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Abstract. Birds’ nesting success may vary significantly between years. Ample evidence exists that this variation is caused by temporal
fluctuations in rodent populations, as rodents are important components in the diets of nest predators. The alternative prey hypothesis
supposes that generalist predators switch to alternative prey (bird nests) when their main prey (rodents) is lacking, thus causing increased
nest predation. According to the shared predation hypothesis, by contrast, predator density is enhanced at rodent population peaks and
results in simultaneous increase in main and alternative prey predation. To evaluate these hypotheses, nest predation rate dynamics were
examined using artificial nests (n = 560) and rodent abundance (2240 traps) during four breeding seasons in Central European (the
Czech Republic) secondary forests. Although rodent abundance increased at the population peak by almost seven times compared to
the baseline and nest predation rate also showed significant inter-year variation, the data support neither the alternative prey nor shared
predation hypotheses. In rich ecosystems with complex trophic levels, predators can use many resources as alternative prey. Therefore,

bird nest predation risk does not increase or decrease in periods of low rodent abundance.

Key words: edge effect, generalist predators, shared predation hypothesis, prey distribution

Introduction

Nest predation is one of the main factors limiting the
reproductive success of birds (Ricklefs 1969, Wegge
& Storaas 1990, Martin 1995, Kauhala & Helle 2002).
This source of mortality may exhibit significant inter-
year variation (Summers 1986), although causes of
these temporal fluctuations are poorly understood.
It has been proposed that between-year variation in
the nest predation rates is causally associated with
temporal fluctuations in abundance of small mammals
(i.e. voles, Microtus spp. and lemmings, Lemmus spp.;
Béty etal. 2001, Ackerman 2002), which constitute an
important dietary component of many nest predator
species. For instance, small mammals (including
rodents) may comprise up to 70 % of food sources
for some mammalian mesopredators, such as foxes,
martens and weasels (Jedrzejewska & Jedrzejewski
1998, Martinoli et al. 2001, Panzacchi et al. 2008).
Nevertheless, the effects on nest predation from the
interplay of fluctuations in small rodents, foraging
strategies and demographic responses of predators are
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rather complex. One particular possible explanation,
the so-called “shared predation hypothesis” (Norrdahl
& Korpiméki 2000, Reif et al. 2004), assumes that
predators increase in abundance when rodent density
is peaking (Béty et al. 2002) due to their increased
survival and/or reproductive output (Tannerfeldt &
Angerbjorn 1998) and because of migration to areas
of high prey density (Korpimiki 1994). Consequently,
the increase in predator abundance leads to a higher
predation rate not only on the main prey (such as small
rodents, i.e. those inducing the numerical response) but
also on secondary prey (Norrdahl & Korpiméki 2000,
Reif et al. 2004). Although this scenario may logically
apply also for bird clutches, only a few studies report
positive relationships between nest predation rates
and rodent density (Table 1). Increases in predator
abundance due to migration are expected to have
immediate effect on predation risks for secondary
prey. However, predation increases on secondary prey
are likely to be delayed in comparison to the rodent
peak if shared predation is induced via higher survival
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rates and reproductive output in predators (Korpiméki
etal. 1991).

