahn, 1965), has two genital cones; and 

3) Family Neotanaidae, in Dikonophora, differs in various 

ways from other dikonophorans. In consequence, Sieg 

(1980b) divided Dikonophora into two suborders, Neotanaido-

morpha for Neotanaidae sensu Lang (1956) and Tanaido-

morpha for the other dikonophorans. Anthracocaridomorpha 

contains only fossil species, whereas Apseudomorpha 

includes both fossil and extant species. In addition, Sieg 

(1980b) established superfamilies within Suborders Tanaido-

morpha and Apseudomorpha. Tanaidomorpha contains two 

superfamilies, Paratanaoidea and Tanaoidea; the former 

includes Paratanaidae sensu Lang (1956) and the latter 

comprises a single family, Tanaidae. Apseudomorpha is 

composed of the fossil superfamily Ophthalmapseudoidea 
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and the extant Apseudoidea; the latter is identical to 

Monokonophora sensu Lang (1956). Schram et al. (1986) 

revised the fossil taxa and modified Sieg’s (1980b) system 

to the four-suborder, five-superfamily system currently 

accepted by most researchers (Larsen, 2005). The above 

two high-level classification systems are summarized in 

Table 1.

Previous researchers have proposed three hypotheses 

for relationships among extant higher-level taxa; these 

hypotheses differ in the position of Neotanaidae. In his two-

suborder system, Lang (1956) regarded Neotanaidae as 

ancestral to (included the common ancestor of) Paratanaidae 

(Fig. 1A) because 1) neotanaids show primitive states in 

some appendages, and 2) these two families are similar in 

having four paired oostegites and reduced mouthparts in 

males. Lauterbach (1970) and Gardiner (1975) accepted 

Lang’s (1956) two-suborder system, but placed Neotanaidae 

in a different position and assumed that Tanaidae and 

Paratanaidae shared a common ancestor (Fig. 1B), because 

members of the latter two families have thoracic glands, 

which are absent in Neotanaidae. Sieg (1980a) at first con-

curred with Lauterbach (1970) and Gardiner (1975), but later 

suggested a close relationship between Neotanaidomorpha 

and Apseudomorpha (Fig. 1C), based on the reduced article 

1 of the antenna (cf. Sieg, 1984: p. 90; figs. 9, 10, 29).

Among the above three hypotheses with regard to rela-

tionships, the currently accepted three-suborder, three-

superfamily system is still debatable: Tanaidomorpha is 

paraphyletic in Lang’s (1956) hypothesis (Fig. 1A). In a 

recent molecular phylogenetic analysis of Tanaidacea 

(Drumm, 2010), based on a “total evidence analysis (in-

group taxa having at least two out of the 28Sr RNA, COI, 

and H3 partial sequences)”, Tanaidomorpha was monophyl-

etic with strong support and Apseudomorpha was mono-

phyletic with weak support. Drumm’s (2010) taxon sampling, 

however, failed to include neotanaids, and thus the higher-

level relationships and a suitable system for classifying 

extant tanaidaceans remained open to question. The aim of 

our study was to shed light on the phylogenetic position of 

Family Neotanaidae using 18S rRNA sequences, and to 

clarify the phylogenetic relationships among higher taxa. On 

the basis of the relationships we observed, we discuss the 

extant tanaidacean system.

MATERIALS AND METHODS

Materials

Specimen collection localities are shown in Table 2. We included 

two isopods (Asellus hilgendorfii Bovallius, 1886 and Colubotelson

thomsoni Nicholls, 1944) as outgroup taxa (e.g., Siewing, 1963; Pires,

1987; Richter and Scholtz, 2001). 18S sequences for the following

four species were obtained from GenBank (NCBI): C. thomsoni; 

Kalliapseudes sp. 2 (registered by Spears et al. [2005] under the 

name Kalliapseudes sp.); Paradoxapseudes bermudeus (Bǎcescu, 

1980) (registered by Wilson [2009] under the name Apseudes

bermudeus); and Paratanais malignus Larsen, 2001 (Genbank 

accession numbers AF255703.1, AY781430.1, GQ175865.1, and 

AY781429.1, respectively).

