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ABSTRACT

Pollinator species have seen recent declines in abundance, generating conservation concern as well as alarm about the ecosystem services they provide.
A common approach to alleviate pollinator decline is through habitat management, including restoration of degraded habitats and removal of
invasive species, but apparent habitat improvement does not necessarily mean an improvement in pollinator abundance and diversity. We collected
pollinators in colored pan traps at three sites at the Lacamas Prairie Natural Area, Washington: remnant wet prairie, restored wet prairie, and an area
invaded by reed canary grass (Phalaris arundinacea). We used model selection to assess whether site and trap color explained variation in pollinator
abundance, richness, and diversity. Pollinator abundance was similar at the native and restored sites with predicted averages of 9.06 (7.15, 11.48) and
9.51 (7.52, 12.03), respectively while a heavily invaded reed canary grass site had a significantly lower predicted mean of 7.26 (5.69, 9.26). Site was not
included in the top model for species richness or diversity. All three measures varied with trap color. Habitat restoration and invasive species control
at Lacamas Prairie appear to have benefited local pollinator populations, but evidence for differences in pollinator richness and diversity was weak.
Further work, both characterizing the response of pollinator communities to wet prairie restoration and optimizing trap colors for monitoring in this
area, is warranted.

Index terms: invasive species; pollinators; prairie restoration

INTRODUCTION

Pollinators are critical members of their ecological commu-
nities, and their ongoing decline is a significant conservation
concern. Pollinator biodiversity increases ecosystem productiv-
ity, enriches plant diversity, and buffers ecosystems from
disturbances (Balvanera et al. 2006; Carvalheiro et al. 2013).
Anthropogenic land use changes and the industrialization of
agriculture have contributed to widespread declines in pollina-
tors, and evidence from managed populations suggests that
other factors may also be contributing to declines, particularly
the introduction of invasive species (Winfree et al. 2007; Muñoz
and Cavieres 2008; Carvalheiro et al. 2013). Communities may
be nearing a tipping point where sudden ecosystem collapse will
occur if declines in pollinator species continue (Kremen et al.
2007).

Thriving pollinators require ample amounts of foraging and
nesting resources within home ranges. Thus, the efforts to
conserve pollinators rely on the creation of high-quality habitats
with diverse host plants and microhabitats (Steffan-Dewenter
and Tscharntke 1999; Donaldson et al. 2002; Kremen et al. 2002;
Ricketts et al. 2008; Wratten et al. 2012). Prime pollinator
habitat is created through the restoration of landscapes, the
enrichment of borders, and establishment of corridors (Albrecht
et al. 2007; Dicks et al. 2015; Lowe et al. 2021). Although
establishment of pollinator populations supports conservation
and restoration success, restoration work often assumes that the
creation of suitable habitat is sufficient to ensure pollinator

recovery (Memmott et al. 2004; Fontaine et al. 2006; Forup et al.
2008; Vázquez et al. 2012; Kaiser-Bunbury et al. 2014).

Our objective was to assess whether habitat restoration efforts
focused on the plants in a wet prairie in the Pacific Northwest
were also associated with increased pollinator abundance and
diversity. Moreover, because high pollinator diversity is
indicative of robust ecosystem function (Balvanera et al. 2006;
Fontaine et al. 2006; Albrecht et al. 2007; Senapathi et al. 2015),
evaluation of the pollinator community can also offer insight
into the effect of restoration on ecosystem processes. A major
concern in the area is invasive reed canary grass (Phalaris
arundinacea), which has been associated with decreased diversity
and abundance of bees and butterflies in an agricultural setting,
due to lack of foraging diversity through competitive exclusion
of plants (Semere and Slater 2007). If habitat restoration has
been effective, pollinator abundance and diversity in restored
prairie should be similar to that in remnant prairie and higher
than in areas dominated by invasive reed canary grass.

METHODS

Study Site
The Lacamas Prairie Natural Area encompasses a remnant wet

prairie ecosystem near Vancouver, Washington, managed by the
Washington Department of Natural Resources (DNR). The
prairie area is adjacent to an oak savannah habitat to the west
and south, private property to the north, and a two-lane highway
to the east. We selected three sampling locations within the
prairie that reflected different land use history and current cover:
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a native site, a restoration site, and a reed canary grass site. The
native site is remnant prairie that has been relatively undisturbed
(C. Abbruzzese, pers. comm. 4 Oct 2021). The DNR’s
management focus in this area is controlling woody plants,
including Oregon ash (Fraxinus latifolia), native and nonnative
roses, and native and nonnative hawthorn. Additionally, DNR
has done minor spot spraying or pulling of tansy ragwort
(Jacobaea vulgaris).

