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Estimating the survival of juveniles is important to the study of ecology and wildlife management. Methods to estimate 
survival from uniquely marked young are generally preferred but may be difficult to implement. Alternative methods to 
estimate juvenile survival based on counts of unmarked young with marked parents generally do not account for detection 
probability or encounter difficulty estimating survival when there are >5 offspring. We developed a hierarchical Bayesian 
model to estimate survival of unmarked offspring from known (marked) parents from a minimum of two counts on while 
accounting for imperfect detection. We simulated data to evaluate the performance of the model across a range of detec-
tion probabilities and sample sizes and to explore violations of some model assumptions. We then demonstrate the utility 
of this approach by estimating chick survival for a population of ring-necked pheasants Phasianus colchicus in east-central 
Illinois, USA. Mean error of parameter estimates decreased with increasing sample sizes and detection probability and was 
greater for covariate coefficients, compared to mean detection or survival probabilities. However, posterior distributions of 
mean survival and detection parameters were poorly estimated and had small effective sample sizes when the mean detec-
tion probability was ≤0.4 or the number of broods comprising the sample were <30. The model was relatively robust to 
violations of the model’s closure assumption, with a <0.04 increase in bias of detection and survival probabilities when 
survival between repeated counts was <1. When applied to our data set of 38 pheasant broods, we were able to identify 
important temporal and environmental covariates affecting survival and detection. Mean detection probability was only 
0.56. We believe the coupling of this model with an appropriate field sampling framework provides a useful and flexible 
approach that is time- and cost-efficient for estimating survival of unmarked young.

Keywords: brood flush, chick survival, detection probability, flush count, juvenile survival, ring-necked pheasant

Survival of juvenile offspring is an important, often over-
looked and poorly studied component of population dynam-
ics. Population growth rates are often sensitive to survival of 
young and accurately estimating survival during this period 
is critical for the management of species of concern and game 
animals (Clark et al. 2008, Dreitz 2009, Davis et al. 2016). 
Multiple methods exist to estimate survival of individuals 
that are uniquely marked with bands or radio transmitters 
(Williams et al. 2002, Silvy 2012). Although uniquely mark-
ing and following individuals may be preferred, due to less 
uncertainty in individual fate and simplified analysis, there 
are drawbacks to this approach. For instance, markings can 
adversely affect survival or behavior (Mong and Sandercock 
2007, Amundson and Arnold 2010, Barron  et  al. 2010), 

may be only practical for conspicuous species (Dreitz 2009, 
McCaffery et al. 2016), or may require a large investment 
of personnel, time and money, which may not be feasible in 
many studies. Consequently, less resource-intensive methods 
of estimating the survival of young are needed.

When young are not marked but their parents are, sur-
vival can be estimated from multiple counts of dependent 
young. Several methods using serial counts of young with 
marked adults have been developed, but these assume that 
detection is perfect (Flint et al. 1995, Manly and Schmutz 
2001, Schmidt  et  al. 2010). For many species, and under 
many conditions, this assumption is difficult to fulfill 
(Pagano and Arnold 2009, Roche et al. 2014). We are aware 
of one model that estimates survival of unmarked depen-
dent young while also accounting for imperfect detection 
(Lukacs  et  al. 2004). However, estimates from this model 
may be unreliable for animals that produce >5 offspring, 
especially when sample sizes are small (e.g. few flushes 
per brood, few broods; Lukacs  et  al. 2004). The uncer-
tainty in estimation arises because the number of potential  
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combinations of survival and detection that can produce the 
observed data increases when there are a large number of young,  
leading to convergence issues using maximum likelihood 
estimation (Lukacs et al. 2004). Consequently, this method 
may be impractical for studies of many species, such as 
game birds or waterfowl, without many broods and visits 
(Lukacs et al. 2004).