Primer design

This study used one molecular marker, the nuclear small sub-

unit ribosomal RNA (18S rRNA) gene. Primers used for the PCR 

and cycle sequencing are listed in Table 3. The two outermost prim-

ers, 18S-a1F and 18S-a9R, were designed by reference to the 

sequence of Kalliapseudes sp. (Spears et al., 2005). Primers 18S-

F2 and 18S-F3 were designed by Yamaguchi and Endo (2003). 

Other primers were designed by using sequences obtained during 

this study, taking into account the location of variable regions 

assessed from the secondary structure of the honeybee 18S 

sequence (Gillespie et al., 2006), and were checked for their ade-

quacies with Primer3Plus (Untergasser et al., 2007).

DNA extraction, PCR, and sequencing

Total DNA was extracted from whole specimens or parts of 

specimens, using the DNeasy Blood & Tissue Kit (Qiagen GmbH) 

and following the manufacturer’s protocol. Exoskeletons were 

retained and preserved in 99% ethanol, and deposited 

in the Zoological Institute, Faculty of Science, Hokkaido 

University, Japan (ZIHU): ZIHU 4000–4028. Amplifica-

tions were performed by using a DNA thermal cycler 

with the following reaction conditions: 95°C for 7 min; 

35 cycles of 95°C for 30 seconds, 50°C for 90 seconds, 

72°C for 90 seconds; and 72°C for 7 min. All nucleotide 

sequences were determined by direct sequencing by 

using BigDye Terminator Kit ver. 3.1 with a 3730 DNA 

Analyzer (Life Technologies, USA).

Phylogenetic analyses

Nucleotide sequence pre-alignments were per-

formed with Clustal W (Thompson et al., 1994) in 

MEGA 4 (Tamura et al., 2007), with the default set-

tings: gap opening cost = 15, gap extension cost = 

6.66, and transition weight = 0.5. The pre-aligned data 

were then realigned by eye according to the secondary 

Table 1. Two high-level classification systems for tanaidaceans. 

Family names in the currently accepted system are not shown. S.O., 

suborder; S.F., superfamily; F., family. † indicates a taxon known 

only from fossils.

Lang’s (1956) system

(Two-suborder)

Currently accepted system

(Four-suborder, five-superfamily)

S.O. MONOKONOPHORA S.O. APSEUDOMORPHA

F. Apseudidae S.F. Apseudoidea

F. Kalliapseudidae S.F. Cretitanaoidea †

S.F. Jurapseudoidea †

S.O. DIKONOPHORA S.O. TANAIDOMORPHA

F. Tanaidae S.F. Tanaoidea

F. Paratanaidae S.F. Paratanaoidea

F. Neotanaidae S.O. NEOTANAIDOMORPHA

S.O. ANTHRACOCARIDOMORPHA †

Fig. 1. Phylogenetic hypotheses previously suggested for Tanaidacea. (A)

Lang’s (1956) hypothesis. (B) Lauterbach’s (1970) and Gardiner’s (1975) 

hypothesis. (C) Sieg’s (1984) hypothesis, including only extant higher taxa than 

superfamily. Bold taxon names in all capital letters indicate suborders. The solid 

branch indicates Neotanaidae.
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Table 2. Taxa included in this study’s analysis, place of origin, and 18S sequence length.

Taxa Locality
Sampling site or Reference

depth (m)
Collector
or vessel*

Sequence
length (bp)Latitude (N) Longitude (E)

Suborder APSEUDOMORPHA

Superfamily Apseudoidea

Family Apseudidae

Subfamily Apseudinae

Fageapseudes brachyomos Bamber, 2007 Stn. Off Kinkazan 38°28′60.00″ 143°40′6.00″ 3990–4181 SoM 2118

Paradoxapseudes bermudeus (Bǎcescu, 1980)** – Wilson (2009) – – 2032

Paradoxapseudes littoralis (Shiino, 1952) Shizuoka: Shimoda 34°40′1.39″ 138°56′6.75″ Intertidal KK 2021

Atlantapseudes sp. Stn. Kago-7-Okinawa Trough 28°29′12.00″ 127°58′24.00″ 1068 SoM 2146

Subfamily Leviapseudinae

Carpoapseudes varindex Bamber, 2007 Stn. Kago-3-Okhotsk 44°34′36.00″ 144°41′30.00″ 1552 SoM 2095