The two other sampling locations were in agricultural use for
several decades prior to the acquisition of the land by the DNR
(C. Abbruzzese, pers. comm. 4 Oct 2021). Previously installed
agricultural ditches were partially removed within the restora-
tion area to restore natural hydrogeology, whereas the hydro-
geology has not been restored in the reed canary grass (RCG)
area. The DNR burned both study areas in 2017. After the burn,
they sprayed nonnative meadow foxtail (Alopecurus pratensis)
and reed canary grass with a grass-specific herbicide (Fusilade)
and planted native grasses and forbs. These measures were
effective at the restoration site and have nearly eradicated the
RCG population there. In contrast, native species have not
successfully established at the RCG site. Despite the burn,
herbicide application, and native plantings, this area maintains
70–90% RCG cover, perhaps due to its altered hydrogeology.
The restoration site is maintained by annual hand-pulling of
common teasel (Dipsacus fullonum) and planting of native
grasses and forbs.

Data Collection
Within each sampling location, we established three 10-m2

quadrats. We sampled once a month June through August of
2020 and May through August of 2021. On each sampling
occasion, we placed six pan traps (two each of red, blue, and
white) in each quadrat, filled them with diluted dish detergent,
and left them out for 96 hours (Dorado et al. 2011; Lebuhn et al.
2013). The selected bowl colors were similar to the colors of
flowers found in the study area because color of adjacent flowers
influences visitation rates (Hegland and Totland 2012).

We then emptied the trap contents into labeled containers
filled with 70% isopropyl alcohol to preserve the specimens until
they could be processed. Each sample included all individual
insects collected for each day in a particular color trap for a
sampling quadrat. We identified specimens to species level, when
possible (Amateur Entomologists’ Society 1997; insectidentifi-
cation.org). If the key was lacking detail, we referenced a
secondary identification text, Insects of the Pacific Northwest,
offering pictures and descriptions of species found in the study
site (Haggard and Haggard 2006).

Data Analysis
We used the tidyverse and vegan packages to conduct data

analysis in program R (Wickham et al. 2019; Oksanen et al. 2020;
R Core Team 2021). For this study, we included 35 species
identified as effective pollinators (Appendix). For each pan trap
on each sampling occasion, we calculated three response
variables: abundance, richness, and diversity. We determined the
species richness in each sample, and we quantified diversity by
calculating eH , the effective number of species based on the
Shannon index (H).

We fit a suite of 5 generalized linear models to each response
variable, using combinations of site and trap color as predictors.
The sample date was included in all models as a random effect to
account for stochastic environmental conditions. Both abun-
dance and species richness were count data, and we modeled
their errors accordingly. We used negative binomial regression
to model abundance because the average abundance (8.60) was
much less than the variance in abundance (46.37). Species
richness had similar mean (2.96) and variance (2.62), so we used
Poisson regression to model richness. We assessed q-q plots for
assumption violations and used the corrected Akaike informa-
tion criterion (AICc) to compare models for each response
(Hurvich and Tsai 1989).

RESULTS

We analyzed 189 samples with a combined total of 1625
individual pollinators. Seventeen pollinator species were ob-
served at all three sites and accounted for 97.3% of all
observations. Bees were the most common pollinators observed
at every site, although they comprised a smaller proportion in
the RCG site (Figure 1). Samples from the native site had a
greater proportion of hoverflies than the other sites, while
samples from the RCG site had a greater proportion of wasps
(Figure 1).

On average (95% CI), there were 8.60 (7.62, 9.57) pollinators
from 2.96 (2.73, 3.20) species in each sample. The mean
diversity, measured as the effective number of pollinator species
per sample, was 2.46 (2.28, 2.65). The widest part of the sample
distribution of each metric tended to be highest in the native
site, intermediate at the restoration site, and lowest at the RCG
site (Figure 2).

Trap color was included in the top models for all three
metrics, but site was only in the top model for abundance (Table
1). Model results indicated that white traps generally captured
more individuals of more species, while red traps caught the
fewest individuals and the fewest species (Figure 3). According
to the top model for pollinator abundance, native and
restoration sites were comparable, with predicted averages of
9.06 (7.15, 11.48) and 9.51 (7.52, 12.03), respectively. However,

Figure 1.—Total abundance of pollinator groups in samples from
native, restoration, and reed canary grass (RCG) sites at Lacamas Prairie
Natural Area, Washington, 2020–2021.
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the RCG site had a significantly lower predicted mean
abundance of 7.26 (5.69, 9.26; Figure 3).

DISCUSSION

The area with effective habitat restoration and invasive species
control had a pollinator abundance similar to the remnant
native area and higher than the site heavily invaded by reed
canary grass. Although restoration status was not included in the
top models for species richness or diversity, comparisons of the
distributions of these measures across the three sites provided
weak evidence that these other aspects of pollinator communi-
ties were also positively associated with restoration. These
observations are likely driven by plant–pollinator relationships.
Increased floral diversity has been found to increase pollinator
visitation and large diverse pollen rewards increased the
likelihood of visits by hymenopteran and dipteran pollinators
(Harder 1990; Makino et al. 2007; Semere and Slater 2007;
Vaudo et al. 2015). Diversity in the timing of flowering can also
provide resources throughout the season to support more
abundant and diverse pollinator communities (Harder 1990;
Makino et al. 2007; Weiner et al. 2014; Pyke 2016). Relative to

the native and restored areas, the invaded site likely had a much
lower potential nutritional reward for pollinators, as reed canary
grass only flowers until early July and is wind-pollinated
(Merigliano and Lesica 1998; Runkel et al. 2009). Further,
reduced floral diversity from competitive exclusion by reed
canary grass within the invaded site may account for lowered
pollinator diversity (Semere and Slater 2007).