Among game birds, such as pheasants and other gallifor-
mes, the number of offspring per female typically exceeds 
five, parents and offspring are often cryptic, and frequent 
disturbance by repetitive flushes may not be desirable or 
practical. The lack of practical alternatives for estimating 
chick survival may contribute to the common practice of 
assuming perfect detection from counts of unmarked off-
spring groups (Pitman  et  al. 2006, Pollentier  et  al. 2014, 
Dyson et al. 2018), which can bias estimates of survival and 
related covariates, or collapsing offspring survival data into a 
binary state (Matthews et al. 2012, Wood et al. 2018), which 
obscures potentially important information about how 
many individuals may actually be alive. To provide a possible 
alternative, we developed a hierarchical model and sampling 
framework that uses Bayesian Markov-chain Monte Carlo 
(MCMC) methods to estimate the survival of chicks prior 
to independence, while accounting for imperfect detection.

The daily survival probability of young of pheasants and 
other precocial birds is often lowest early in life, but asymp-
totes to near 1, usually after one or two weeks post hatching 
(but prior to independence; Pietz et al. 2003, Lukacs et al. 
2004, Davis  et  al. 2016). During the period of high daily 
survival, two or more counts of young made several days 
apart could be considered counts of a closed population. If 
the counts are performed at approximately the same age for 
all broods, they can be used to estimate chick survival during 
a period (e.g. first X days or Y weeks) of interest (Riley et al. 
1998, Pollentier  et  al. 2014, Davis  et  al. 2016). Based on 
these assumptions, we simulated data across a range of plau-
sible detection probabilities and violations of the closure 
assumption. We then applied the model to estimate the 
15–22-day (three week) survival probability of ring-necked 
pheasant Phasianus colchicus chicks in east-central Illinois. 
Our purpose in developing the model was associated with 
research on pheasants, so we use terminology associated with 
gamebirds as a result.

Material and methods

Hierarchical models allow for complex problems or processes 
to be broken down into their smaller, more manageable parts. 
In ecology, hierarchical models are frequently employed to 
distinguish between the observed data, a product of imper-
fect detection of organisms, and a true, unobserved, state 
process such as animal abundance, survival probability or 
occupancy status (MacKenzie et al. 2002, Royle 2004).

Model

Our hierarchical model is a modification of a standard 
N-mixture model (Royle 2004), now comprised of two 
binomial models representing the apparent survival of a 

chick (state process) and the ability to detect an individual 
chick (observation process).

1.	 State process: S Hi i i Binomial ,ϕ( )
2.	 Observation process: C S dij i ij Binomial ,( )
The number of young surviving to the observation period 
for the ith brood, Si, and apparent survival probability of 
a chick in the ith brood, φi, are latent variables, and Hi is 
the initial number of hatched offspring from the ith brood, 
typically inferred from the number of eggs that hatched. The 
number of observed chicks at visit j for the ith brood (Cij) is 
a function of both the number of surviving chicks and the 
detection probability of a chick within the ith brood, on the 
jth visit, dij. Both apparent survival and detection probability 
can be modeled as a function of covariates using an appro-
priate link function.

Assumptions

The validity of the inference obtained from the model 
depends on several assumptions some of which are the same 
as those found in Lukacs et al. (2004):

1)	 All counts among broods (observations) are made at the 
same age or during a period when daily survival approxi-
mates 1, to minimize bias associated with varying expo-
sure periods (e.g. 15–20 days).

2)	 There is no brood mixing between hatching and the final 
survey. Chicks that become separated from the brood 
before the first flush count are assumed dead.

3)	 Survival between the first and second counts is high 
enough to approximate a closed population.

4)	 Survival and detection probability are assumed homo-
geneous among broods, or accounted for via brood or 
survey-specific covariates.

5)	 Chicks within a brood are exchangeable (survival and 
detection are the same) and are not double counted dur-
ing a flush.

6)	 The initial number of offspring is known.
7)	 The survival and detection of broods are independent of 

one another.
8)	 Young are still dependent on parents.
9)	 Parents can be located.

