Development and Characterization of Microsatellite Loci in the Endangered Catspaw, Epioblasma Obliquata (Bivalvia:Unionidae)

Authors: Ortiz, Katlyn, Jones, Jess W., and Hallerman, Eric M. Source: Freshwater Mollusk Biology and Conservation, 25(1) : 1-6 Published By: Freshwater Mollusk Conservation Society
URL: https://doi.org/10.31931/fmbc-d-21-00002

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

DEVELOPMENT AND CHARACTERIZATION OF miCROSATELLITE LOCI IN THE ENDANGERED CATSPAW, EPIOBLASMA OBLIQUATA (BIVALVIA:UNIONIDAE)

Katlyn Ortiz ${ }^{\mathbf{1}}$, Jess W. Jones ${ }^{1,2_{*}^{*}}$, and Eric M. Hallerman ${ }^{1}$
${ }^{1}$ Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
${ }^{2}$ U.S. Fish and Wildlife Service, Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA

Abstract

The endangered Catspaw, Epioblasma obliquata, is restricted to one known reproducing population in Killbuck Creek, Coshocton County, Ohio. Little is known about the genetic diversity of this small population, and such information is needed to help inform recovery planning. We nonlethally sampled 44 individuals of E. obliquata using buccal swabs, from which we developed and characterized 14 polymorphic microsatellite loci. Significant deviations from Hardy-Weinberg Equilibrium (HWE), showing deficiencies in heterozygotes, were observed at 6 of the 14 loci, and linkage disequilibrium (LD) was observed at $9(\sim \mathbf{1 0 \%})$ of 91 possible pairwise comparisons among loci. Allelic diversity ranged from 2 to 15 alleles per locus and averaged 7.6 alleles per locus. Observed heterozygosity per locus ranged from 0.091 to 1.000 and averaged 0.674 . Possible explanations for deviations from HWE and LD could be from loci located close together on the same chromosome, segregation of null alleles, family structure within the small population, population bottlenecks, inbreeding, hermaphroditic reproduction, or some combination of these factors. Managers can use these microsatellite markers to assess and monitor genetic diversity in the remaining wild population in Killbuck Creek, prospective broodstock, hatchery-reared progeny, and reintroduced populations founded to promote recovery of the species.

KEY WORDS: Catspaw, Epioblasma obliquata, freshwater mussel, DNA microsatellite loci, primers, genetic diversity

INTRODUCTION

The Catspaw, Epioblasma obliquata, was listed as endangered under the U.S. Endangered Species Act in 1990; at that time, two isolated nonreproducing populations were known, one in the Green River in Kentucky and the other in the Cumberland River in Tennessee (USFWS 1990). These two populations now are considered extirpated. However, in 1994, a population of reproducing E. obliquata was discovered in a short reach of Killbuck Creek, a tributary of the Walhonding River in the Muskingum River watershed in

[^0]Coshocton County, Ohio (Hoggarth et al. 1995). State and federal agencies are using this population as a source of broodstock for captive propagation in an attempt to recover the species.

Given the single-source population, genetic variation in hatchery progeny is a concern. Potential genetic threats to survival of the species include loss of within-population genetic variation from nonrepresentative sampling or low numbers of broodstock and family-size variation in the hatchery (Jones et al. 2006; Cooper et al. 2009). Microsatellites, or simple sequence repeats, are tandemly repeated motifs of multiple bases of nuclear DNA found in all eukaryotic genomes (Zane et al. 2002). Microsatellites are highly
polymorphic loci that are ideally suited for genetic monitoring of wild and captive populations. The goal of this study was to develop and evaluate a set of microsatellite DNA PCR primers to analyze the genetic variation of the small source population in Killbuck Creek and any progeny produced in hatcheries.