The alternative, mutually exclusive scenario to
shared predation is the “alternative prey hypothesis”
(Angelstam et al. 1984). This indicates that increased
main prey abundance results in decreased predations
on such secondary prey as bird clutches due to the
switching of predator foraging strategies (Wilson
& Bromley 2001, Béty et al. 2002, Korpiméki et
al. 2005). Many mammalian mesopredators are
primarily dependent on small mammals such as voles
and lemmings (Ims & Fuglei 2005). If their main prey
becomes scarce, they increase the breadth of their
diet by using a limited amount of secondary prey
(Béty et al. 2001) and/or exploit habitats that would
be suboptimal during rodent peaks (Norrdahl &
Korpiméki 2005, Lecomte et al. 2008) in accordance
with the predictions of the optimal foraging theory
(MacArthur & Pianka 1966). The alternative prey
hypothesis has mostly been tested in boreal and
arctic ecosystems that are typified by low species
diversity and low food web complexity consisting of
2-3 levels (Summers & Underhill 1987, Lecomte et
al. 2008). However, the evidence for the alternative
prey hypothesis seems rather weak at lower latitudes,
which differ from boreal/arctic ecosystems in having
greater prey diversity, more complex trophic cascades
and, possibly, a less clear prey profitability hierarchy.
The small number of pertinent studies as well as
drawbacks associated with their experimental designs
do not allow making any general assessment as to
the validity of the alternative prey hypothesis at low
latitudes. For example, only two studies have aimed at
testing the alternative prey hypothesis in non-arctic/
non-boreal parts of Europe (Saniga 2002, Salek
et al. 2004). Unfortunately, Saniga (2002) did not
sufficiently assess main prey density and Salek et al.
(2004) examined changes in predation rate and rodent
density during only two consecutive nesting periods
and did not directly test the association between
rodent densities and predation risk.

The aim of this study was to test the alternative prey and
shared predation hypotheses based upon longitudinal
data on temporal fluctuations in artificial ground-nest
predation and rodent abundance in secondary forest
habitats (forest edge and forest interior) in Central
Europe (the Czech Republic). Although fluctuations
in rodent numbers do not commonly occur in regular
cycles within Central Europe, rodent populations
nevertheless exhibit irregular yet pronounced spatial
and temporal variation in this region (Tkadlec &
Stenseth 2001). Atthe same time, previous research has

shown that both nest predation rates and mammalian
predator activity fluctuate considerably between
consecutive breeding seasons (Svobodova et al. 2011,
Svobodova et al. 2012). The obtained data allowed
for testing the main predictions of both the alternative
prey hypothesis and the shared predation hypothesis.
Whereas the alternative prey hypothesis predicts a
negative relationship between nest predation rates
and small rodent abundances, the shared predation
hypothesis predicts a positive association between
nest predation rates and rodent counts. Furthermore,
since predators may increase their reproductive
success in the year subsequent to the rodent peak,
a positive relationship between predation rate and
rodent abundance in the subsequent year would
support the shared predation hypothesis with a one-
year delay in predator response. To achieve greater
robustness in the conclusion, assessment of both
temporal variations in nest predation risk and small
rodent abundance was undertaken in two dominant
habitat types: forest edges and forest interiors.

Material and Methods

The study area was located in South Bohemia (the
Czech Republic) in the Pisecké Mountains region
(49°11'-49°18" 14°09'-14°22’, 350 m as.l., 60.3
km?), which is formed by a complex of production
forest stands (45 % of the study area) surrounded
by farmland. Coniferous and deciduous growths
are typically dominated by spruce (Picea abies),
pine (Pinus sylvestris) and beech (Fagus sylvatica).
Mixed growths bordering the forest complex are
mostly composed of such broadleaved species as
oaks (Quercus spp.) and limes (Zilia spp.) along with
coniferous trees from production stands. Since the
forest growths are intensively cultivated, they are
frequently interrupted by clearcuts, plantations and
road networks. The surrounding farmland (53 % of the
study area) consists mainly of hay meadows, pastures
and cultivated fields that are regularly partitioned by
woodlots and a network of narrow (i.e. > 10 m wide)
linear strips of uncultivated vegetation (2 % of the
study area; see Salek et al. 2009 for more details),
such as growths along drainage channels, windbreaks
and roads.

