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Wildlife managers conduct population inventories to monitor species, particularly those at-risk. Although costly and time 
consuming, grid-based DNA hair-snag sampling has been the standard protocol for grizzly bear inventories in North 
America, while opportunistic fecal DNA sampling is more commonly used in Europe. Our aim is to determine if low-cost, 
low-effort scat sampling along roads can replace the current standard. We compare two genetic non-invasive techniques 
using concurrent sampling within the same grid system and spatially explicit capture–recapture. We found that given our 
methodology and the present status of fecal genotyping for grizzly bears, scat sampling along roads cannot replace hair 
sampling to estimate population size in low-density areas. Hair sampling identified the majority of individual grizzly bears, 
with a higher success rate of individuals identified from grizzly bear samples (100%) compared to scat sampling (14%). 
Using scat DNA to supplement hair data did not change population estimates, but it did improve estimate precision. Scat 
samples had higher success identifying species (98%) compared with hair (80%). Scat sampling detected grizzly bears in 
grid cells where hair sampling showed non-detection, with almost twice the number of cells indicating grizzly bear pres-
ence. Based on our methods and projected expenses for future implementation, we estimated an approximate 30% cost 
reduction for sampling scat relative to hair. Our research explores the application of genetic non-invasive approaches to 
monitor bear populations. We recommend wildlife managers continue to use hair-snag sampling as the primary method for 
DNA inventories, while employing scat sampling as supplemental to increase estimate precision. Scat sampling may better 
indicate presence of bear species through greater numbers and spatial distribution of detections, if sampling is systematic 
across the entire area of interest. Our findings speak to the management of other species and regions, and contribute to 
ongoing advances of monitoring wildlife populations.

Keywords: DNA inventory, genetic non-invasive sampling (gNIS), grizzly bear, population estimates and density,  
spatially explicit capture–recapture (SECR), species spatial distribution, systematic grid-based sampling, Ursus arctos,  
wildlife monitoring

Estimating population size and species presence or distribu-
tion in an area are critical components of wildlife monitor-
ing required for species management (Nichols and Williams 
2006, De Barba et al. 2010a) and recovery (Campbell et al. 
2002). Genetic sampling of wild animals can distinguish 
between species to indicate geographical range and species 
distribution, and when combined with capture–mark–recap-
ture methods, can identify individuals to estimate population 

size, survival, recruitment and movement (Schwartz  et  al. 
2007). Using blood or other tissues for genetic analyses is 
considered an invasive approach with challenges of captur-
ing adequate numbers of animals (Ferreira et al. 2018), high 
costs (De Barba et al. 2010a, Sabino-Marques et al. 2018), 
risks in the field (Taberlet and Bouvet 1992, Gompper et al. 
2006, Schwartz et al. 2007) and animal welfare and safety 
(Cattet et al. 2008, Lefort et al. 2019, Zemanova 2019).

Genetic non-invasive sampling (gNIS) has evolved as 
an alternative method to monitor wildlife populations 
(Höss et al. 1992, Taberlet and Bouvet 1992, Woods et al. 
1999). This approach allows for extraction of genetic infor-
mation from feces, hair, feathers or other sources (Beja-
Pereira et al. 2009) without catching, handling, disturbing 
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or even observing the animals (Taberlet et al. 1999). Many 
animals are eligible for gNIS (Beja-Pereira  et  al. 2009, 
Zemanova 2019), especially rare or threatened species where 
the feasibility and benefits of invasive sampling are low  
(Ferreira et al. 2018).

Recent studies have combined genetic data with spatially 
explicit capture–recapture (SECR; i.e. population mod-
els incorporating spatial parameters) to estimate popula-
tion size and density (Boulanger  et  al. 2018, Roffler  et  al. 
2019). Taking into account the spatial distribution of indi-
viduals and spatial detection information, SECR can utilize 
various DNA sources and sampling designs. However, the 
challenge of employing frequent, cost-effective approaches 
to monitoring wildlife populations remains (Efford and  
Boulanger 2019).

Several studies recommend non-invasive over invasive 
genetic methods for population estimates; for example, 
using fecal or hair sampling over live-trapping (Sabino-
Marques et al. 2018, Croose et al. 2019), or fecal sampling 
over aerial surveys and ground observations (Solberg et  al. 
2006). Some research has explored differences between 
non-invasive methods (e.g. camera trapping versus hair or 
fecal sampling; Gompper et al. 2006, Rodgers et al. 2014, 
Alldredge  et  al. 2019). Few studies have compared gNIS 
techniques directly (e.g. fecal sampling using detection dogs 
versus hair sampling; Mumma  et  al. 2015) or have used 
combined gNIS data sources (e.g. hair and fecal sampling 
along transects (Murphy et al. 2018) or grid-based hair-snag 
and opportunistic rub-tree hair sampling; Boulanger  et  al. 
2008, Graves et al. 2012). As non-invasive approaches gain 
popularity, there is a growing need to further evaluate vari-
ous gNIS methods.