METHODS

We obtained DNA samples from 44 adult Epioblasma obliquata that originally were collected from Killbuck Creek, Coshocton County, Ohio. These adults represented all individuals found at multiple sites and during multiple visits to the creek to collect broodstock in 2016-17. Adults were transported to and held at the Kentucky Department of Fish and Wildlife Resources' Minor E. Clark Fish Hatchery as part of the recovery program for the species. We nonlethally sampled these 44 individuals from the hatchery in the fall of 2018 by gently opening each mussel and vigorously swabbing the foot with a buccal swab (Kit DDK-50, Isohelix, Harrietsham, UK). From the buccal swab, DNA was isolated and extracted using an Isohelix DNA isolation kit, and its concentration and purity were assessed by using a μ Lite PC spectrophotometer (Biodrop, Cambridge, UK). In addition to morphological identification, the identification of all individuals as E. obliquata was confirmed using the mitochondrial DNA sequence from the first subunit of NADH dehydrogenase (ND1), a protein-encoding gene amplified by PCR using primers and conditions reported by Serb et al. (2003).

The Savannah River Ecology Laboratory at the University of Georgia developed a microsatellite library. Genomic DNA used to isolate the microsatellite loci was extracted from two individuals collected from the wild in 2016, utilizing a DNEasy Blood and Tissue Kit (Qiagen, Germantown, MD, USA). A genomic library was prepared with inserts sizeselected to range from 300 to 600 bp . Paired-end reads were sequenced on an Illumina HiSeq sequencer. Using the program MSATCOMMANDER (Faircloth 2008), 463,713 reads containing 3-6 bp repeat motifs were identified. Primer3 (Untergasser et al. 2012) was used for PCR primer design. Initially, we screened 60 primer pairs on a panel of eight E. obliquata individuals and narrowed our evaluation to a set of 14 microsatellite polymorphic primer pairs. The criteria used to select these primer pairs were polymorphism of the loci amplified (i.e., observation of more than one allele), tri- or tetranucleotide repeat motif, and annealing temperature close to $59^{\circ} \mathrm{C}$ for use in subsequent multiplexing. Forward primers were labelled with fluorescent markers as noted in Table 1. Four sets of loci were coamplified in multiplex PCR-Eooll and Eoo20; Eool6 and Eool9; Eoo22 and Eoo24; Eoo8, Eoo9, and Eool0; other loci were amplified individually. PCR conditions consisted of $\mathrm{H}_{2} \mathrm{O}, 5 \times \mathrm{PCR}$ buffer (Promega, Madison, WI, USA), 2.5 mM MgCl 2 (Promega), 2.5 mM deoxynucleotide triphosphate (dNTPs) (ThermoFisher Scientific, Waltham, MA, USA), $1 \mathrm{mg} / \mathrm{mL}$ bovine serum albumin (BSA) (ThermoFisher Scientific), $5 \mu \mathrm{M}$ of each primer, $0.1 \mu \mathrm{~L}$ GoTaq Polymerase (New England Biolabs, Ipswich, MA,

USA), and $1 \mu \mathrm{~L}$ of genomic DNA at $50 \mathrm{ng} / \mu \mathrm{L}$, in a total reaction volume of $22 \mu \mathrm{~L}$. PCR thermal cycling conditions were as follows: $94^{\circ} \mathrm{C}$ for 3 min , followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $40 \mathrm{~s}, 59^{\circ} \mathrm{C}$ for 40 s , and $72^{\circ} \mathrm{C}$ for 1 min ; a final extension at $72^{\circ} \mathrm{C}$ for 5 min ; and a hold at $4^{\circ} \mathrm{C}$. Amplification of PCR products was verified by visualization under ultraviolet light in an ethidium bromide-stained agarose gel. PCR products were sent to the Institute of Biotechnology at Cornell University, Ithaca, New York, for DNA fragment-size analysis. Microsatellites were scored for length using Genemarker (SoftGenetics, State College, PA, USA). Arlequin v3.0 (Excoffier et al. 2005) was used to assess heterozygosity, number of observed alleles per locus, conformance to HardyWeinberg equilibrium (HWE), and linkage disequilibrium (LD). Testing for HWE and LD used Arlequin and a critical type I error rate $=0.05$. Evidence for a bottleneck at each locus was tested using the Garza-Williamson index (M-ratio, the ratio of the number of alleles observed to the number of alleles possible within the observed range in allele sizes) using Arlequin; values of M below 0.7 suggest the occurrence of a bottleneck (Garza and Williamson 2001). MICROCHECKER 2.2.3 (Van Oosterhout et al. 2004) was used to assess the possibility of segregation of null alleles.