Habitat types where the monitoring of nest predation
and rodent densities took place were classified into
two categories: 1) forest edges, and 2) forest interiors
(places where the distance from the nearest forest
edge = 100 m). Forest edges were usually fringed
with oaks, limes, such trees from coniferous stands as
spruces and pines, poplars (Populus spp.) and birches
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(Betula pendula). The shrub layer was usually dense,
consisting mainly of shrubs and saplings of canopy
trees (hazels, Corylus avellana and blackthorns,
Prunus spinosa). This habitat type was also
characterized by dense and highly diversified
herbaceous vegetation originating mainly from nearby
meadows. The boundary between forest and adjacent
habitats was sharp and clearly distinguishable. The tree
canopies of forest interiors were typically dominated
by conifers (spruces and pines) while broadleaved
tree species such as oaks, birches and beeches formed
occasional admixtures. Shrub and herbal undergrowth
was very sparsely developed (Svobodova et al.
2012). Previous research had determined there to be a
relatively broad community of potential nest predators
inhabiting the study area (Svobodova etal. 2011,2012).
Carnivores include red fox (Vulpes vulpes), martens,
Eurasian badger (Meles meles), and smaller carnivores
from the family of mustelids (Mustelidae, Mustela
nivalis and M. erminea). Avian nest predators present
include carrion crow (Corvus corone), Eurasian magpie
(Pica pica) and Eurasian jay (Garrulus glandarius).
In addition, wild boar (Sus scrofa) has been shown to
contribute markedly to predation on artificial ground
clutches in the study area.

Artificial nests were constructed by digging small
depressions in the ground and then lining these with
small amounts of dry plant material. Each nest was
baited with two brown chicken eggs (Yahner & Mahan
1996) to ensure against predation by small predators
such as rodents (Picman 1988, Haskell 1995, DeGraaf
& Maier 1996). One egg in the nest was filled with
a mixture of beeswax and vegetable oil for the
purpose of predator identification (Pasitschniak-Arts
& Messier 1995). Each wax egg was anchored in
the nest hole by a string and nail in order to prevent
predators from carrying it away (Summers et al.
2004, Suvorov et al. 2012). In an earlier experiment
conducted in exactly the same area, no differences
had been found in predation between nests baited
with quail versus chicken eggs (Svobodova et al.
2012), thus suggesting that artificial nest design has
a low effect on experimental outcomes. Hence, we
argue that the artificial nests used in this study may be
representative for a heterogeneous group of ground
nesting birds (e.g. Eurasian woodcock Scolopax
rusticola, yellowhammer Emberiza citrinella, tree
pipit Anthus triviallis) occurring in the Central
European landscape.

Inter-year variation in the rate of nest predation was
studied using artificial nests during breeding periods
from 2006 to 2009. In 2006, 200 artificial nests were

installed. In the subsequent years, 120 nests were
placed. Further, to evaluate the edge effect hypothesis,
half of the artificial nests were placed at the forest edge
(i.e. 5 m from the forest border into the forest interior)
and half within the forest interior (100 m distant from
the forest edge). The distance between two adjacent
nests was > 300 m in 2006. During subsequent years,
however, nest pairs (i.e. one edge nest and one interior
nest) were placed in closer proximity (hereafter together
referred to as a “location”). The distance between nests
within individual pairs was > 100 m and the distance
between pairs, similarly as in 2006, was > 300 m, in
order to minimize the effect of spatial pseudoreplication
(e.g. Gehring & Swihart 2003). While that variation
in study design resulted in lower nest density during
2006 compared with the other seasons, it nevertheless
can be assumed that this fact had minimal effect on the
results of the experiment. Nests were always placed in
the same locations during late April of each year. They
were checked after 14 days of exposure, which is equal
to the main nesting and incubation period of most bird
species in the study area (Hudec & Stastny 2005). A
nest was considered depredated when at least one of
the two installed eggs was damaged, removed from the
nest bowl or missing. Nest predators were identified
according to beak or tooth marks left on the wax eggs
(Nour et al. 1993) and were assigned to four categories:
carnivore (red foxes, martens, small mustelids), bird,
wild boar and unidentified predator (see Svobodova et
al. 2012 for further details).