Since the first DNA extractions from wild animal hair 
(Taberlet and Bouvet 1992, Woods et al. 1999), researchers 
have been developing techniques and applications to study 
a variety of wildlife using hair samples (Paetkau 2003, Beja-
Pereira et al. 2009, Proctor et al. 2010). Hair is often col-
lected through hair snares that, for example, use barbed wire 
or other adhesive alternatives at hair-snag sites or rub pads 
(Beja-Pereira et al. 2009, Mumma et al. 2015, Roffler et al. 
2019). While hair samples provide high quality data that can 
be used to identify species and individuals, field protocols 
are time and cost intensive (Boulanger et al. 2006, Croose   
et al. 2019).

Collecting fecal DNA from wildlife originated alongside 
hair sampling (Höss et al. 1992, Kohn et al. 1999) and is 
considered a less invasive collection method (Lefort  et  al. 
2019). Although success rates are generally lower for fecal 
DNA (Waits and Paetkau 2005, Mumma et al. 2015), labo-
ratory advancements for some species and regions have led 
to reliable population inventories based on scat sampling 
(Beja-Pereira  et  al. 2009, Andreassen  et  al. 2012). Many 
studies collect scat opportunistically (Solberg et al. 2006, De 
Barba et al. 2010a), along transects (De Barba et al. 2010a, 
Murphy  et  al. 2018) or by dog searches (Mumma  et  al. 
2015). With easy access and visibility, roads are practical fea-
tures for collecting scat samples. However, potential biases 
can occur if animal densities near roads differ from areas 
without roads, especially when roads do not cover the entire 
sampling area. For species that use roads as travel corridors 

and defecate along travel routes (e.g. canids), roads have been 
included within survey transects (Kohn et al. 1999, Gomp-
per  et  al. 2006, Murphy  et  al. 2018, Roffler  et  al. 2019). 
Roads and roadside vegetation attract bears (Roever  et  al. 
2008, Graham et al. 2010); however, road transects, and spe-
cifically systematic grid-based fecal sampling, have yet to be  
conducted for bears.

Hair-snag sites sampled systematically within a grid has 
become the standard of DNA hair sampling for bear popula-
tions in North America (Kendall et al. 2009, Proctor et al. 
2010, Boulanger et al. 2018), while opportunistic scat sam-
pling is employed for brown bears in Scandinavia (Belle-
main et al. 2005, Andreassen et al. 2012, Schregel et al. 2012, 
2018). In Alberta, Canada, grizzly bears Ursus arctos are 
elusive animals occurring in low densities (Boulanger et al. 
2018). Since 2010 grizzly bears have been provincially desig-
nated as threatened (Festa-Bianchet 2010). The population 
status and ongoing developments in hair and fecal proto-
cols make grizzly bears an excellent study species to explore 
various gNIS methods. The aim of our research was to com-
pare hair and scat sampling approaches, develop a low-cost, 
low-effort approach to monitoring populations, and inform 
wildlife management – using a low-density population of 
grizzly bears in North America as our study species. Our spe-
cific objectives were to evaluate sampling and identification 
success, species level spatial distribution of detections, popu-
lation estimates and project costs of each gNIS approach. 
While some studies have investigated hair and scat using 
traditional capture–mark–recapture methods (Wasser et al. 
2004, De Barba et al. 2010b) this is, to our knowledge, the 
first direct comparison between hair-snag trapping and scat 
collection along roads using systematic grid sampling and 
SECR for any species.

Material and methods

Study area

The study area covers approximately 2450 km2 within 
the foothills of the Rocky Mountains in Alberta, Canada  
(Fig. 1). The area falls within the southern portion of the Yel-
lowhead Bear Management Area (BMA 3), where forestry, oil 
and gas exploration, and recreation occur. Elevation ranges 
from 3360 to 800 m in a west to east gradient. Vegetation 
consists of mixed forests with important bear foods includ-
ing moose Alces alces, deer Odocoileus spp., alpine sweet-vetch 
Hedysarum alpinum, buffaloberry Shepherdia canadensis, cow 
parsnip Heracleum lanatum and various blueberry Vaccinium 
spp. species (Munro et al. 2006).

Hair-snag collection

We followed standard methods of barbed wire hair-snag 
collection for grizzly bears using spatial sampling designs 
(Woods  et  al. 1999, Proctor  et  al. 2010, Boulanger  et  al. 
2018). We selected one fixed hair-snag site per 7 × 7 km 
cell within a 50-cell grid based on specific conditions (e.g. in 
high quality grizzly bear habitat) and human safety require-
ments (e.g. >200 m from roads;  Stenhouse  et  al. 2015). 
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All sites were accessible by truck and a short hike (<1 km).  
Subsequent to hair-snag site set-up (session 0), we checked 
for hair and replenished non-reward, scent-lure bait piles 
every 14 days for four sampling periods (sessions 1–4). We 
collected, sub-selected and stored hair samples based on pre-
vious protocols (Stenhouse et al. 2015).