RESULTS AND DISCUSSION

Allelic diversity ranged from 2 to 15 alleles per locus and averaged 7.6 alleles per locus, while observed heterozygosity per locus ranged from 0.091 to 1.000 and averaged 0.674 (Table 1). Significant deviations from HWE, showing deficiencies in heterozygotes, were observed at 6 of the 14 loci, and LD was observed at $9(\sim 10 \%)$ of the 91 pairwise comparisons among loci and involved 12 of the 14 total loci sampled (Eoo9 and Eool9; Eooll and Eool9; Eoo9 and Eoo22; Eoo20 and Eoo22; Eool6 and Eoo24; Eooll and Eoo31; Eoo8 and Eoo44; Eoo31 and Eoo38; Eooll and Eoo60). The M-ratios for six loci were below 0.70 , suggesting recent loss of allelic diversity at these loci. Possible segregation of null alleles was detected at loci Eool6, Eoo20, Eoo22, and Eoo38. Because of the small size of the population sampled, deviations from HWE and LD could result from loci being closely located on the same chromosome, segregation of null alleles, family structure, population bottlenecks, inbreeding, hermaphroditic reproduction (van der Schalie 1970), or some combination of these factors. Appendix A1 lists individual genotypes at the 14 loci.

These primer pairs are the third set of microsatellite primers developed for the genus Epioblasma. The first set of primers was developed for Epioblasma capsaeformis (Jones et al. 2004) and the second for Epioblasma rangiana (Zanatta and Murphy 2006). We did not test primers developed for E. capsaeformis and E. rangiana on E. obliquata, but allelic diversity of E. obliquata was lower than in those two species. For the 10 loci developed for E. capsaeformis ($n=20$ individuals assessed/locus), allelic diversity ranged from 5 to 17 alleles/locus and averaged 9.7 alleles/locus. For the six loci

Table 1. Characteristics of 14 microsatellite loci developed using DNA obtained in 2016 and 2017 from 44 individuals of the Catspaw (Epioblasma obliquata) from Killbuck Creek, Coshocton County, Ohio. H_{O} and H_{E} are observed and expected heterozygosity, respectively. Statistically significant deviations from Hardy-Weinberg Equilibrium (HWE) are denoted by an asterisk (*). M-ratio is the Garza-Williamson index. Individual genotypes at the 14 loci are reported in Appendix A1.

developed for E. rangiana ($n=73-86$ individuals/locus), allelic diversity ranged from 12 to 28 alleles/locus and averaged 19.3 alleles/locus. After careful screening for null alleles, HWE, and LD, some of our microsatellite loci developed for E. obliquata may prove useful for cross-species amplification in other species, especially other Epioblasma. Likewise, future studies could screen the microsatellite loci developed by Jones et al. (2004) and Zanatta and Murphy (2006) to determine whether additional loci are suitable for cross-species amplification in E. obliquata.

Sampling more individuals of E. obliquata for further population genetic analysis would benefit conservation management. The screening of more wild individuals and any other populations that may be found could provide insight into the population genetic diversity and natural history of this species. Given the isolation and small size of the remaining
known population of E. obliquata, these microsatellite loci and other genetic markers will be valuable for monitoring the effects of propagation and management practices seeking to maintain or increase genetic diversity in hatchery stocks and wild populations receiving stocked individuals. For example, if hatchery technology improves to allow for the long-term holding, spawning, and fertilization of broodstock in captivity, the loci developed in this study will be useful for monitoring genetic diversity and inbreeding in parental stocks and progeny, which will be critical for maintaining healthy captive and wild populations of E. obliquata (Jones et al. 2020).

ACKNOWLEDGMENTS

The U.S. Fish and Wildlife Service (USFWS), Frankfort, Kentucky, provided support for this project. We thank Dr.