Rodent capture took place during the same period as
did the artificial nest experiment. Common snap traps
baited with wicks dipped in grease and flour were used
(Heroldova et al. 2008). The traps were laid in lines
of 35 traps each with the traps 5 m apart. The total
length of each line was thus about 175 m. As were the
artificial nests, the lines of traps were placed in the
two habitat types: 1) forest interior and 2) forest edge
at the same eight locations every year (64 lines with
2240 traps in total). To eliminate the potential effect
of spatial pseudoreplication, the spatial distribution of
capture lines followed the same rules as in the case of
the artificial nest experiment (see above). Since snap
traps were used whose efficiency can be affected by
capture from the previous day, the traps were exposed
in each location only for 24 hours.

Nest fate (survived/depredated, i.e. 0/1) after 14 days
of nest exposure was included as a binary response
variable into a general linear mixed effect model
(GLMM, binomial distribution, logit link function)
to evaluate variation underlying nest predation
probability. Habitat type (i.e. forest edge or forest
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interior) and year were included as categorical
explanatory variables and location was included as a
random effect.

The number of captured rodents vs. the number of
empty traps in a given line (consisting of 35 traps)
was included as a binomial response variable in the
GLMM (binomial distribution of error, logit link
function). As with the model above, habitat type,
year and the interaction between these variables were
fitted as fixed effects and the location was included as
a random effect.

The best minimal adequate model (i.e. that model
with the greatest parsimony and having all variables
significant) was achieved by backward elimination of
non-significant effects. The significance of a particular
explanatory variable was calculated by the change in
deviance (assuming a y? distribution) between the
model containing that variable and the reduced model
(i.e. using likelihood-ratio tests; Crawley 2002). All
analyses were performed in R 2.12.1 software (R
Development Core team 2008). GLMMs were fitted
using the Imer function implemented in the /me4
R package (Bates et al. 2012). The significance of
between-year differences in rodent abundance and
nest predation risk was assessed by Tukey’s HSD test
using the multcomp package (Hothorn et al. 2008).
To test for the existence of association between rodent
densities and predation risk, subsequent analysis was
restricted to nests that surrounded the lines of traps
(max. distance from lines = 900 m, total n = 247).
A different maximum distance cut-off was tested
as well (max. distance = 400 m, n = 127), but this
analysis provided identical results. The proportion
of predated nests in a given location and in a given
year was considered to be a response variable and
the numbers of captured rodents (log transformed) to
be an explanatory variable in the GLMM (binomial
distribution of error, logit link function). Sampling
sites and years were considered random intercepts and
the relationship between predation risk and numbers
of captured rodents at individual sites and in individual
years to be random slopes. The same approach was
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Fig. 1. Mean probability (+ 95 % confidence intervals) of a) rodent
capture per trap, and b) nest predation risk in secondary forests of
South Bohemia (2006-2009) based on the prediction of a general
linear mixed effect model. Different letters above bars indicate
significant differences in rodent capture probability and nest
predation risk between corresponding years based on Tukey’s HSD
test (a = 0.05).

applied to test the hypothesis that rodent densities
in a given location predict predation rates during the

subsequent year (i.e. the explanatory variable was
number of captured rodents in the previous year).

Table 2. Occurrence of predation on experimental nests in South Bohemia (2006-2009). A total of 537 nests were randomly distributed
within two forest habitat types. Predator categories were identified according to markings on wax-filled eggs.

Forest interior Forest edge Total
2006 2007 2008 2009 2006 2007 2008 2009
Carnivores 8 6 3 4 22 8 4 2 57
Birds 2 1 0 0 4 0 1 2 10
Wild boar 3 0 2 4 1 1 4 0 15
Unidentified 9 15 25 13 5 18 25 20 130
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Fig. 2. Relationship between proportion of nests predated in a
given location (eight locations were sampled each year) during
14-day exposure and a) small rodent abundance (log transformed
counts), and b) small rodent abundance during the previous year.
Predictions are based on the general linear mixed effect model.
Dashed lines correspond to 95 % confidence intervals. Individual
observations are represented by either black dots or by converging
segments in the case of more than one combination of predation
rates and small rodent abundance.