Simulated data and analysis

We demonstrate the performance of the brood survival 
model using 300 data sets simulated under 24 different sce-
narios. We held the number of observation periods, visits and 
mean number of chicks per brood constant (1, 2 and 13.75, 
respectively), while varying the number of broods moni-
tored. Each scenario was a different combination of sample 
size (20, 25, 30, 35, 40 or 50 broods) and mean detection 
probability ranging from low to high ( dij ; 0.2, 0.4, 0.6, 
0.8). We restricted our simulations to a single observation 
period and two visits, though this framework can easily be 
expanded, similar to a robust design model (Pollock 1982), 
to allow for additional observation periods (primary periods) 
and visits within an observation period (secondary sampling 
periods; Fig. 1).
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We simulated initial brood size (number of hatched 
chicks) by a random draw from the binomial distribution 
with size = 15 and probability = 0.85, adding one to ensure 
that all broods had at least one chick that hatched. We then 
simulated survival on the logit scale as the linear combina-
tion of a transformed mean survival probability ( ϕ = 0 6. )  
plus a covariate representing a measure of habitat quality. 
The covariate was generated by a random draw from uni-
form (−2, 2) distribution, and the effect of habitat on sur-
vival was fixed at 0.8. We generated the number of chicks 
surviving to be observed through a random draw from the 
binomial distribution with size = initial brood size at hatch 
and probability = habitat-specific survival probability.

We used a similar approach to generate brood-visit spe-
cific detection probabilities. The detection covariate for 
each brood-visit was generated as a random draw from a 
uniform (−1, 1) distribution and the effect of this covariate 
was fixed at −1. This was combined in a logit linear model 
with the scenario-specific mean detection probability to get 
the true brood-visit detection probability. We then simu-
lated the number of surviving chicks that were observed via 
a random draw from a binomial distribution with size = the 
number of chicks surviving to observation and probability =  
visit-specific detection probability (Supplementary material 
Appendix 1).

To test the robustness of our model to violation of the 
closure assumption, we performed an additional 300 simula-
tions where survival between survey visits was not 1. We used 
a fixed sample size of 30 broods and ϕ = 0 6. . We simulated 
12 different scenarios, varying daily survival (DSR; 0.99, 
0.98, 0.97, 0.96) and the number of days between successive 
visits (one, three or four days between counts; Supplemen-
tary material Appendix 2). We performed all simulations in 
R ver. 3.5.0 (< www.r-project.org >).

Ring-necked pheasant data collection

We collected data on brood survival of ring-necked pheas-
ants on 14 public and private grasslands in three different 
study areas in east-central Illinois. Grassland sites were 
located near the towns of Saybrook, IL (40°25′39″N, 
88°31′36″W), Sibley, IL (40°35′15″N, 88°22′56″W and 
Chatsworth, IL (40°45′15″N, 88°17′35″W). Five sites 
were owned and managed by the Illinois Department of 
Natural Resources as Pheasant Habitat Areas. All remain-
ing sites were privately owned and enrolled in the Conser-
vation Reserve Program. Fields varied in size from ~16 to 
260 ha. The landscape in which these sites are embedded is 
dominated by row-crop agriculture and >85% of the land 
cover is devoted to the production of corn Zea mays and 
soybeans Glycine max (Illinois Department of Agriculture 
2000). Dominant vegetation cover among fields varied from 
native warm and cool season grasses and native forbs (e.g.  
Sorghastrum nutans, Andropogon gerardii, Elymus canadensis, 
Solidago spp., Ambrosia spp. and Symphyotrichum pilosum), 
to fields dominated by exotic grasses and forbs (e.g. Bromus 
inermis, Setaria spp., Medicago sativa).

We captured hen pheasants during four separate capture 
periods 26 September–21 October 2014, 13 January–30 
March and 16 September–29 October 2015, and 27 Janu-
ary–28 March 2016. Pheasants were captured primarily via 
spot-lighting but also with walk in traps when snowfall was 
adequate (Labisky 1959). We attached a ~15 g or ~18 g, 
necklace-style radio transmitter (model series A3900 and 
A4000, Advanced Telemetry Systems, Inc., Isanti, Minne-
sota) to hens weighing >600 g to ensure that transmitter 
weight did not exceed 3% of the animal’s body mass.