Scat surveys

We conducted pilot surveys exploring bear scat collection 
along roads within BMA 3 during the fall of 2016. Crews 
found 0.02 suspected bear scat samples per km in low-den-
sity areas where few or no bears had been identified by hair-
snag inventories (Sorensen et al. 2017). These results aligned 
with how grizzly bears use roads in spring and early summer, 
and roadside habitats in late summer and fall (Roever et al. 
2008, Graham et al. 2010). Building on the pilot study, we 
designed our road surveys to mimic a low-cost, low-effort 
citizen science strategy similar to the Scandinavian approach 
where hunters collected scat samples for brown bear popula-
tion estimates – although conducted opportunistically in late 
summer and fall (Bellemain  et  al. 2005, Andreassen  et  al. 
2012, Schregel et al. 2012).

Our selected road network covered the same sampling 
grid that contained hair-snag sites (Fig. 2). We established a 
circuit of accessible gravel roads in each cell with occasional 
truck trails or unimproved roads. Roads behind locked 

gates, within forestry harvest blocks, in poor condition or 
not existing in the government database were excluded. We 
tracked driving routes for navigation and circuit data (e.g. 
waypoints, date, time, etc.). Driving speeds were maintained 
between 50–80 km h–1 for gravel roads and 20–50 km h–1 
for truck trail and unimproved roads.

Our scat surveys followed the hair collection schedule 
described above. During site set-up we assessed accessibil-
ity, selected roads and cleared off pre-existing scat. We drove 
the same circuits each session, collected all suspected bear 
scat and documented sample information (e.g. date, loca-
tion, scat contents, exposure to sunlight, etc.). Although 
higher quality DNA generally occurs on outer layer of car-
nivore scat, environmental conditions and exposure time 
impact sample quality (Murphy et al. 2007, Stenglein et al. 
2010, Wultsch et al. 2015). Because scat on roads is directly 
exposed to sunlight and ultraviolet radiation which damages 
DNA (Friedberg 2003), we sampled the inside layer. We 
collected 1 cm3 of scat, which we stored in uniquely bar-
coded vials containing silica desiccant (adapted from Belle-
main et al. 2005).

Lab methods

We followed laboratory sub-selection criteria for hair sam-
ples based on protocols that maximize the number of indi-
vidual grizzly bears identified using the fewest samples  

Figure 1. The study area within the Yellowhead Bear Management Area (BMA 3) of Alberta, Canada including the DNA inventory sam-
pling grid, core grizzly bear habitat, parks and protected areas.
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(Proctor  et  al. 2010, Stenhouse  et  al. 2015). We sent hair 
samples with grizzly bear characteristics – hair that was not 
pure black – to Wildlife Genetics International, Nelson, Can-
ada, for genotyping to identify species, gender and individual 
bears. DNA extracts were analyzed using eight short tandem 
repeat (STR) markers (G10B/G10H/G10J/G10M/G10P/
G1A/G1D/X-Y) and an additional 13 for full genotypes 
(CPH9/CXX110/CXX20/G10C/G10L/G10U/G10X/
MSUT2/MU23/MU50/MU51/MU59/REN145P07). 
Samples went through cleanup passes and error checking fol-
lowing established protocols (Paetkau 2003).

We have been working to standardize field protocols, 
validate procedures and ensure reliable genetic identification 
from scat samples since 2012 in collaboration with the DNA 
lab at the Norwegian Institute of Bioeconomy Research, Ås, 
Norway. All scat samples collected underwent species-specific 
mitochondrial DNA-based tests to distinguish between griz-
zly bear and black bear Ursus americanus. We analyzed fecal 
DNA extracts using the same STR markers as hair. Individu-
als identified using hair and scat were compared with known 
grizzly bears from a provincial reference database.

Species spatial distribution

We explored the spatial distribution of detections within the 
study area defined by detection or non-detection of a species 

within a given cell (MacKenzie et al. 2018). Detection was 
determined by the presence of one or more grizzly bear hair 
or scat samples within a cell during any session.

Spatially explicit capture–recapture

SECR methods (Efford 2004, Efford and Fewster 2013) use 
multiple detections of animals at unique detector sites within 
a sampling session to model animal movements and detec-
tion probabilities. Using this information, we estimated the 
detection probabilities of grizzly bears at their home range 
center, the spatial scale of movements around the home 
range center, and bear density. This method assumes home 
ranges can be approximated by a circular symmetrical distri-
bution of use; however, recent work suggests it is relatively 
robust to deviations from circularity if sampling is systematic 
(Efford 2019a). We used the actual shape and sampling grid 
configuration while estimating home range, scale of move-
ments and density, thus accounting for study-area size and 
configuration effects on the degree of population closure vio-
lation and subsequent density estimates.