Leviapseudes sp. Stn. Torishima Island 26°35′12.00″ 127° 0′17.99″ 1734 SoM 2086

Family Kalliapseudidae (subfamily Kalliapseudinae)

Kalliapseudes sp. 1 Stn. South of Nagannu Island 26°14′37.81″ 127°32′28.20″   37 ToM 2326

Kalliapseudes sp. 2** – Spears et al. (2005) – – 2340

Family Metapseudidae (subfamily Metapseudinae)

Apseudomorpha sp. Hokkaido: Oshoro 43°12′46.23″ 140°51′29.03″ Intertidal KK 2095

Family Pagurapseudidae (subfamily Pagurapseudinae)

Macrolabrum sp. Okinawa: Bise 26°42′41.17″ 127°52′45.25″ Intertidal KK 1994

Family Parapseudidae (tribe Parapseudini)

Longipedis fragilis Larsen and Shimomura, 2006 Stn. Hirase 30°5′8.40″ 130°4′43.20″   87 ToM 2099

Parapseudes algicola (Shiino, 1952) Shizuoka: Shimoda 34°40′1.39″ 138°56′6.75″ Intertidal KK 2081

Parapseudes arenamans Larsen and Shimomura, 2008 Okinawa: Gahi Island 26°13′8.40″ 127°17′18.60″    3 KK 2084

Family Sphyrapodidae (subfamily Pseudosphyrapodinae)

Pseudosphyrapus quintolongus Kakui et al., 2007 Stn. R-1 28°31′15.60″ 126°57′42.60″  345 NaM 2706

Pseudosphyrapus aff. quintolongus Stn. Enshu Nada 34°10′41.99″ 137°28′54.00″ 1316 SoM 2713

Pseudosphyrapus aff. serratus (G.O. Sars, 1882) Stn. West of Musashi Bank 44°41′36.00″ 139°48′6.00″  528 SoM 2909

Suborder NEOTANAIDOMORPHA

Family Neotanaidae

Neotanais sp. 1 Stn. North of Kuroshima Island 26°20′23.40″ 127°26′14.40″  646 ToM 2296

Neotanais sp. 2 Stn. T 29°11′28.20″ 128°6′28.80″ 1150 NaM 2375

Suborder TANAIDOMORPHA

Superfamily Tanaoidea

Family Tanaidae

Tanais tinhauae Bamber and Bird, 1997 Kochi: Sukumo 32°54′56.80″ 132°42′46.40″ Intertidal KK 1922

Hexapleomera sp. Carapace of loggerhead turtle bred in Okinawa Churaumi Aquarium AK, KK 1878

Sinelobus sp. 1 Kagawa: Sakaide 34°19′41.57″ 133°52′29.91″ Estuary YH 1863

Sinelobus sp. 2 Kochi: Kochi 33°32′26.40″ 133°33′10.80″ Estuary KK 1858

Zeuxo sp. 1 Hokkaido: Rebun 45°24′25.55″ 140°59′28.43″ Intertidal KK 1882

Zeuxo sp. 2 Kanagawa: Misaki 35° 9′28.99″ 139°36′45.01″ Intertidal AY, KK 1883

Superfamily Paratanaoidea

Family Agathotanaidae

Paranarthrura sp. Stn. T 29°11′28.20″ 128° 6′28.80″ 1150 NaM 2395

Family Leptocheliidae

Letochelia itoi Ishimaru, 1985 Hokkaido: Oshoro 43°12′46.23″ 140°51′29.03″ Intertidal HY 1818

Family Nototanaidae

Nesotanais ryukyuensis Kakui et al., 2010 Okinawa: Naha: Noha River 26°11′13.38″ 127°41′8.84″ Estuary KK 2291

Family Paratanaidae

Paratanais sp. Stn. Hirase 30° 5′8.40″ 130° 4′43.20″ 87 ToM 2152

Paratanais malignus Larsen, 2001** – Spears et al. (2005) – – 2152

Family incertae sedis

Chauliopleona sp. Stn. East of Hiraji Sone 32°14′49.08″ 129°30′6.66″ 421 NaM 2313

Metatanais sp. Stn. TW-01-01 27° 1′23.70″ 142° 7′24.72″ 145 TaM 2233

OUTGROUP TAXA (O.G.)