We tracked all hens from 1 April to 30 August 2015 and 
2016, for 4–7 days per week until they began incubation 

Figure 1. Diagram illustration how the data for the model can be organized and expanded beyond a single observation occasion (k) (primary 
period, sensu Pollock 1982) or more than two visits (j) (secondary periods, sensu Pollock 1982). In our example, there is only 1 primary 
period and 2 secondary sampling periods.
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and every 1–3 days thereafter. We located the nest bowl 
and examined the contents to determine the nest fate after 
hens left their nest. We classified nests as successful if ≥1 
egg hatched and recorded the number of hatched eggs. We 
flushed each hen and brood one or two times, 15–22 days 
post hatch (~3 weeks) to count number of surviving young. 
We performed a second flush within four days of the first, 
but >90% flushes were completed within two days of the 
first. Because the majority of chick mortality occurs during 
the first two weeks post-hatching and chicks only become 
capable of sustained flight after ~12 days (Riley et al. 1998, 
Giudice and Ratti 2001). we were more likely to detect 
chicks and meet the necessary assumption of demographic 
closure between counts by estimating survival at ~3 weeks.

Broods were flushed by one or two observers and the 
number of chicks seen flying or running through the veg-
etation was recorded. We performed the majority of flushes 
from ~10 min before sunrise to ~20 min after sunrise, but 
several flushes occurred as late as ~3 h after sunrise. Because 
we believed that thick vegetation could reduce the detection 
probability, we measured vegetation density using a Robel 
pole (Robel et al. 1970) at the estimated roost location and 
at 4 m in each of the cardinal directions. We determined the 
roost location by marking the point where the hen flushed, 
began running or locating feces from the hen and chicks. We 
also created a binary variable, flush quality, where a ‘good’ 
flush corresponded to hens and broods flushing from an area 
≤3 m in diameter (n = 43), and ‘poor’ flush corresponding to 
hens and chicks running through the vegetation or flushing 
at a distance of >3 m (n = 25).

We collected brood survival data from 23 broods in 2015 
and 15 broods in 2016. In 2015, eight broods were flushed 
a single time while two broods were flushed only once in 
2016. We omitted data where the hen was killed before we 
could flush the brood (n = 3) or where the eggshells were 
damaged, and we could not accurately count the number of 
hatched eggs (n = 2). We omitted broods where the hen was 
killed because we did not feel confident in assuming that all 
the chicks had died or that all chicks were able to survive. 
Thus, our estimate of chick survival is conditional on the 
hen surviving. Hen mortality during the breeding season was 
rare, and occurred primarily between the fall and following 
spring (September–March; Lyons 2017). Therefore, exclud-
ing these broods from analysis is unlikely to bias the results. 
We included broods where more than one hen flushed and 
we were able to discern distinct size classes among chicks and 
identify the appropriate size class for the focal hen (n = 2), 
but omitted one brood where we could not determine the 
focal hen for the chicks.

Model implementation

We used the package jagsUI (Kellner 2017) to fit the model 
in JAGS ver. 4.3.0 (Plummer 2017) using the program R 
ver. 3.5.0 (< www.r-project.org >). For our simulated data 
sets, we modeled survival and detection as a function of 
an intercept and a covariate. Both detection and survival 
were mapped to the appropriate scale using the logit link 
and we used logistic priors (µ = 0, σ = 1) for all parameters 
(Supplementary material Appendix 3). We used logistic pri-
ors because they are less informative then traditional ‘vague’ 

priors on the probability scale (e.g. Normal(µ = 0, σ2 ≥ 100)) 
and improves MCMC mixing and convergence (Hooten 
and Hobbs 2015, Northrup and Gerber 2018).