Monte McGregor, Kentucky Department of Fish and Wildlife Resources, and Leroy Koch, USFWS, for their assistance in collecting mussel tissue samples from Killbuck Creek, Ohio, and Minor Clark Fish Hatchery, Kentucky. The participation of E. M. Hallerman was supported in part by the U.S. Department of Agriculture through the National Institute of Food and Agriculture. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

LITERATURE CITED

Cooper, A. M., L. M. Miller, and A. R. Kapuscinski. 2009. Conservation of population structure and genetic diversity under captive breeding of remnant coaster brook trout, Salvelinus fontinalis, populations. Conservation Genetics 11:1087-1093.
Excoffier, L., G. Laval, and S. Schneider. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47-50.
Faircloth, B. C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources 8:92-94.
Garza, J. C., and E. G. Williamson. 2001. Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10:305-318.
Hoggarth, M. A., D. L. Rice, and D. M. Lee. 1995. Discovery of the federally endangered freshwater mussel, Epioblasma obliquata obliquata (Rafinesque, 1820) (Unionidae), in Ohio. The Ohio Journal of Science 4:298299.

Jones, J. W., M. Culver, V. David, J. Struthers, N. A. Johnson, R. J. Neves, S. J. O'Brien, and E. M. Hallerman. 2004. Development and characterization
of microsatellite loci in the endangered oyster mussel Epioblasma capsaeformis (Bivalvia:Unionidae). Molecular Ecology Notes 4:649-652.
Jones, J. W., E. M. Hallerman, and R. J. Neves. 2006. Genetic management guidelines for captive propagation of freshwater mussels (Unionoidea). Journal of Shellfish Research 25:527-535.
Jones, J. W., W. F. Henley, A. J. Timpano, E. Frimpong, and E. M. Hallerman. 2020. Spawning and gravidity of the endangered freshwater mussel Epioblasma capsaeformis (Bivalvia: Unionidae) in captivity for production of glochidia. Invertebrate Development and Reproduction 64:312325.

Serb, J. M., J. E. Buhay, and C. Lydeard. 2003. Molecular systematics of the North American freshwater bivalve genus Quadrula (Unionidae: Ambleminae) based on mitochondrial ND1 sequences. Molecular Phylogenetics and Evolution 28:1-11.
Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S.G. Rozen. 2012. Primer3-New capabilities and interfaces. Nucleic Acids Research 40(15):e115.
USFWS (U.S. Fish and Wildlife Service). 1990. Purple cat's paw pearlymussel determined to be an endangered species. Federal Register 55:2820928213.
van der Schalie, H. 1970. Hermaphroditism among North American freshwater mussels. Malacologia 10:93-112.
Van Oosterhout, C., W. F. Hutchinson, D. P. Wills, and P. Shipley. 2004. MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535-538.
Zanatta, D. T., and R. W. Murphy. 2006. Development and characterization of microsatellite markers for the endangered northern riffleshell mussel Epioblasma torulosa rangiana (Bivalvia: Unionidae). Molecular Ecology Notes 6:850-852.
Zane, L., L. Bargelloni, and T. Patarnello. 2002. Strategies for microsatellite isolation: a review. Molecular Ecology 11:1-16.