Order Isopoda (suborder Asellota)

Asellus hilgendorfii Bovallius, 1886 Hokkaido: Sarobetsu 45° 0′39.54″ 141°43′56.00″ 2 SH 1933

Order Isopoda (suborder Phreatoicidea)

Colubotelson thomsoni Nicholls, 1944** – Dreyer and Wägele (2001) – – 2336

*Abbreviations: AK, Atsushi Kaneko; AY, Aska Yamaki; HY, Hiroshi Yamasaki; KK, Keiichi Kakui; SH, Shimpei Hiruta; YH, Yoshihiro Hayashi; 

NaM, TR/V Nagasaki-maru; SoM, R/V Soyo-maru; TaM, R/V Tansei-maru; ToM, TR/V Toyoshio-maru.

**Sequence data were obtained from NCBI.
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structure of the gene predicted with CentroidFold (Sato et al., 2009), 

and all indels were removed from the data set. To determine 

whether nucleotide composition bias occurred among taxa, χ2 good-

ness-of-fit tests were performed on the sequence data. In addition, 

to assess the effect of heterogeneity on phylogenetic inferences, 

two minimum evolution (ME; Rzhetsky and Nei, 1993) trees were 

constructed with the distance matrices calculated by using maxi-

mum composite likelihood model (Tamura et al., 2004) implemented 

in MEGA 4, assuming homogeneity or heterogeneity of base com-

position among lineages. ME trees were searched by closest neigh-

bor interchange (CNI; Nei and Kumar, 2000) at a search level of 1. 

Bootstrap values (Felsenstein, 1985) for two ME trees were deter-

mined from 10000 pseudoreplicates. Aligned data were then 

imported into PAUP*4.0b (Swofford, 2002) for the maximum parsi-

mony (MP) and maximum likelihood (ML) analyses.

Unweighted MP trees were obtained through 1000 heuristic 

search replicates, with starting trees generated by random 

sequence addition, followed by the tree bisection reconnection 

(TBR) branch swapping. Bootstrap values for MP tree were deter-

mined from 1000 pseudoreplicates, for each of which an MP tree 

was obtained through 100 heuristic search replicates with random 

sequence addition and TBR branch swapping.

ML trees were obtained by TBR branch swapping, starting with 

a topology given by neighbor-joining (NJ) method (Saitou and Nei, 

1987). Parameters for the ML 

analysis were selected on the 

basis of the Akaike information 

criterion (AIC; Akaike, 1974) in 

jModelTest (Posada, 2008). 

Bootstrap values for the ML 

trees were calculated from 1000 

pseudoreplicates analyzed by 

TBR searches, with the starting 

topology given by an NJ tree.

Finally, a Bayesian (BI) 

analysis was performed with 

MrBayes 3.1.2 (Huelsenbeck 

and Ronquist, 2001). Parameters 

for this analysis were selected by 

the Bayesian information crite-

rion (BIC; Schwarz, 1978) test 

implemented in jModelTest. A 

Markov-Chain Monte-Carlo 

(MCMC) search was performed 

with four chains, each of which 

was run for 500000 generations. 

Trees were sampled every 100 

generations. Topological conver-

gence diagnostics for Bayesian 

analysis were performed with 

Tracer 1.5 (Rambaut and 

Drummond, 2009). The first 

125000 generations were dis-

carded as burn-in. A consensus 

of sampled trees was computed, 

and the posterior probability for 

each interior branch was 

obtained to assess the robust-

ness of the inferred relationships.

RESULTS

The 18S sequences for 

the 29 studied species 

ranged in length from 1818 

bp to 2909 bp, and were reg-

istered in the DDBJ/EMBL/

GenBank databases under accession numbers AB618174–

618202. The sequences contained eight variable regions, 

corresponding to domains V2–9 in Gillespie et al. (2006); as 

with Spears et al. (2005), regions V4 and V7 were highly 

divergent among taxa. The aligned data set consisted of 

1493 bp. Characteristics of the data set used in this study 

are given in Table 4. Optimal substitution models for the ML 

and BI analyses are given in Table 5. Although the χ2 test 

for homogeneity in base frequency revealed significant com-

positional heterogeneity for the data (Table 4), there were 

no differences between two ME trees under the assumption 

of homogeneity or heterogeneity except for minor differ-

ences in bootstrap values (data not shown). Thus, composi-

tional heterogeneity in this data set did not seem to be prob-

lematic.