We generated posterior estimates for detection probabil-
ity, survival probability, and all covariate parameters from 
three chains of 50 000 iterations after a 1000 iteration adap-
tation phase. We discarded the first 10 000 samples and did 
not thin the remaining iterations (Link and Eaton 2012). 
We examined trace plots of ~10 simulations under each 
sample size and detection scenario for convergence and eval-
uated convergence of the remaining simulations when the 
Gelman–Rubin convergence diagnostic ( R̂ , Gelman and 
Rubin 1992) <1.1. We evaluated model performance by cal-
culating the difference between the posterior median and the 
data-generating value for each parameter for each simulation 
to assess whether parameters were calibrated (Little 2006). 
We also calculated the coverage of the 95% credible interval 
(CRI) and the range of the 95% CRI, as additional measures 
of model performance, and averaged these values among the 
300 simulations within each scenario

We analyzed the pheasant brood survival data by model-
ing survival as a two-part process comprised of an intercept-
only survival model and a binary variable indicating whether 
the hen experienced total brood loss. We modeled detection 
as a function two covariates (flush quality and Robel height). 
We determined a hen had experienced complete brood loss 
when we observed the absence of chick droppings at the roost 
site, the hen failing to return to the roost site within 15 min 
of a flush, or the hen renesting. We used logistic priors (µ = 0, 
σ = 1) for all parameters. We performed a posterior predictive 
check using the Freeman–Tukey statistic (Conn et al. 2018) 
and estimated the overdispersion parameter ( ĉ ) to assess 
model fit.

We used R2OpenBUGS (Sturtz  et  al. 2005) to call 
OpenBUGS (Lunn  et  al. 2012) from within R ver. 3.5.0 
to analyze our field data. We ran three parallel chains for 
50 000 iterations and discarded the first 10 000 samples, 
retaining 1 in every 10 iterations. We calcuated the median 
posterior estimates of survival probability in each year, detec-
tion probability and covariate values for flush quality and 
Robel height, as well as the median brood size and difference 
in survival between years. We scaled Robel height measure-
ments to a mean of zero and standard deviation of one prior 
to analysis and evaluated model convergence by examining 
the trace plots of parameter estimates and confirming all esti-
mates of R̂  were <1.1.

Results

Simulation study

Estimated posterior median parameter values were gener-
ally accurate and parameter error was most often <|0.05| for 
covariates of survival or detection, except when sample sizes 
were small or detection was low (Fig. 1a–d, Supplementary 
material Appendix 4 Table A4.1). Error in detection and 
estimates of survival was generally <|0.02|, and decreased 
with increasing sample sizes and detection probability (Fig. 
1a–d, Supplementary material Appendix 4 Table A4.1). 
All parameters in all chains appeared to stabilize and all  

Downloaded From: https://bioone.org/journals/Wildlife-Biology on 25 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



5

95% CRIs contained the true values (Supplementary mate-
rial Appendix 4 Table A4.1). CRIs were larger when detec-
tion and sample sizes were low (Supplementary material 
Appendix 4 Table A4.1). However, chains exhibited poor 
mixing and low effective sample sizes when detection was 
≤0.4. We ran an additional 100 simulations using three 
visits (n = 30 broods, p = 0.4), which improved mixing and 
resulted in estimates of error that were equivalent to models 
with greater detection probability.

Error increased when we simulated data where survival 
between counts was not 1 (Fig. 3a–d, Supplementary mate-
rial Appendix 4 Table A4.2). In these cases, error of the 
detection parameter tended to be negative while habitat 
and survival were positive. The magnitude of the increase in 
parameter error varied among specific combinations of DSR 
and observation period length (Fig. 3a–d, Supplementary 
material Appendix 4 Table A4.2). For example, when DSR 
was 0.99, there was no substantive difference in error among 
observation period length (0.022, 0.0210, 0.020; one, three 
and four days respectively), but was slightly larger compared 
to the model assuming perfect survival (0.01). Even when 
the daily survival rate was 0.97 and the time between counts 
was four days, the error in estimates of survival and detec-
tion (0.034, −0.047; respectively) were only slightly larger 
compared to when survival was assumed perfect (0.01, 
−0.01; Fig. 2a–d, Supplementary material Appendix 4 Table 
A4.2). All 95% CRIs contained the true value and there was 
no apparent increase in the width of 95% CRIs. However, 
when daily survival was ≤0.97 and the time between counts 
was three or four days, posteriors were poorly identified and 
chains exhibited slow mixing and small effective sample sizes.