SECR can be applied to transect and area searches (Efford 
2011), where transects with discrete endpoints are most 
suited. The branching, circuitous nature of roads challenges 
transect SECR detector implementation. To circumnavi-
gate this issue, we considered a cell-based approach where 

Figure 2. Roads systematically surveyed for grizzly bear scat in relation to the existing road network and spatially explicit capture–recapture 
(SECR) layout of hair and scat centroid-based detection sites for 7 × 7 and 3.5 × 3.5 km cell size, respectively, within the DNA inventory 
sampling grid in Alberta, Canada.
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the mean centroid of roads in 3.5 × 3.5 km cells (nested 
in the 7 × 7 km cells used for hair-snag sampling) acted as 
the SECR detector. Using the centroid of roads meant the 
detector fell near roads. We reduced multiple scat samples 
per cell and sampling session for individual bears to a single 
detection event. Unique detections were assigned a centroid 
location based on the mean location of the original samples 
in each cell. This approach allowed for relative independence 
between scat detectors and minimized the distance between 
road cell centroids and actual roads. The smaller cell design 
resulted in fewer redundant samples and reduced the differ-
ence between scat detection locations and road cell centroids 
(mean = 0.9 km, min = 0.1 km, max = 2.0 km, n = 17). The 
final layout illustrates that scat and hair-snag sampling was 
conducted primarily in the vicinity of roads and that the scat 
sites fell systematically on roads (Fig. 2).

We conducted SECR analyses with hair, scat and com-
bined hair + scat data to compare population estimates 
between various methods and determine if scat data alone 
could provide a reliable estimate. Model selection for hair 
focused on sex-specific differences in scale of movement 
and detection (using sex as a covariate) and the effect of 
site placement on bear detection using previously defined 
canopy cover and terrain ruggedness site covariates (Bou-
langer et al. 2018). For scat-only model selection, we con-
sidered the kilometers of roads driven in each 3.5 × 3.5 cell 
as a site covariate. For the hair + scat analysis, scat sites were 
entered as point detectors with covariates used to test for 
differences in detection between each sampling method. 
We defined a systematic grid of points delineating the total 
possible area that bears could have encountered the DNA 
sampling grid (i.e. a SECR mask) using a 40 km buffer 
around the grid (Boulanger et al. 2018). Within the mask, 
we spaced points at 3 km intervals and used these points to 
estimate density. This spacing optimized computation time 
with minimal changes in estimates compared to tighter mask 
point intervals.

The precision of SECR estimates is primarily related to 
the number of bears on the sampling grid and the num-
ber of recaptures during sampling (Efford and Boulanger 
2019). It is indexed by the coefficient of variation (CVd), 
which is the standard error of an estimate divided by the 
estimate. One central question in study design is whether 
precision of estimates is limited by the number of bears on 
the sampling grid or estimation of detection parameters, 
which relates to recaptures and the complexity of detection 
models. To explore this question, we dichotomized estimate 

precision into binomial variation caused by the number of 
bears detected on the sampling grid (CVn) in contrast to the 
variance caused by estimation of effective sampling area and 
related detection parameters (CVa). These two components 
add up to the CV of the density estimate using the equation:

CV CV CVd n a= +2 2  (1)

(Huggins 1991, Borchers and Efford 2008, Efford 2019b).
We report abundance estimates as the average number 

of bears on the grid at one time (i.e. expected population 
size; Efford and Fewster 2013) which is simply the density 
estimate times the area of the sampling grid. Analyses were 
conducted using R software (<www.r-project.org>) includ-
ing secr ver. 3.2 (Efford 2019b) and ggplot ver. 3.3 packages 
(Wickham 2009).

Results

Scat survey search effort

The scat surveys covered approximately 3065 km of roads 
per session. We drove on average 48% of the total kilome-
ters of roads within cells (11–92% per cell). Many roads 
were inaccessible as they consisted of truck trails, unim-
proved and winter roads. We collected on average 0.08 
(SD = 0.15) suspected bear scat samples per kilometer 
of road surveyed and from these samples, we confirmed  
0.05 (SD = 0.10) grizzly bear scat samples per kilome-
ter of road surveyed (Supplementary material Appendix 1  
Table A1.1).

Sampling and identification success

We found differences in species confirmation and unique 
individual identification success from hair and scat DNA 
(Table 1). The success rate of identifying species was 18% 
higher for scat sampling compared with hair sampling, while 
the success of identifying individual grizzly bears was 86% 
higher for hair sampling compared with scat sampling. Hair 
sampling identified almost two times more individuals than 
scat sampling. Even with our sub-selection protocol mini-
mizing black bear hair samples prior to genetic analysis, we 
found a lower proportion of grizzly bear versus black bear 
samples for hair compared with scat.

Table 1. Sample numbers and success rate comparisons between hair and scat approaches, from collection to individual bears identified in 
the DNA inventory.

Hair sampling technique Scat sampling technique

Samples collected 958 183
Samples sent to the lab* 94 183
Samples visually excluded from analysis 11 –
Samples analyzed 83 183
Samples identified as bear species 80% (66/83) 98% (179/183)
Samples determined black bear 46% (38/83) 20% (37/183)
Samples determined grizzly bear 34% (28/83) 78% (142/183)
Grizzly bear samples identified to individual 100% (28/28) 14% (20/142)
Individual grizzly bears identified 14 8

* Note hair samples were sub-selected and only those showing grizzly bear characteristics underwent genetic analysis.
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The temporal distributions of sampling and detections 
varied between techniques (Supplementary material Appen-
dix 1 Table A1.2, A1.3 for session specific details of each 
data type). The number of grizzly bear detections for hair 
increased in later sessions, while detection numbers for scat 
decreased across the sampling period. The number of indi-
vidual bears detected by scat showed a similar decreasing 
pattern, while the numbers identified by hair were highest 
during the middle sessions. Equal numbers of females and 
males were identified by each method with seven and four 
of each sex from hair and scat, respectively (Supplementary 
material Appendix 1 Table A1.4). Using combined data, we 
identified 18 unique bears (eight female and ten male). Ten 
bears were identified by hair sampling, four by scat sampling 
and four by both sampling methods.