Results

Nest predation on artificial nests significantly differed
among years (y° = 23.23, Adf =3, P <0.001) in the
study area. The lowest rate was recorded in 2006 (28.6
%, n =189, Fig. 1a). Nest predation increased over the
next two years (2007: 42.6 %, n = 115; 2008: 56.6 %,
n=113), while it decreased again during the final year

of observation (37.5 %, n = 120). Tukey’s HSD test
showed significant differences in nest predation risk
only between 2006 and 2008 and between 2008 and
2009 (P <0.001 and P =0.019, respectively, Fig. 1a).
A marginally non-significant difference in predation
rates was found between 2006 and 2007 (P = 0.060).
No significant or temporally consistent difference was
found in the probability of nest predation between the
forest edge (mean predation rates across all years =44
%) and the forest interior (mean predation = 38 %, °
=222, Adf =1, P=0.14). The interaction between
habitat type and year was also not significant (y°=0.45,
A df =3, P =0.91). The most common predators on
artificial nests (by percentage of identified predators)
were unidentified carnivores (37 %), wild boars (18
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Fig. 3. Geographic distribution of studies on the alternative prey
hypothesis (included in Table 1) A) visualised on a world map, and
B) plotted as a histogram against the latitude (absolute values) of
corresponding sampling locations.
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%), small mustelids (17 %), red foxes (16 %) and
birds (12 %). However, a large number of predators
were not identified at all (Table 2).

In total, 117 individual rodents were trapped in 2240
traps. The most numerous species were the yellow-
necked mouse (Apodemus flavicollis) and wood
mouse (Apodemus sylvaticus). As in the case of nest
predation, rodent numbers differed significantly
among years (y° = 91.562, A df = 3, P < 0.001). A
pronounced peak of rodent numbers was recorded in
2007 (65.0 %, n = 76, while in the remaining years
rodent numbers were on average about one-sixth
those in the peak year (P <0.001 in all cases, Fig. 1b).
Rodent abundance did not differ significantly between
forest edge and forest interior (y? = 2.798, A df = 1,
P =0.094), though rodents nevertheless tended to be
more abundant in general at forest edges compared to
forest interiors. The interaction between habitat type
and year was also not significant (y> = 0.757, A df =
3, P=10.860).

No association was found between the proportion
of predated nests and rodent counts at the locations
where rodent abundance was assessed (GLMM: slope
+SE=0.276 £ 0.286, Adf =1, y*=0.814, P = 0.367,
Fig. 2a). Similarly, rodent density in a given location
did not predict nest predation in the following year
(GLMM: slope = SE = 0.300 + 0.563, Adf =1, y° =
0.098, P = 0.755, Fig. 2b).

Discussion

The data show that both rodent abundance and nest
predation risk exhibit considerable temporal variation.
The effect of habitat on predation risk and rodent
abundance, however, is of relatively low importance.
Many previous studies have implied that fluctuations
in rodent abundance may cause marked effects on
ecosystem functioning (e.g. Ims & Fuglei 2005),
including nest predation risk (Ackerman 2002). In
theory, both increases (Korpiméki & Norrdahl 1989)
and decreases (Béty et al. 2001) in nest predation rates
might be expected when small rodent populations
increase.

The alternative prey hypothesis, which predicts
decreased nest predation risk during population peaks
of small rodents, has received considerable support
in many empirical studies. An extensive literature
search (Table 1), turned up 20 studies which directly
evaluated the alternative prey hypothesis and where
small mammals (rodents, lagomorphs) and ground
nests represented the main and the alternative prey,
respectively. Most of these studies found support for
the alternative prey hypothesis (n = 18). Nevertheless,