Pheasant chick survival

Mean hatch size was not significantly different between years 
(2015: 11.2; 2016: 11.9). We observed four hens that expe-
rienced complete brood loss. Chick survival differed between 
years ( 0.12; 95% CRI: 0.074, 0.166). The estimated chick 
survival probability was 0.71 (95% CRI: 0.64, 0.79) in 
2015 and 0.83 (95% CRI: 0.76, 0.91) in 2016. The esti-
mated brood size at 15–22 days was 7.9 (95% CRI: 7.2, 8.9) 
chicks per brood in 2015 and 10.0 (95% CRI: 9.1, 11.0) 
in 2016. By contrast, naïve estimates of mean chick sur-
vival and brood size, which assume perfect detection, were 
0.56 and 6.03, respectively. The estimated median detection 
probability for a chick was 0.56 (95% CRI: 0.50, 0.61), 
but increased with decreasing vegetation density at the flush 
locations (βRobel height = −0.23; 95% CRI: −0.35, −0.10). The 
estimate of detection probability was significantly greater 
when observers believed they flushed a brood off a roost 
(βFlush quality = 3.31; 95% CRI: 2.73, 3.94). Estimated detec-
tion probability was 0.91 when a flush was considered ‘good’ 
and 0.29 when a flush was considered ‘poor’ when holding 
vegetation density at its mean value. Under optimal con-
ditions, when vegetation was ≤0.1 dm and the brood was 
flushed from their roost, estimated detection was as high as 
0.94, but such instances were rare. The estimated Bayesian 
p-value calculated from the posterior predictive check was 

Figure 2. Boxplot of the difference between the median of the pos-
terior for each parameter and data-generating values from 300 
simulations under varying detection probabilities and sample sizes 
for (a) survival coefficient, (b) detection coefficient, (c) mean sur-
vival probability and (d) mean detection probability. The red 
dashed line indicates zero difference.
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0.08 and the overdispersion parameter ( ĉ ) was 1.5, indicat-
ing the absence of major lack of fit (Conn et al. 2018).

Discussion

Intensive marking studies to estimate juvenile survival may 
be impractical due to limits of personnel, time, money, or 
concerns over animal welfare. Thus, models that estimate 
juvenile survival from repeated counts of unmarked off-
spring are a valuable alternative. Our application of common 
hierarchical models and an appropriate sampling method 
addresses shortcomings of existing approaches to estimating 
survival of unmarked young, such as the assumption of per-
fect detection, or poor model performance with small sample 
sizes. This simulation study demonstrated how a hierarchi-
cal modeling approach can produce properly calibrated esti-
mates of survival over a range of sample sizes and detection 
probabilities with as few as two successive flush counts dur-
ing a period when daily survival approximates 1. Like many 
models that account for imperfect detection, the error of 
estimates decreased and precision increased with increasing 
detection probability (Royle 2004, McCaffery et al. 2016). 
For instance, although two visits appeared to be sufficient 
to reach convergence when detection was extremely low 
(e.g. 0.2), estimates had extremely wide credible intervals, 
low effective sample sizes, and were poorly identified, which 
reduced their utility. However, with higher detection prob-
abilities (>0.4) meaningful credible intervals (e.g. width 
<0.4) were attained with as few as 20 broods. Additionally, 
our approach allows for the estimation of covariates that may 
be influencing both survival and detection, which is often of 
ecological and management interest.