Species spatial distribution

Although hair and scat collection covered the same area, 
scat sampling detected grizzly bears in grid cells where hair 
sampling showed non-detection, with almost twice the 
number of cells indicating grizzly bear presence (Fig. 3). 
Grizzly bears were detected by both techniques in 22% of 
cells, only by scat sampling in 34% of cells, and only by 
hair sampling in 8% of cells. There was non-detection 
by both methods in the remaining 36% of cells. A more  

comprehensive assessment of distribution by estimating 
individual bear home range centers using SECR methods is 
given in a subsequent section.

Our spatial datasets from hair-snag and scat each sepa-
rately indicated higher recapture numbers and movements 
of male bears, primarily in the western portion of the grid 
for both techniques and in the east for scat sampling. Spa-
tial redetections of females were limited for both data types 
in comparison to males. Spatial detections using combined 
hair + scat data were enhanced compared to hair and scat 
only datasets, with additional recaptures as well as higher 
coverage for males (Fig. 4).

Population estimates

Model selection for hair-snag only data indicated that detec-
tion probabilities of grizzly bears at their home range center 
(g0) and spatial scale of grizzly bear movement (σ) were asso-
ciated with terrain ruggedness in the area surrounding sites 
(models H1 and H2; Table 2). We found increased rates of 
detection in areas of higher terrain ruggedness. The average 
number of bears estimated from the most supported model 
was 22.7 (SE = 12.2, CI = 8.4–60.9, CV = 54%). Low preci-
sion of the overall estimate (CVd = 54%) was due to the low 
number of bears detected on the sampling grid (CVn = 25%) 
and estimation of detection parameters (CVa = 47%). A CVn 

Figure 3. Cells with grizzly bears identified by hair, scat or both sampling methods, as well as estimated home range centers for individual 
grizzly bears from the spatially explicit capture–recapture (SECR) analysis of combined hair + scat data (model HS1; Table 2) within the 
DNA inventory sampling grid in Alberta, Canada.
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of 25% means CVd would be 25%, if detection parameters 
were known with certainty; therefore, a limiting factor in 
precision of estimates is the low sample size of bears detected.

Scat only model selection indicated constant g0 with 
sex-specific σ (model S1) due to lack of spatial recaptures 
for female bears compared to multiple spatial recaptures for 

male bears (Fig. 4). A model with sex-specific g0 with con-
stant σ was also supported (model S2; Table 2). Abundance 
estimates were only possible from model S3 as estimates of 
abundance from sex-specific detection models had unreal-
istic standard errors presumably due to small sex-specific 
sample sizes (four females and four males detected) as well 

Figure 4. Spatial detections and redetections of female and male grizzly bears using (a) hair-snag sites, (b) road detection scat sites and (c) 
hair-snag and scat sites on the DNA inventory sampling grid in Alberta, Canada. Actual sequences of movement are approximate.
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as a lack of spatial redetections for female bears. The model 
S3 estimate, which pooled sex-specific detection parameters 
and had temporal trends in g0, was 5.1 bears (SE = 2.0, CI =  
2.4–10.8, CV = 40%). This estimate corresponds to bears 
that use roads enough to have a non-zero probability of 
depositing scats.

Model selection for combined hair + scat data revealed 
constant g0 with sex-specific σ relative to hair-snag sites 
(model H + S1; Table 2), showing much higher support 
compared to other candidate models. Detection function 
plots show similar detection rates at home range centers for 
both methods, but greater scale of movements for hair sam-
pling. Male and female bears exhibited non-zero detection 

probabilities at distances up to 35 and 12 km, respectively, 
from home range centers for hair, with 25 and 5 km for 
scat (Supplementary material Appendix 1 Fig. A1.1). The 
population estimate from model H + S1 was 23.4 (SE = 9.4, 
CI = 11.0–49.8, CV = 40%), a result close to the hair-snag 
only estimate, but with higher precision. The abundance 
estimate for the sampling grid translates to a density estimate 
of 9.6 (CI = 4.4–20.0) bears per 1000 km2. Precision due 
to the number of bears detected (CVn) was 26%, similar to 
hair-snag sampling alone (CVn = 25%). The precision due to 
detection (CVa) was reduced to 30% from 47%, indicating 
the addition of scat data improved estimate precision. SECR 
estimates of bear home range centers using model H + S1 

Table 2. Model selection for hair-snag, scat and hair + scat analyses. Sample size adjusted Akaike information criterion (AICc), the difference 
in AICc between the model and the most supported model (ΔAICc), AICc weight (wi), the number of model parameters (K) and log-likelihood 
(LL) are given. Baseline constant models are italicized for reference with covariate models.