this nearly universal support for the alternative prey
hypothesis might be artificially inflated by several
factors. First, this set of studies exhibits a non-
random geographical distribution (Fig. 3). While
most data from testing the alternative prey hypothesis
come from the Arctic (13 studies with latitude >
60°) and the north temperate zone (five studies with
latitudes between 60° and 40°), only one study has
been performed in the tropics or subtropics. In
addition, only one study comes from the Southern
Hemisphere. The mean latitude of the studies on the
alternative prey hypothesis was 65°, which suggests
a clear bias toward higher latitudes. The existing
literature on the alternative prey hypothesis might be
affected by a severe publication bias as well. In other
words, mentioning the alternative prey hypothesis
in the context of a certain type of result might be a
more or less opportunistic ex post decision to make
an article more appealing to potential readers, even
when those results were not a priory collected for the
purpose of testing the alternative prey hypothesis.
Moreover, similar data that do not exhibit a pattern
corresponding to the alternative prey hypothesis might
possibly be less likely to be published. Nevertheless,
a more extensive and rigorous review of the literature
on temporal fluctuations in nest success would be
necessary to account for these concerns.

The present study was situated at a latitude lower than
those of 90 % of those studies which have tested the
alternative prey hypothesis (Table 2, Fig. 3). Based on
field data collected in the study area, it was possible
to reject the alternative prey hypothesis. Contrary
to the prediction of the alternative prey hypothesis,
nest predation risk did not decrease during the
rodent population peak. The lack of evidence for
the alternative prey hypothesis and the fact that the
results contradict those of most previous studies may
be caused by several factors. The main predators of
the artificial nests, such as red fox and martens, are
habitat generalists (Svobodova et al. 2012) and so they
may also respond to rodent abundance from adjacent
farmland. We do not believe, however, that unobserved
variance in rodent density on farmland would have a
substantial effect on artificial nest predation in the study
area. Data from the previous experiment indicate that
rodent abundances in forest and farmland are strongly
correlated and, in addition, rodent abundances are
substantially lower in surrounding meadows than in
forest habitats (Svobodova et al. 2011, Jezkova M.
unpublished data). In particular, the diversity of nest
predator and rodent species is likely to be greater in
the study area compared to higher latitudes, where
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the evidence for the alternative prey hypothesis is
rather strong. At the same time, lower latitudes may
also offer a greater diversity of alternative prey
that is of comparable or even higher profitability
compared to bird nests. Many carnivores preying
on artificial nests in the study area are obviously not
dependent solely on bird nests as secondary prey,
because during nesting periods a significant part of
their diet is composed of birds, reptiles, amphibious
insects (Jedrzejewska & Jedrzejewski 1998, Lanszki
et al. 2007) and the young of larger mammals (e.g.
the European hare, Lepus europaeus and roe deer,
Capreolus capreolus; Lindstrom 1994, Kjellander &
Nordstrom 2003, Panzacchi et al. 2008). In addition,
a large number of the artificial nests were preyed upon
by wild boar and corvids, whose diet is not dependent
on rodents (Schley & Roper 2003, Hoyo et al. 2009).
Consequently, for these predators the rodent population
dynamic is unlikely to modulate profitability of bird
clutches. At the same time, it is also possible that the
results were affected by the fact that the population
increase of small rodents in the area (ca 6.5 times the
population baseline) was less pronounced compared
to that of other studies focused on the alternative
prey hypothesis. For example, main prey density was
more than 30 times higher than the minimum during
its population boom in some cases (Wegge & Storaas
1990, Ackermann 2002). Consequently, the change in
main prey abundance observed in the study, although
seemingly dramatic, might have had a negligible
effect on predators’ foraging tactics. Finally, irregular
fluctuation of rodent density, which is typical for
lower latitudes, might have contributed to the weak
response by predators and consequently to the low
effect on nest predation rates. In particular, it can be
hypothesized that regular rodent population cycling at
high latitudes may induce greater selective pressure
on predators’ foraging flexibility. On the other hand,
the fact that the alternative prey hypothesis has been
supported by several studies performed in areas where
regular population cycling does not occur (Ackerman
2002, Salek et al. 2004) suggests that the importance
of this effect is rather limited.