We were able to obtain informative estimates of pheas-
ant chick survival using only two brood flushes from 38 
broods. We were also able to identify several covariates that 
were important for detecting young pheasants. The esti-
mated detection probability of a pheasant chick was 0.56 but 
increased to 0.91 under optimal conditions (i.e. a good flush 
and mean vegetation density) and may have been as high 0.94 
when vegetation was ≤0.1 dm. Failing to account for imper-
fect detection in our study would have led to substantially 
biased estimates of chick survival and broods. Moreover the 
effect of habitat-related covariates on detection could have 
led to spurious conclusions about the relationship between 
habitat conditions and survival. Thus, accounting for imper-
fect detection should be incorporated into future studies 
using flush counts. Survival was also 12% greater in 2016 
than 2015 which may have been attributable to the above 
average precipitation our study area received in 2015 (Illinois 
Region 5; Midwestern Regional Climate Center 2016) This 
is consistent with several other studies of chick survival in 
waterfowl and other precocial bird species (Pietz et al. 2003, 
Fondell et al. 2008, Brudney et al. 2013). In our study, the 
increased rainfall during 2015 may have led to higher rates of 
total brood failure (n = 3) than in 2016 (n = 1).

Though our tests of goodness-of-fit suggested minor 
lack of fit, we believe these results are still acceptable. Com-
pared to other models with poorer fit, derived estimates of  

Figure 3. Boxplot of the difference between the median of the pos-
terior for each parameter and data-generating values from 300 
simulations when daily survival between flush counts was <1, and 
the amount of time between counts varied for (a) survival coeffi-
cient, (b) detection coefficient, (c) mean survival probability and 
(d) mean detection probability. The red dashed line indicates zero 
difference.
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survival and brood size were generally the same. Addition-
ally, our estimate of ĉ  (1.5) still falls within the range of 
values deemed to generally acceptable within the ecological 
literature (White and Burnham 1999). Though accounting 
for such extra-binomial variation in survival can be accom-
plished via an overdispersion parameter in the model, our 
sample sizes were too small to do so. The reality of small 
sample sizes associated with collecting data such as these may 
make highly parameterized models difficult to fit. Therefore, 
we encourage those who may use this approach to ensure as 
many broods as possible are counted at least twice, collecting 
as much data as possible, in order to support more param-
eterized, biologically plausible models.

The chick survival model we present relies on the assump-
tions of demographic closure between repeated counts and 
the assumption of no brood-mixing between hatching and 
surveys. While this assumption is certainly violated, our 
results demonstrate that estimates are robust, as long as the 
daily survival rate is near 1 (i.e. >0.98), conditions likely to 
have been observed in our field study. In 2015, all individu-
als from a small sample (n = 28) of all radio-marked pheasant 
chicks alive at seven days survived until ~15 days, the age 
when chicks molted and transmitters fell off (Lyons 2017). 
Furthermore, we found no systematic pattern of smaller 
counts on second flushes (Supplementary material Appen-
dix 5 Fig. A5), which would be expected if numerous indi-
viduals were dying between flush counts. Daily survival of 
many species will approximate one after the first few weeks 
of life (Riley  et  al. 1998, Dreitz 2009, Davis  et  al. 2016) 
and even when daily survival is <1, error can be minimized 
by ensuring replicate counts are performed in close tempo-
ral proximity. The assumption of no brood mixing, on the 
other hand, may not be appropriate for some species. Brood 
mixing probabilities may be as high 21% among northern 
bobwhites (Faircloth  et  al. 2005) and greater sage grouse 
(Dahlgren  et  al. 2010), but can be as low as 4% among 
pheasants (Riley et al. 1998). Consequently, we recommend 
caution if trying to estimate chick survival for populations 
that experience high rates of brood amalgamation (Dahlgren 
et. al 2010), though the model could be modified to incor-
porate brood-mixing with appropriate data.