Model Detection (g0) Scale (σ) AICc ∆AICc wi K LL

Hair-snag models
 H1 TRIa constant 160.29 0.00 0.31 3 −75.9
 H2 constant TRI 160.61 0.32 0.27 3 −76.1
 H3 TRI + bkb constant 163.31 3.02 0.07 4 −75.4
 H4 TRI sex 163.86 3.56 0.05 4 −75.7
 H5 TRI + bc constant 163.91 3.70 0.05 4 −75.7
 H6 constant sex + TRI 164.14 3.84 0.05 4 −75.8
 H7 sex + TRI constant 164.22 3.93 0.04 4 −75.9
 H8 TRI TRI 164.32 4.02 0.04 4 −75.9
 H9 TRI + sex sex 168.89 8.59 0.00 5 −75.7
 H10 session constant 170.98 10.69 0.00 5 −76.7
 H11 constant session 171.35 11.06 0.00 5 −76.9
 H12 CCd constant 166.27 5.97 0.02 3 −78.9
 H13 constant constant 165.00 4.71 0.03 2 −80.0
 H14 bk constant 166.84 6.55 0.01 3 −79.2
 H15 constant bk 167.34 7.04 0.01 3 −79.5
 H16 constant trend 167.47 7.18 0.01 3 −79.5
 H17 constant sex 167.62 7.33 0.01 3 −79.6
 H18 sex constant 168.05 7.76 0.01 3 −79.8
Scat models
 S1 constant sex 197.99 0.00 0.55 3 −93.0
 S2 sex constant 198.61 0.62 0.41 3 −93.3
 S3 trend constant 205.03 7.04 0.02 3 −96.5
 S4 roadkme constant 205.54 7.55 0.01 3 −96.8
 S5 constant roadkm 206.34 8.35 0.01 3 −97.2
 S6 constant constant 207.28 9.28 0.01 2 −100.4
 S7 session constant 232.75 34.76 0.00 5 −96.4
 S8 constant session 233.54 35.55 0.00 5 −96.8
Hair + scat models
 H + S1 constant Sex × HSf 382.91 0.00 0.86 5 −184.0
 H + S2 HS sex 387.90 4.99 0.07 4 −188.4
 H + S3 sex × HS constant 389.41 6.50 0.03 5 −187.2
 H + S4 HS × TRI sex 390.39 7.48 0.02 6 −185.4
 H + S5 HS × TRI sex × HS 391.05 8.14 0.01 8 −179.5
 H + S6 constant HS 396.52 13.61 0.00 3 −194.4
 H + S7 sex constant 397.16 14.25 0.00 3 −194.7
 H + S8 constant sex 397.21 14.30 0.00 3 −194.8
 H + S9 HS constant 397.82 14.91 0.00 3 −195.1
 H + S10 HS constant 398.24 15.33 0.00 5 −191.6
 H + S11 sex sex 398.60 15.68 0.00 4 −193.8
 H + S12 scatg × road constant 398.99 16.08 0.00 5 −192.0
 H + S13 HS × sex HS × sex 399.05 16.14 0.00 8 −183.5
 H + S14 HS HS 399.79 16.88 0.00 4 −194.4
 H + S15 constant constant 407.82 24.91 0.00 2 −201.5

a Terrain ruggedness index, b trap-specific behavioural response where detection parameters change for a site once a bear is detected, c bear-
specific behavioural response where detection parameters change for a bear after initial detection, d canopy cover covariate, e hair-snag site, 
f scat site and g km of roads driven.
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revealed five of the detected bears had home range centers 
outside the grid (Fig. 3).

Cost comparison

Based on our field costs in 2018, we estimated an approxi-
mate 30% cost reduction for scat sampling relative to 
hair sampling (Supplementary material Appendix 2 Table 
A2.1). Cost savings stemmed mainly from minimal labour 
for scat sampling, with lower salary, accommodation and  
food expenses.

Discussion

Our research findings illustrate the value of sampling scat 
along roads in relation to hair-snag sampling by compar-
ing the two concurrently conducted, grid-based gNIS 
approaches. We examined each method’s ability to monitor 
wildlife through SECR population size estimates and spe-
cies spatial distribution. Extending beyond our case specific 
results, we demonstrate the utility of comparative studies and 
speak to potential applications for other species and regions.

Population size estimates are a common requirement for 
monitoring programs that, if designed well, provide high 
quality information regarding wildlife populations (Nich-
ols and Williams 2006). Given our methodology and the 
present level of genotyping success for grizzly bears in North 
America, our key finding is that grid-based barbed wire hair-
snag sampling retains its position as a more accurate method 
for measuring grizzly bear population size within a small 
population. In areas where densities are relatively low (e.g. 
species distribution edges or expansion areas), higher detec-
tion and redetection rates compensate for lower numbers of 
individuals. In our study, hair sampling detected and rede-
tected more individual bears. Scat sampling identified bears 
not detected by hair-snags, but the addition of these bears to 
hair data did not substantially change population estimates 
– suggesting hair-snag sampling still targeted the majority 
of bears in the area. While our scat approach successfully 
collected an adequate number of samples along roads, it was 
difficult to acquire individual genetic profiles from scat.