Some previous studies used relatively short-term
monitoring of nest predation and rodent density
fluctuation to test the alternative prey hypothesis. For
example, the contributions of Salek et al. (2004) and
Ackerman (2002) are based on data just from two and
three years, respectively. The data from the present
study demonstrate that relatively long-term data
covering the periods both before and after the rodent
peak are necessary for testing the alternative prey

hypothesis. In particular, if the dataset had covered
just the two breeding seasons in 2007 and 2008, it
might have been erroneously found to support the
alternative prey hypothesis, because, consistently with
the predictions of this hypothesis, rodent abundance
decreased and nest predation increased during these
two years.

The opposite pattern of that predicted by the
alternative prey hypothesis is expected under the
“shared predation hypothesis”. In particular, between-
year differences in nest predation risk may correlate
positively with small mammal density, due to an
apparent competition-like effect (Holt 1977) induced
by the numerical and dietary (functional) response
of predators to the main prey (reviewed by Chalfoun
et al. 2002). The shared predation hypothesis has
been supported, however, mainly in the case of such
predator specialists as weasels (Mustela nivalis) and
stoats (Mustela erminea), for whose diets rodents
comprise an important part (Jedrzejewski et al. 1995,
Dupuy et al. 2009). It is nevertheless noteworthy
that there also are studies providing support for the
shared predation hypothesis in the case of generalist
predators (Zalewski et al. 1995, O’Donoghue et al.
1997, Jedrzejewska & Jedrzejewski 1998). In any
case, the present data do not support the “shared
predator” scenario. We hypothesize that the rich
Central European ecosystem probably hosts high
densities of alternative prey which are of comparable
or even higher profitability compared to bird nests. In
addition, small rodents do not represent the main food
sources in the area of this study for such important
nest predators as wild boar and corvids (Schley &
Roper 2003, Hoyo et al. 2009).

Many studies focused on nest predation have found
nesting success to be decreased along the edges of
various habitat types compared to within habitat
interiors (e.g. Andrén 1992, Bayne & Hobson
1997, Malt & Lank 2007). Some predator species
specifically exploit edge habitats because their main
prey (rodents in the present study) is concentrated
along these landscape structures (Ries & Sisk 2004,
more in Koubova et al. 2011). The present study does
not support the edge effect hypothesis, however, as
the probability of nest predation and small rodent
numbers did not differ substantially between forest
interiors and forest edges. It is noteworthy in this
regard that most studies supporting the edge effect
on nesting success have been conducted in North
America and Northwest Europe (reviewed in Batary
& Baldi 2004), which regions have different landscape
compositions and predator communities compared
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to Central European conditions. It can therefore be
hypothesized that, corresponding to the absence of
the alternative prey hypothesis in the study area, the
existence of the edge effect on nest predation is less
obvious in a region with rich predator communities
such as Central Europe’s intensively managed
landscape (Svobodova et al. 2012).

It may be argued that these results are ambiguous,
as artificial nests were used for monitoring nest
predation risk. Several concerns associated with the
use of artificial nests have previously been raised
(Storaas 1988, Willebrand & Marcstrom 1988), as
they do not wholly mimic several features of real
nests, such as parental behaviour (Weidinger 2002,
Kreisinger & Albrecht 2008), scent (Whelan et al.
1994), microhabitat features (Yahner & Piergallini
1998), nest density (Major & Kendal 1996) and the
construction of real nests (Baldi 2000). All of these
characteristics are, in fact, crucial determinants
of nesting success. Although these concerns have
some merit, these key features of real nests may
vary between breeding seasons. Using artificial
nest experiments thus enables researchers to hold
these invariant. The use of artificial nests, therefore,
provides a considerable methodical advantage for
longitudinal studies, as it allows for decreasing
potential bias associated with this source of variation.
In addition, it is worthy of note that artificial nests had
been used in three previous studies on the alternative
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