" BioOne COMPLETE

Next-Generation Sampling: Pairing Genomics with
Herbarium Specimens Provides Species-Level Signal in
Solidago (Asteraceae)

Authors: Beck, James B., and Semple, John C.

Source: Applications in Plant Sciences, 3(6)

Published By: Botanical Society of America

URL.: https://doi.org/10.3732/apps.1500014

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://bioone.org/journals/Applications-in-Plant-Sciences on 10 May 2024
Terms of Use: https://bioone.org/terms-of-use



Applications in Plant Sciences 2015 3(6): 1500014

Applications

in Planf Sciences
APPLICATION ARTICLE

NEXT-GENERATION SAMPLING: PAIRING GENOMICS WITH
HERBARIUM SPECIMENS PROVIDES SPECIES-LEVEL SIGNAL IN
SoLIDAGO (ASTERACEAE)!

JaMEs B. BEck?3-, AND JoHN C. SEMPLE*

“Department of Biological Sciences, Wichita State University, 537 Hubbard Hall, Wichita, Kansas 67260 USA; *Botanical
Research Institute of Texas, 1700 University Drive, Fort Worth, Texas 76107 USA; and “Department of Biology, University of
Waterloo, Waterloo, Ontario NL2 3G1 Canada

e Premise of the study: The ability to conduct species delimitation and phylogeny reconstruction with genomic data sets obtained
exclusively from herbarium specimens would rapidly enhance our knowledge of large, taxonomically contentious plant genera. In
this study, the utility of genotyping by sequencing is assessed in the notoriously difficult genus Solidago (Asteraceae) by attempt-
ing to obtain an informative single-nucleotide polymorphism data set from a set of specimens collected between 1970 and 2010.

e Methods: Reduced representation libraries were prepared and Illumina-sequenced from 95 Solidago herbarium specimen
DNAs, and resulting reads were processed with the nonreference Universal Network-Enabled Analysis Kit (UNEAK) pipeline.
Multidimensional clustering was used to assess the correspondence between genetic groups and morphologically defined
species.

* Results: Library construction and sequencing were successful in 93 of 95 samples. The UNEAK pipeline identified 8470
single-nucleotide polymorphisms, and a filtered data set was analyzed for each of three Solidago subsections. Although results
varied, clustering identified genomic groups that often corresponded to currently recognized species or groups of closely re-
lated species.

e Discussion: These results suggest that genotyping by sequencing is broadly applicable to DNAs obtained from herbarium
specimens. The data obtained and their biological signal suggest that pairing genomics with large-scale herbarium sampling is

a promising strategy in species-rich plant groups.

Key words:

Shallow genetic differentiation and sampling limitations
combine to restrict our understanding of biodiversity and evo-
lution in many species-rich plant groups. Although numerous
strategies for obtaining powerful genomic data sets are emerg-
ing (reviewed in Lemmon and Lemmon, 2013; McCormack
et al., 2013), we remain fundamentally restricted by our access to
samples. Other than the adoption of silica gel as a tissue dessi-
cant (Chase and Hills, 1991), samples needed for plant molecu-
lar systematics studies are obtained essentially as they were at
the beginning of the DNA era (Palmer and Zamir, 1982; Doyle
et al., 1985). Researchers still must field-collect the majority of
material—a rewarding, but expensive and time-consuming task
that often precludes taxonomically rigorous sampling of large
groups (>100 species) during the course of a dissertation or 3-yr
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federally funded project. If we are serious about understanding
biodiversity and evolution in species-rich clades, we therefore
need a transformative approach to obtaining samples.
Extracting DNA from herbarium specimen tissue is an obvi-
ous solution, an idea dating from the earliest days of plant mo-
lecular systematics (Rogers and Bendich, 1985). This type of
sampling is, however, still viewed by most as a way to supple-
ment an otherwise field-collected data set. Although studies
utilizing genomic data sets obtained from herbarium specimens
are emerging, most involve the recovery of high-copy organelle
and/or rDNA cistron regions (Straub et al., 2012; Stull et al.,
2013; Besnard et al., 2014; Ripma et al., 2014), or are focused
on adaptation within a single species (Vandepitte et al., 2014)
or genome assembly of a single individual (Staats et al., 2013).
Indeed, we are unaware of a study that has performed species
delimitation or phylogeny reconstruction using a genome-wide
data set obtained exclusively (or even largely) from herbarium
material. Sampling exclusively from herbarium material would
allow robust taxonomic and geographic sampling to be achieved
rapidly, and if this sampling were performed under the guid-
ance of expert taxonomists it would also ensure the strongest
link between taxonomy and DNA. Sample sets obtained through
this strategy, what we term “next-generation sampling,” could
then be subjected to next-generation genotyping and sequencing
techniques, as these workflows are presumably applicable to the
sheared DNAs obtained from museum specimens (Nachman,
2013; Stull et al., 2013; Burrell et al., 2015). These rich data
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sets would then allow for the biodiversity and phylogeny of
species-rich groups to be rigorously established in a short time.