Loci	$\begin{gathered} E o o 8 \\ \operatorname{ACT}(16) \end{gathered}$		$\begin{gathered} \text { Eoo9 } \\ \text { AAT(29) } \end{gathered}$		$\begin{gathered} \text { Eool0 } \\ \text { ATC(8) } \end{gathered}$		$\begin{gathered} \text { Eooll } \\ \text { AAC(10) } \end{gathered}$		$\begin{gathered} \text { Eool6 } \\ \text { ACAT(11) } \end{gathered}$		$\begin{gathered} \text { Eoo19 } \\ \text { AGAT(10) } \end{gathered}$		$\begin{gathered} \text { Eoo20 } \\ \operatorname{ACAT}(19) \end{gathered}$		$\begin{gathered} \text { Eoo22 } \\ \text { AGAT(15) } \end{gathered}$		$\begin{gathered} E o o 24 \\ \text { AATC(6) } \end{gathered}$		$\begin{gathered} \text { Eoo31 } \\ \text { ATC(9) } \end{gathered}$		$\begin{gathered} E o o 38 \\ \text { AAG(11) } \end{gathered}$		Eoo44 AAC(8)		$\begin{gathered} E o o 46 \\ \text { ATCC(6) } \end{gathered}$		$\begin{gathered} \text { Eoo60 } \\ \text { AATC(10) } \end{gathered}$	
dividual		2		2		2		2		2				2		2		2		2		2		,				2
	169	18	182	188	199	211	60	66	224	236	89	201			05	217			199	199	289	289	253	259	12	124	242	246
	169	184	82	85	211	217	260	266	240	240	97	213			09	221	171	175	199	199	253	259	253	259	124	136	234	254
	69	184	179	179		220	266	266	240	240	93	197	294	294	185	193	175	75	211	211	256	292	253	259	12	124	242	46
	169	184	182	185	205	205	266	266	228	228	85	201	82		213	221	171	175	99	217	253	89	53	259	124	124	234	246
	169	184	182	182	199	199	60	266	240	240	93	201			22	221	175	75	199	211	41	256	253	259	12	124	242	246
	169	184	182	182	199	21	66	266	240	240	193	197	82	298	185	201	17	75	99	217	253	253	253	259	124	124	246	46
	169	184	182	82	199	220	60	266	240	240	77	20	282	298	213	213	175	175	217	223	250	271	253	259	124	136	242	42
	169	184	79	82	90	211	66	266	240	244	185	22	02	326	20	20	171	175	199	217	277	292	253	259	124	124	202	242
	169	184	85	85	90	199	66	266	240	240	201	217	82	302	20	20	171	171	199	217	286	286	253	259	124	124	218	330
	169	184	82	85	0	199	60	266	240	240	197	205	306	326	209	209	171	175	199	223	271	289	253	259	124	124	246	246
	69	184	82	188	12	211	66	266	228	240	85	189	254	29	173	18	171	171	199	199	289	289	253	259	124	12	23	334
	169	184	182	82	0	208	60	260	240	240	193	205	278	27	93	20	17	175	223	223	256	256	253	259	124	12	24	246
	169	184	182	182	0	199	66	266	228	240	185	201	298		201	209	17	175	199	199	265	289	253	259	12	12	21	246
	169	184	182	185	99	199	60	260	240	240	185	205	282		185	21	17	175	199	199	259	259	253	259	12	124	230	246
	169	181	182	182	193	21	66	266	232	240	177	205	278	298	20	221	17	175	199	217	250	256	253	259	12	124	23	242
	169	184	182	182	187	208	260	266	240	240	193	201	310	32	185	19	17	175	217	217	241	277	253	259	12	124	24	242
	169	184	179	185	90	202	260	260	232	232	193	21	254	31	21	21	17	175	199	199	256	289	253	25	12	124	21	226
	169	181	182	182	9	220	60	266	240	240	133	189	62	28	20	20	17	175	199	226	259	292	253	25	12	124	21	23
	169	184	182	188	9	199	260	260	240	240	93	21	86	32	17	22	17	175	199	211	256	256	253	25	12	124	24	24
	169	184	182	185	02	211	60	266	240	240	185	201	8	30	21	22	17	175	199	199	256	265	253	25	12	124	21	234
	169	184	182	182	0	190	60	266	232	240	177	181	82	318	18	213	17	17	211	211	256	292	253	25	12	124	21	242
	169	187	179	179	199	211	260	266	240	240	19	201	254	29	205	205	17	175	199	211	256	256	253	25	124	124	234	42
	169	184	82	185	190	199	260	266	228	228	133	20	314	314	185	19	171	17	21	211	241	253	253	259	124	124	20	246
	169	18	182	185	6	220	260	260	232	236	18	20	29	310	21	21			21	217	250	262	253	25	124	124	242	246
tock25	169	18	82	185	90	199	260	266	232	24	13	20	278	314	20	20	171	17	199	199	259	259	253	25	12	124	21	246
ildstock26	169	18	182	185	190	199	260	260	240	24	18	20	02	322	193	20	17	175	211	211	256	265	253	25	12	124	20	226
ildstock27	169	18	82	185	190	199	260	260	240	240	189	197	25	25	19	20	171	17	199	211	256	265	253	259	12	124	226	246
ildstock28	169	181	179	185	190	199	266	26	240	240	209	209	314	322	20	21	175	17	199	211	256	289	253	259	12	12	218	218
ock29	169	184	182	188	199	211	260	266	228	240	185	189	25	314	173	18	171	171	199	217	289	289	253	259	12	12	23	242
ock30	169	184	182	182	190	199	266	266	168	240	197	201	306	30	221	22	171	175	199	199	256	289	253	259	12	12	23	246
tock31	169	181	179	182	208	217	260	266	232	240	189	20	278	290	193	21	175	175	199	211	253	253	253	259	12	12	226	254
stock32	169	184	182	188	96	220	260	60	240	240	133	93	28	290	209	217	175	175	199	217	259	259	253	259	124	12	218	242
stock33	169	184	182	182	190	208	260	266	168	240	133	197	282	302	209	209	171	175	211	217	292	292	253	259	124	12	202	234
dstock34	169	184	182	182	199	211	260	266	168	240	133	197	282	294	201	209	175	175	199	217	241	259	253	259	124	124	206	238
ildstock35	169	184	182	182	211	220	260	260	168	240	185	193	278	298	181	193	175	175	199	211	262	262	253	259	124	124	218	246