Both sampling methods identified individuals and their 
gender; however, the success rate for individual identifica-
tion was much lower for scat (14%) compared with hair 
(100%). Bearing in mind differences in methods and season 
of collection, our scat sampling success rate was also lower 
than rates for brown bears in Italy (17–53%; De Barba et al. 
2010a) and Sweden (55–80%; Kindberg et  al. 2011), and 
for other species in Canada (black bear 29–33% or coyote 
76–86%; Mumma et al. 2015). Lower individual success can 
be related to the execution of genetic analyses (Waits and 
Paetkau 2005); however, laboratory control measures were 
taken and repeated sample extraction did not improve suc-
cess. A more likely determinant of our low success is sample 
quality, which is highly dependent on field conditions and 
sampling techniques.

Sample quality can be affected by diet (Murphy  et  al. 
2003), precipitation (Brinkman et al. 2010, Wultsch et al. 
2015, Roffler  et  al. 2019), temperature, humidity and  

sample age (Murphy  et  al. 2007, Brinkman  et  al. 2010). 
Spring and early summer bear diets in the interior of west-
ern Canada largely consist of grasses and forbs (Munro et al. 
2006), contents which in Scandinavia produce lower success 
rates compared with scat containing only berries (but see 
Murphy et al. 2003). Scat collected in spring and autumn 
have higher success rates compared to summer in Scandinavia 
(Bellemain et al. 2005) – likely a combined factor of weather 
conditions and diet. We speculate that sun exposure and UV 
radiation, which degrades DNA (Friedberg 2003), plays a 
key role in our individual identification success because of 
the extreme environments found on road surfaces, especially 
during the summer months. We tried to mitigate this impact 
by sampling inside scat layers, which contain fewer DNA 
cells, more moisture and higher susceptibility to microor-
ganism degradation, but that are protected from UV expo-
sure (Stenglein et al. 2010, Wultsch et al. 2015). Without 
direct comparisons between layers, it is difficult to determine 
which factors had the strongest impact on individual success 
given our field conditions. To optimize scat collection, fur-
ther research could examine how UV radiation affects DNA 
quality by comparing individual success rates between inside 
and outside layers of solar impacted scat. Additional adjust-
ments in scat field protocols (e.g. season or sample extraction 
location) and continued developments in genetic profiling 
would likely improve success rates. With our current geno-
typing success, scat was unable to provide reliable population 
estimates, but it did improve estimate precision.

Estimate precision and low variance help determine 
trends and statistical differences in population sizes over time. 
Incorporating scat with hair data improved the precision of 
estimates by 14% (CV = 54% for hair only versus CV = 40% 
for hair + scat). Our results parallel comparisons of hair-snag 
and rub tree sampling using traditional mark–capture for 
grizzly bears conducted in Montana (Boulanger et al. 2008). 
Rub tree estimates alone were lower than hair-snag estimates 
and the joint use of rub tree and hair-snag data increased 
overall population estimate precision. Similarly, integrating 
hair rub pads and scat transect data improved population 
density estimate precision using SECR methods for coyotes 
Canis latrans in Louisiana (Murphy et al. 2018). Combin-
ing techniques comes with challenges of required resources, 
but could be a way to address estimate precision issues when 
monitoring small populations and low-density areas.

The overall estimate precision from our top model was 
limited by the relatively small number of bears estimated 
(23.4 from the hair + scat model) on the sampling grid – 
indicated by the CVn of 25%. Eighteen bears of the popula-
tion estimate were detected by hair and scat. The remaining 
five bears were likely partial residents within the study area, 
which is another factor affecting detection in our analysis. 
Increasing the sampling grid size and subsequently the size 
of bears vulnerable to detection would be the best approach 
to offset lower precision. An inventory conducted for the 
entire Yellowhead BMA in 2014, which includes and sur-
rounds our study area, estimated a grizzly bear density of 
7.5 bears per 1000 km2 (CI = 5.7–9.9, CV = 14%) using 
hair-snag sampling with 7 × 7 km grid cells. Precision of 
the 2014 estimate was better than both our hair-snag only 
and hair + scat estimates (CV = 14% versus 54% and 40%, 

Downloaded From: https://bioone.org/journals/Wildlife-Biology on 06 May 2024
Terms of Use: https://bioone.org/terms-of-use



10

respectively), likely due to the larger grid size and therefore 
larger sample size of bears detected (n = 66; Stenhouse et al. 
2015). Further simulations could indicate the best approach 
to assess relative precision and potential bias in variance esti-
mates due to summarizing scat samples at different scales as 
well as hair-snag sampling across a range of study area con-
figurations. Depending on the study area, expanded sam-
pling grids may fall into regions without roads, to which our 
scat sampling protocol is limited to. The scat approach also 
faces potential road bias for detecting individuals (e.g. those 
crossing or traveling along roads).