In this study, we explore the compatibility of this sampling
strategy with a genomic single-nucleotide polymorphism (SNP)
protocol in the goldenrods (Solidago L., Asteraceae), a genus of
ca. 150 currently recognized taxa (Semple and Cook, 2006).
Taxonomic uncertainty in Solidago is widely recognized (Fernald,
1950; Nesom, 1993), a problem stemming from a combination
of low interspecific genetic divergence (Kress et al., 2005;
Fazekas et al., 2008; Schilling et al., 2008; Fazekas et al., 2009;
Peirson et al., 2013), polyploidy (Semple, 1992), and species
richness. In this study, we attempt to obtain genomic SNP in-
formation with a genotyping by sequencing (GBS) approach in
a set of 95 herbarium specimens representing three Solidago
subsections. These approaches identify SNPs at thousands of
points throughout the genome by generating and sequencing a
reduced representation library (Narum et al., 2013). Obtaining
a genomic data set that carries species-level signal in this diffi-
cult genus, using only herbarium material, would be a powerful
demonstration of the link between genomics and the expansive
incorporation of herbarium material.

METHODS

Sampling and DNA extraction/assessment—Polyploidy adds additional
complexity to GBS data collection and analysis, including reduced per-individual
sequencing depth due to increased genome size, the complicating nature of ad-
ditional gene copies for SNP identification, and the relative lack of sophisti-
cated analytical tools for polyploid data sets. We therefore chose to include
diploid samples only in this pilot study. Herbarium tissue was obtained from 95
specimens representing 23 species in three Solidago subsections: Junceae
(Rydb.) G. L. Nesom, Squarrosae A. Gray, and Triplinerviae (Torr. & A. Gray)
G. L. Nesom (Appendix 1). All material was sampled from specimens at the
University of Waterloo Herbarium (WAT), now housed as a unit of the Univer-
sit¢ de Montréal Herbarium (MT). Diploid mitotic chromosome counts were
available for 73 of the 95 specimens (Semple et al., 1981, 1984, 1993; Semple
and Chmielewski, 1987; J. Semple, unpublished data), and all exhibited micro-
satellite profiles indicative of diploidy (i.e., no more than two alleles per locus
[J. Beck, unpublished data]). These specimens represented both a wide age
range (collected between 1970 and 2010) and a diverse array of drying regimes,
from field-based forced air techniques (similar to Blanco et al., 2006) to stan-
dard drying cabinets utilizing light bulbs or heaters. Approximately 15 mg of
tissue were subjected to a cetyltrimethylammonium bromide (CTAB) protocol
modified for 96-well plates (Beck et al., 2012). This high-throughput protocol
has a history of yielding DNA quantity/quality sufficient for sequencing and
genotyping in both herbarium (Beck et al., 2012, 2014; Alexander et al., 2013)
and silica-dried (Rothfels et al., 2013) tissue. Concentration was determined
with a Qubit 2.0 fluorometer (Life Technologies, Carlsbad, California, USA),
and fragment size distribution was visualized by running 100 ng of extract
against a A DNA-HindIII digest (New England Biolabs, Ipswich, Massachusetts,
USA) on a 1% agarose gel.