 alleles per locus

Loci	$\begin{gathered} \text { Eoo8 } \\ \text { ACT(16) } \end{gathered}$		$\begin{gathered} \text { Eoo9 } \\ \text { AAT(29) } \end{gathered}$		$\begin{gathered} \text { Eool0 } \\ \text { ATC(8) } \end{gathered}$	$\begin{gathered} \text { Eooll } \\ \text { AAC(10) } \end{gathered}$		$\begin{gathered} \text { Eool6 } \\ \text { ACAT(11) } \end{gathered}$		$\begin{gathered} \text { Eool9 } \\ \text { AGAT(10) } \end{gathered}$		$\begin{gathered} \text { Eoo20 } \\ \text { ACAT(19) } \end{gathered}$		$\begin{gathered} \text { Eoo22 } \\ \text { AGAT(15) } \end{gathered}$		$\begin{gathered} \text { Eoo24 } \\ \text { AATC(6) } \end{gathered}$		$\begin{gathered} E o o 31 \\ \text { ATC }(9) \end{gathered}$		$\begin{gathered} E o o 38 \\ \text { AAG(11) } \end{gathered}$		$\begin{gathered} \text { Eoo44 } \\ \text { AAC(8) } \end{gathered}$		$\begin{gathered} \text { Eoo46 } \\ \text { ATCC(6) } \end{gathered}$		$\begin{gathered} E o o 60 \\ \text { AATC(10) } \end{gathered}$	
Wildstock36	169	184	182	185	199205	260	266	168	168	197	217	302	302	185	201	171	175	199	232	256	289	253	259	124	136	202	218
Wildstock37	169	178	182	182	199214	260	266	168	240	133	193	310	310	185	221	175	175	199	217	253	292	253	259	124	124	246	254
Wildstock38	169	178	182	182	199211	260	26	232	240	133	19	282	282	189	193	175	175	199	199	259	265	253	259	124	136	234	246
Wildstock39	169	178	182	182	199199	266	266	240	240	185	20	302	314	185	201	171	175	199	217	277	289	253	259	124	124	202	218
Wildstock40	169	184	182	185	202214	260	26	236	240	133	185	294	302	185	205	171	175	199	211	256	289	253	259	124	124	218	234
Wildstock41	169	184	182	182	19921	266	26	160	23	189	20	278	306	209	22	175	175	199	199	241	259	253	259	124	4	234	234
Wildstock42	169	184	182	182	199211	260	260	168	232	193	205	310	310	189	193	171	171	199	211	256	256	253	259	124	124	218	238
Wildstock43	169	184	182	182	193199	260	260	168	240	197	205	294	302	201	201	171	175	211	232	265	280	253	259	124	124	218	226
Wildstock44	169	184	182	182	178199	266	266	160	228	133	197	254	298	205	217	171	175	199	199	262	289	253	259	124	124	234	246

[^0]: *Corresponding Author: Jess_Jones@fws.gov