Like all models, this one has the potential for misuse 
that may lead to inaccurate estimates or inferences. How-
ever, these pitfalls can easily be addressed with careful study 
design. In general, the counts should be carried out on sepa-
rate days, not as multiple-observer counts. Two counts are 
only a minimum, and more counts should be performed but 
are contingent on meeting assumptions of closure over a lon-
ger period and should consider whether additional counts 
are necessary as such disturbance could adversely influence 
behavior or survival. To ensure that chicks are available to be 
detected, observers should plan flush-counts when the par-
ent and chicks are most likely to be in close proximity to 
each other, such as at a roost. Our experience led us to per-
form almost all our counts at dawn to ensure the chicks were 
with the hen and thus, likely to be flushed together.

Selecting the period to estimate survival may be subjec-
tive but should be based on biological reasoning where pos-
sible, and researchers should be aware of the limitations of 
their inference as a result. We were unable to flush pheasant 
chicks before 15 days because they are only capable of weak 

flight and the dense vegetation of grasslands prevented us 
from counting chicks as they ran. Similarly, most attempts 
to flush broods at ~40 days failed because broods often ran 
away as we approached. Our choice of estimating survival 
to 15–22 days was based on biological reasons as well as 
the aforementioned logistical constraints. Though survival 
of many precocial birds, is lowest during the few days post-
hatch before reaching a relatively high level (Pietz  et  al. 
2003, Dreitz et al. 2009, Davis et al. 2016), we encourage 
those attempting to use this approach to minimize the range 
of brood ages over which counts are made to minimize any 
potential bias due to variable exposure periods. While esti-
mates obtained using this approach are not representative of 
survival to independence, they can provide insight about the 
environmental factors that lead to mortality for the majority 
of chicks. This framework can also be expanded to accom-
modate additional visits and observation periods, when 
practical (Fig. 1), permitting the estimation of survival over 
longer periods of time.

Despite the potential limitations, estimating chick sur-
vival using the framework we present offers flexibility that 
can address the problems related to the violation of assump-
tions provided sufficient data exist. We attempted to repa-
rameterize the model to account for survival <1 during 
repeated counts, but the error for all parameter estimates 
were large with only counts of unmarked chicks. Incorpo-
rating additional sources of data could improve these esti-
mates. Brood mixing could be explicitly modeled as the 
emigration parameter in a robust-design framework (Pol-
lock 1982), or implicitly as apparent survival and gains in 
an open meta-population model (Dail and Madsen 2011). 
Still, the increasing complexity of the model would require 
larger sample sizes and additional sources of data beyond 
simple counts, which may limit the utility of such a model 
in practice (Dail and Madsen 2011). Researchers could use 
field evidence (e.g. observing chicks of multiple age classes) 
to estimate both the probability of brood-mixing and the 
number of adopted young, which could be incorporated into 
a more complex model as informative priors (Morris et al. 
2015) or as an additional data source. Multiple types of data 
can easily be incorporated into hierarchical models (Pow-
ell et al. 2000, Schaub et al. 2007, Linden and Roloff 2015), 
such as small sample of radio-marked individuals or cap-
ture-recapture data, to estimate daily survival or emigration 
(brood mixing) parameters. Finally, the hierarchical Bayesian 
framework can be easily parameterized to estimate several 
different derived parameters including the total number of 
chicks, mean brood size and average daily survival.

With the exception of a few, well studied, taxa, there are 
limited number of published estimates of survival for juve-
nile animals. The model and approach we present comple-
ments existing methods by addressing important issues such 
as imperfect detection and poor performance with large 
group sizes, but is more resource and time efficient com-
pared to mark–recapture studies and other brood count 
methods. The approach we present performs reasonably 
well with small sample sizes, though more than two visits 
during a period when daily survival approaches one may be 
necessary when detection is ≤0.4. It is also important that 
users identify useful covariates for the detection and sur-
vival process. The double-binomial structure of this model 
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means that posterior distributions of parameters from mod-
els without covariates, on at minimum the detection process, 
may be not be uniquely identified (D. Tyre unpubl.). Most 
importantly, our approach provides a flexible foundation to 
address a variety of real-world challenges and will be a useful 
tool for wildlife managers and researchers seeking to make 
informed management decisions.
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