Spatially explicit models assume sampling is represen-
tative of the overall landscape. Our sampling grid encom-
passed an area where all cells were accessible by road to 
enable a controlled comparison of hair-snag and scat sam-
pling protocols. Our methods potentially caused bias against 
bears that avoid roads (Graham et al. 2010), especially for 
scat sampling which did not use any attractant. While allow-
ing for variable spatial sampling effort, SECR models assume 
that bears in the sampling area have a non-zero detection 
probability if they encounter sampling sites. In this context, 
the assumption is that all bears will traverse roads and poten-
tially deposit scat. If some bears avoid roads (e.g. females) 
they have no chance of being part of the bear population 
sampled by scat and will negatively bias estimates. In con-
trast, the intensive sampling design (7 × 7 km cells) for hair 
snares compared to the estimated scale of movement (up 
to 35 km) indicates that a high level of bias with hair-snag 
sampling is improbable – likely an effect of scent-lures draw-
ing bears into hair-snag sites (Boulanger et al. 2004a). Scat 
sampling along roads still detected male bears from up to 25 
km. The large scale of movement relative to the sampling 
grid, and having estimated home range centers occur out-
side of the grid, mitigated the effect of sampling near roads. 
Even with potential biases, the road survey approach dem-
onstrated advantages for determining where grizzly bears 
occurred within the study area.

Monitoring species presence, spatial distribution and 
expansion areas requires species level identification and ide-
ally gender. The success rate of identifying species and their 
sex using scat was higher than for hair (98% and 80%, 
respectively). While some published research fails to explic-
itly state DNA extraction rates (Gompper et al. 2006), these 
results provide valuable information, which is notably species 
and source dependent. Our species identification rates align 
with comparable results for other species (e.g. 95% for black 
bear, coyote and lynx Lynx canadensis samples combined; 
Mumma  et  al. 2015). Scat sampling additionally covered 
more ground in the study area, surveying many kilometers 
of roads per cell compared to one scent-lure baited hair-snag 
site. Detectability was higher for scat with almost twice the 
number of cells indicating grizzly bear presence, including 
crucial areas where hair sampling showed non-detection 
(i.e. the eastern edge of the study area, which is the known 
limit of the population). While combined hair and scat data 
provided complimentary results, scat sampling alone was 
still well suited for determining species distribution – with 
higher species identification success and a broader coverage 
within cells. While full genotyping success to the individual 
level enables accurate and more precise population estimates, 

species identification alone may be adequate depending on 
the specific objectives of the monitoring program. There-
fore, particular management goals for wildlife monitoring 
may impact which population measures and corresponding 
methods are appropriate.

Efficient use of limited resources is important to both 
researchers and managers interested in conserving wildlife 
populations. Monitoring objectives and study design need 
to be considered in conjunction with available resources and 
budgets. We found that hair sampling was more resource 
intensive (30% higher cost), as standard hair-snag methods 
require additional staff for time-consuming protocols com-
pared to our road survey methods. The intended use of data 
(e.g. population estimate or species distribution) affects bud-
gets and can indicate the appropriate method required and 
respective costs. Monitoring programs could also consider 
adapting scat survey methods as a citizen science approach 
to further reduce field costs (Kindberg et al. 2011) – direct-
ing the bulk of required resources to laboratory, analysis and 
report preparation costs. In addition, citizen involvement 
could help develop and expand long-term genetic databases 
while boosting the feasibility of recurrent monitoring.

Our findings demonstrate the potential of systematic scat 
surveys along roads. With improved individual identifica-
tion rates, for use in other areas, or for species where scat 
success rates are already higher, scat sampling could serve as a 
stand-alone DNA inventory method. As with hair sampling, 
genetic information from fecal DNA gathered long-term can 
be used to monitor the survival of individual bears, popu-
lation level survival rates and assess the use of landscapes 
through time (Boulanger et al. 2004b). Scat sampling along 
roads could equally explore the spatial distribution of black 
bears and with adaptations could be applied to other species 
known to defecate on roads (e.g. canids; Kohn et al. 1999) 
or a combination of species. Pooled resources applied for 
multiple species could additionally assist wildlife managers 
in meeting their monitoring and conservation objectives. 
Although the best methods are sometimes species specific 
(Mumma  et  al. 2015), finding a practical single sampling 
method for multiple species (e.g. scat sampling along roads) 
could maximize resource and cost efficiency.

Conclusions

While hair-snag sampling retains its position as the standard 
for grizzly bear population estimates with superior individ-
ual identification rates, scat sampling holds great promise. 
The ability to better determine species distribution, increase 
estimate precision and, with improved field techniques, con-
duct DNA inventories using a cost-effective scat approach 
is a major step forward for long-term wildlife monitoring 
efforts in North America. On a broader scale, our research 
has demonstrated the value of comparative studies where 
two gNIS approaches were applied and evaluated under 
similar rules. With this comparison, we were able to identify 
strengths of stand-alone methods and show that despite dif-
ferences in field and genetic success, an appropriate approach 
is purpose-specific and depends on monitoring objectives. 
Our research provides insights for managers as they balance 
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scientific rigor and cost-effectiveness while striving to collect 
consistent and comparable data for adaptive, long-term and 
sustainable wildlife monitoring and conservation.

Data accessibility

Genetic and field data are publicly available in Zenodo 
(Phoebus et al. 2020). Because grizzly bears are a threatened 
species in Alberta, precise location data has been excluded.
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