A summary of optimality values for the MP, ME, and ML 

analyses of 18S rRNA is as follows: three MP trees were 

obtained (tree length = 2560, CI = 0.494, RI = 0.740); ME-

score = 1.57582; –ln L = 13204.8889.

The strict consensus of three MP trees, and the ME, ML, 

and BI trees, are shown in Figs. 2–5. In ME, ML, and BI 

trees, the branches in Apseudomorpha were generally 

     
Table 3. List of PCR and cycle sequencing (CS) primers used in this study for the 18S rRNA gene.

Marker Primer name Reaction Primer sequence (in 5’-3’ direction) Direction Source

18S rRNA 18S-a1F PCR & CS GGYGAAACCGYGAAWGGYTC Forward This study

18S-F2 CS CCTGAGAAACGGCTRCCACAT Forward Yamaguchi and Endo (2003)

18S-b4F CS TGCGGTTAAAAAGCTCGTAGTTG Forward This study

18S-b4R CS TCCAACTACGAGCTTTTTAACC Reverse This study

18S-F3 CS GYGRTCAGATACCRCCSTAGTT Forward Yamaguchi and Endo (2003)

18S-b6F CS CCTGCGGCTTAATTTGACTC Forward This study

18S-a6R CS AACGGCCATGCACCAC Reverse This study

18S-b8R CS TCTAAGGGCATCACAGACCTG Reverse This study

18S-b8F CS GGTCTGTGATGCCCTTAGATG Forward This study

18S-a9R PCR & CS CCTTGTTACGACTTTTAGTTCC Reverse This study

Table 4. Characteristics of the 18S sequence data set in this study. TS, total sites; VS, variable sites; 

PIS, parsimony informative sites (all after alignment).

Gene TS VS PIS
Base frequencies Compositional heterogeneity

%A %C %G %T χ2 P

18S rRNA 1493 695 628 25.7 22.5 27.8 23.9 182.50 (df = 96) 0.0000003*

*Significant nucleotide compositional bias.

Table 5. Optimal substitution models for maximum-likelihood (ML) and Bayesian (BI) analyses of the 

18S data set, selected by AIC and BIC in jModelTest, respectively. GTR, general time reversible model 

(Tavaré, 1986); TIM, transitional model (Posada, 2003); I, proportion of invariant sites; G, gamma distri-

bution shape parameter.

Gene Analysis Model I G Base frequencies Rate matrix

18S rRNA ML GTR + I + G 0.3870 0.5530 A = 0.2538 A-C  = 1.0755

C = 0.2102 A-G = 1.6138

G = 0.2781 A-T  = 1.0827

T = 0.2579 C-G = 0.6608

C-T  = 3.2468

G-T  = 1.0000

BI TIM2 + I + G 0.3840 0.5490 A = 0.2536  A-C = 1.3015

C = 0.2044  A-G = 1.9324

G = 0.2781  A-T = 1.3015

T = 0.2638  C-G = 1.0000

 C-T = 3.9249

 G-T = 1.0000
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shorter than those in Tanaidomor-

pha and Neotanaidomorpha (Figs. 

3–5). In all trees, Clade 12 con-

tained all taxa included in Super-

family Paratanaoidea; Clade 18 

comprised Tanaoidea + Neotanai-

dae (Clades 19 and 24, respec-

tively) and formed the sister clade 

to Paratanaoidea (Clade 12). The 

position of Kalliapseudidae (Clade 

10) differed among analyses. In 

the MP and ME trees (Figs. 2 and 

3), Kalliapseudidae was included 

in Clade 9 with Tanaoidea, Para-

tanaoidea and Neotanaidae, 

which led Apseudomorpha to be 

non-monophyletic. In the ML and 

BI trees (Figs. 4 and 5), Kalliap-

seudidae was included in Clade 

25 and formed the sister clade to 

other apseudomorphs (Clade 2). 

Family Sphyrapodidae (Clade 7) 

being the early offshoot in Clade 2 

was supported in all trees. Within 

Clade 3, all analyses showed well-

supported Paradoxapseudes and 

parapseudid clades (Clades 5 and 

6, respectively). The positions of 

terminal taxa and of Clades 5 and 

6 within Clade 2 were unstable 

among analyses.  