Differences among the sites, particularly in species richness
and diversity, may have been reduced by their proximity to one
another and to edge habitat. When connectivity is high, many
pollinators readily move between prime foraging areas and sites
that provide refuge or other resources (Klein et al. 2007; Ricketts
et al. 2008; Garibaldi et al. 2011; Kennedy et al. 2013; Lowe et al.
2021). Similarly, the colored pan traps may have attracted
pollinators from beyond the edge of each site, essentially
sampling species that did not really occur at the site.

The colors of the traps themselves likewise had strong effects
on the abundance and diversity of pollinator samples, with white
and blue traps performing better than red traps. Previous work
has similarly found that red pan traps captured a lower
abundance and richness of pollinators than blue or white traps
(Campbell and Hanula 2007). However, our results are
inconsistent with several studies in which blue traps captured
greater abundance and richness of pollinators than white traps
(Campbell and Hanula 2007; Nuttman et al. 2011; Moreira et al.
2016). It is possible that our white traps were more effective
because they had higher reflectance (Vrdoljak and Samways
2012).

While the study area showed visible differences in habitat
condition, not all pollinator community metrics we measured
showed statistically significant differences. However, habitat
connectivity is increasingly recognized as a key component to
the restoration of pollinator populations, and the proximity of

Figure 2.—Violin plots showing the distributions of pollinator community metrics for samples from native remnant prairie, restored prairie, and an
area dominated by reed canary grass (RCG) at Lacamas Prairie Natural Area, Washington, 2019–2020. Diversity is the effective number of species
based on the Shannon index.

Table 1.—Model selection results for the Lacamas Prairie pollinator
community metrics. The DAICc for the best models of each metric is in bold.

Abundance Richness Diversity

Model K DAICc K DAICc K DAICc

Color þ date 10 4.64 9 0.00 10 0.00

Site þ color þ date 12 0.00 11 3.70 12 4.27

Site * color þ date 16 0.02 15 10.30 16 9.26

Date 8 60.10 7 15.88 8 23.56

Site þ date 10 62.48 9 19.48 10 27.76

Natural Areas Journal, 42(4):313–318 315

Downloaded From: https://bioone.org/journals/Natural-Areas-Journal on 23 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



our study sites to one another may have served to reduce
observable differences among them. The lack of geographically
independent replicates also restricts the generalizability of our
results. Despite these limitations, our findings suggest that
habitat restoration has benefited pollinators at the Lacamas
Prairie Natural Area. Additionally, the observed effects of trap
color warrant further investigation for optimizing post-restora-
tion monitoring of pollinators.
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APPENDIX.—Pollinators observed in pan traps at Lacamas Prairie Natural Area, Washington, 2020–2021.

Order Family Scientific name Common name of species or group

Coleoptera Cerambycidae Brachysomida californica Longhorn beetle

Stenostrophia amabilis Flower longhorn beetle

Callimoxys sanguinicollis Longhorn beetle

Diptera Calliphoridae Lucilia sericata Common green bottle fly

Syrphidae Eupeodes lapponicus Lapland syrphid fly

Eupeodes spp. Hoverfly

Syrphus ribesii Hoverfly

Toxomerus gemenatus Eastern calligrapher

Toxomerus spp. Hoverfly

Hemiptera Membracidae Stictocephala spp. Treehopper

Hymenoptera Apidae Apis mellifera Western honey bee

Bombus vosnesenskii Yellow-faced bumblebee

Bombus mixtus Fuzzy-horned bumblebee

Bombus nevadensis Nevada bumblebee

Bombus spp. Bumblebee

Formicidae Formica obscuripes Western thatching ant

Halictidae Agapostemon viriscens Bicolored striped-sweat bee

Augochlora pura Sweat bee

Megachilidae Osmia spp. Mason bee

Sphecidae Ammophila procera Common thread-waisted wasp

Bembix spp. Sand wasp

Vespidae Polistes spp. Paper wasp

Lepidoptera Arctiinae Pyrrharctia isabella Isabella tiger moth

Tyria jacobaeae Cinnabar moth

Erebidae Spilosoma vagans Wandering tiger moth

Hesperiidae Ochlodes sylvanoides Woodland skipper

Lasiocampidae Malacosoma disstria Forest tent caterpillar moth

Lycaenidae Callophrys augustinus Brown elfin

Noctuidae Leucania farcta Meadow wainscot moth

Papaipema sauzalitae Figwort stem borer

Notodontidae Nadata oregonensis Prominent moth

Papilionidae Papilio rutulus Western tiger swallowtail

Papilio multicaudatus Two-tailed swallowtail

Psychidae Hyaloscotes fumosa Moth

Sesiidae Synanthedon bibionipennis Strawberry crown moth
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