Fig. 2. Strict consensus of the three optimal maximum-parsimony trees (length = 2560) based on 18S rRNA gene sequence data. Bootstrap 

values > 50% are shown, determined by analysis of 1000 pseudoreplicates. Numbers in squares indicate clades with > 50% bootstrap support. 

An asterisk labeling a terminal taxon indicates the sequence was obtained from NCBI. (O.G.), outgroup taxon. Bold taxon names in all capital 

letters labeling sidebars indicate suborder names suggested by Sieg (1980b); below the suborder names are higher taxa represented in the 

clade. The clade in bold lines is Neotanaidae.

Fig. 3. Minimum-evolution tree based on 18S rRNA gene sequence data, constructed by the 

maximum composite likelihood method assuming heterogeneity (ME-score = 1.57582). Boot-

strap values > 50% are shown, determined by analysis of 10000 pseudoreplicates. Numbers in 

squares indicate clades with > 50% bootstrap support. An asterisk labeling a terminal taxon indi-

cates the sequence was obtained from NCBI. (O.G.), outgroup taxon. The taxon names labeling 

sidebars are superfamily or family names. The clade in bold lines is Neotanaidae (Neotanaido-

morpha).
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DISCUSSION

The results of our analyses generally indicated that 

Tanaidomorpha and Neotanaidomorpha are represented by 

relatively long branches, compared to Apseudomorpha 

(Figs. 3–5). That Neotanaidomorpha was nested within 

Tanaidomorpha (= Paratanaoidea + Tanaoidea) might 

seemingly be indicative of the long-branch attraction (LBA) 

artifact (Felsenstein, 1978). However, LBA is unlikely in 

terms of the tree topology ((Neotanaidomorpha + 

Tanaoidea) + Paratanaoidea), because this relation was 

consistent among all the trees generated by MP, ME, ML, 

and BI, with high support values. The relationship ((Neota-

naidomorpha + Tanaoidea) + Paratanaoidea) contradicts 

the three previous hypotheses (Fig. 1A–C), but is similar to 

schemes suggested by Lang (1956), Lauterbach (1970), 

and Gardiner (1975), in which Neotanaidae is related more 

closely to Tanaidomorpha than to Apseudomorpha.

Fig. 4. Maximum-likelihood tree based on 18S rRNA gene sequence data, assuming the GTR + I + G substitution model (–lnL = 13204.8889). 

Bootstrap values > 50% are shown, determined by analysis of 1000 pseudoreplicates. Numbers in squares indicate clades with > 50% boot-

strap support. An asterisk labeling a terminal taxon indicates the sequence was obtained from NCBI. (O.G.), outgroup taxon. The taxon names 

labeling sidebars are superfamily or family names. The clade in bold lines is Neotanaidae (Neotanaidomorpha).

Fig. 5. Bayesian tree based on 18S rRNA gene sequence data, assuming the TIM2 + I + G substitution model. Bayesian posterior probability 

values > 0.90 are shown. Numbers in squares indicate clades with > 0.90 bayesian posterior probability value. An asterisk labeling a terminal 

taxon indicates the sequence was obtained from NCBI. (O.G.), outgroup taxon. The taxon names labeling sidebars are superfamily or family 

names. The clade in bold lines is Neotanaidae (Neotanaidomorpha).
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Our results, in which Tanaidomorpha is paraphyletic, 

suggest that the currently accepted classification system for 

extant species should be amended. The relationship 

between Neotanaidomorpha and Tanaidomorpha is sup-

ported by the uniramous antennule, the mandible lacking the 

palp, the pereonite 1 not firmly joined with the carapace, and 

other features (see Lang, 1956; Lauterbach, 1970). At the 

same time, three taxa (Neotanaidae, Tanaoidea, and Para-

tanaoidea) within these two suborders are well distinguish-

able from each other by a number of morphological features, 

including the number of articles on the antennules and the 

antennae, and the presence or absence of the thoracic 

glands and the uropodal exopod. It is therefore reasonable 

to demote Suborder Neotanaidomorpha to Superfamily 

Neotanaoidea within Tanaidomorpha. Consequently, the 

classification system for extant Tanaidacea becomes a two-

suborder, four-superfamily system. As the result of the 

demotion of Neotanaidomorpha, it is necessary to amend 

the diagnoses for Suborder Tanaidomorpha and its three 

superfamilies.

Amended diagnosis of Tanaidomorpha. Body cylindrical 

in cross-section. Pereonite 1 not firmly joined with carapace. 

Antennule uniramous; bases abutting (separate in Allotanais

and Langitanais). Antenna without squama. Mandible with-

out palp. Male with two genital cones (one cone in 

Hexapleomera robusta and Pancoloides litoralis).

Amended diagnosis of Tanaoidea. Eyes well defined, 

black (absent in Protanais). Pleonites 4 and 5, when pres-

ent, are narrower than pleonites 1–3. Thoracic glands pres-

ent. Antennule with three to five articles. Antenna with six to 

eight articles. Lacinia mobilis present on left and right man-

dibles. Maxillule with one endite, bearing palp. Maxilla rudi-

mentary, oval-shaped. Maxilliped with coxae; maxillipedal 

coxae and bases unfused medially. Cheliped lacking 

ischium (present in several species of Tanais). Pereopods 

lacking ischium. Dactylus-unguis of pereopods 4–6 forming 

claw; claw bearing rows of spiniform setae. Pleopods three 

pairs. Uropod uniramous. Females with only one pair of sac-

like oostegites, arising from coxae of pereopod 4.

Amended diagnosis of Paratanaoidea. Eyes present or 

absent. Pleon never with last two pleonites fused or reduced 

alone. Thoracic glands present. Antennule with five or fewer 

articles in female, often with more than five articles in male. 

Antenna with seven or fewer articles. Lacinia mobilis present 

on left mandible. Maxillule with one endite and palp bearing 

two terminal setae. Maxilla rudimentary, oval-shaped. Che-

liped lacking ischium. Pereopods with ischium. Dactylus-

unguis of pereopods 4–6 forming claw in several families, 

but lacking rows of spiniform setae. Pleopods zero or five 

pairs. Uropod uni- or biramous. Females with one or four 

pairs of flat oostegites.

Diagnosis of Neotanaoidea. Eyes absent. Pleon never 

with last two pleonites reduced alone; pleonite 5 sometimes 

fused to pleotelson. Thoracic glands absent. Antennule with 

seven or eight articles. Antenna with nine articles. Lacinia 

mobilis present on left mandible. Maxillule with two endites, 

lacking palp. Maxilla apseudomorph-shaped in female, sim-

pler in male. Cheliped with ischium. Pereopods with ischium. 

Dactylus-unguis of pereopods 4–6 not forming claw; dacty-

lus with rows of small spines. Pleopods five pairs. Uropod 

biramous. Female with four pairs of flat oostegites.

Monophyly of Apseudomorpha has been open to ques-

tion, and will remain as is. Based on morphology, most tanaid-

acean researchers (e.g., Sieg, 1984; Larsen and Wilson, 

2002) regarded the taxon as monophyletic, whereas Siewing 

(1953: p. 416) implied paraphyly. Drumm’s (2010) recent 

molecular phylogenetic analysis indicated Apseudomorpha 

as monophyletic, although with relatively low support values. 

Our results were that Apseudomorpha was monophyletic in 

ML and BI, and paraphyletic in MP and ME. Future studies 

with more reliable molecular markers must clarify the phylo-

genetic status of this taxon.

Among 13 families of Apseudomorpha, Kalliapseudidae 

and Sphyrapodidae are unique in that they produce mancas 

having an exopod each on pereopods 4 and 5 (cf. Hansknecht 

et al., 2002; Gut,u, 2006). In the present analysis, Kalliap-

seudidae branched off earlier than the other apseudo-

morphs in ML and BI trees (Clade 2), as has been shown in 

a previous molecular phylogenetic study (Drumm, 2010). 

With MP and ME, Kalliapseudidae appeared as sister to 

Tanaidomorpha + Neotanaidae (Clade 11). Sphyrapodidae 

was a sister taxon to the rest of Apseudomorpha (Clade 3) 

in all the methods used in this study. Future analyses with 

denser taxon sampling are necessary to reveal the evolution 

of biramous appendages in Apseudomorpha.

This study is the first to use 18S sequence data and to 

include neotanaids to analyze tanaidacean phylogeny. It 

strongly indicates that Neotanaidae has been erroneously 

positioned in the previous classification. On the other hand, 

the 18S data failed to resolve relationships for apseudo-

morphs.
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