Library preparation, sequencing, and SNP calling—GBS library prepa-
ration (Elshire et al., 2011), sequencing, and SNP calling were performed at
the Genomic Diversity Facility (GDF) at Cornell University’s Biotechnology
Resource Center. Trial libraries for one DNA were generated with three en-
zymes (ApeKI, EcoT221, Pstl). Visual inspection of Experion (Bio-Rad, Her-
cules, California, USA) traces revealed that all exhibited fragment sizes
generally between 150-300 bp. ApeKI was excluded due to the larger frag-
ment pool, and thus lower read depth per fragment, that would result from this
five-base recognition enzyme. Of the two six-base recognition enzymes,
EcoT221 was then chosen because it exhibited a slightly smaller fragment
pool. Libraries prepared from the 95 samples and one blank negative control
were sequenced in one lane on an Illumina HiSeq 2500 (Illumina, San Diego,
California, USA). Given that a reference genome was not available, the Uni-
versal Network-Enabled Analysis Kit (UNEAK) nonreference pipeline (Lu
et al., 2013) implemented in TASSEL version 3.0.160 (Glaubitz et al., 2014)
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was used for tag alignment and subsequent SNP calling. The barcode/sample
keyfile and all pipeline XML configuration files are archived at the Dryad
Digital Repository (http://dx.doi.org/10.5061/dryad.16pj5; Beck and Semple,
2015).

Data filtering and multivariate clustering—TASSEL 4.3 was used to pro-
duce preliminary SNP data sets by implementing high and low levels of miss-
ing data filtering on the total SNP set identified by UNEAK. This filtering and
all further analyses excluded four samples (noted in Appendix 1). Two subsec-
tion Triplinerviae individuals were placed in other subsections in preliminary
analyses, which along with other unpublished results strongly suggests that
these are mislabeled DNA samples. Also excluded were two subsection Squar-
rosae individuals exhibiting low sequence read levels (see below). High filter-
ing recovered SNPs present in 70% of samples, whereas low filtering recovered
SNPs present in 30% of samples. Both filtering levels enforced a >1% minor
allele frequency. These preliminary data sets were subjected to the multidimen-
sional clustering approach employed in the principal coordinates analysis with
modal clustering (PCO-MC) workflow (Reeves and Richards, 2009). This ap-
proach identifies the most cohesive groups in a data set by simultaneously con-
sidering information on all informative axes of a principal coordinates analysis.
These groups are ranked by a “stability value,” which ranges from 0-100 and
quantifies the relative density of the group in multidimensional space (Reeves
and Richards, 2009). Many clustering approaches are available for the analysis
of SNP data (Lawson and Falush, 2012), and we employed PCO-MC based on
its computational efficiency and ability to objectively identify and rank clusters.
Unlike popular methods such as STRUCTURE (Pritchard et al., 2000) and
STRUCTURAMA (Huelsenbeck et al., 2011), PCO-MC does not incorporate a
model of within-group Hardy—Weinberg equilibrium, an assumption that is un-
realistic for sets of individuals sampled at different times across the range of a
species. Instead, PCO-MC identifies groups of individuals with similar geno-
types, as genotypic similarity is but one of many secondary criteria that can be
used to identify lineages (Mallet, 1995; Hausdorf and Hennig, 2010) under the
general lineage concept (de Queiroz, 2007). The correspondence between clusters
identified by PCO-MC and morphologically defined species (morphospecies) at
both filtering levels was assessed. Cluster/morphospecies correspondence at
high and low filtering levels was qualitatively similar in subsection Triplinerviae
and generally lower at high filtering in subsections Squarrosae and Junceae.
Low-filtered data sets were therefore chosen for subsequent PCO-MC clustering.

RESULTS

Sequencing success and SNP recovery—Extracted DNA
concentrations ranged from 15-155 ng/uL. (mean: 46.2 +23.6),
and total DNA yield ranged from 1050-10,850 ng (mean:
3185.9 £ 1665.9) (Appendix 1). Only five samples exhibited
DNA yields below the 1.5-ig minimum recommended by the
GDF. Gel electrophoresis indicated that all extracts were at
least partially sheared, exhibiting fragment sizes between >23 kb
and <500 bp (Appendix S1). Each extract was given a qualita-
tive score of DNA degradation (1 = mainly large fragments
[>23 kb]; 2 = relatively even distribution of large to small frag-
ments; 3 = mainly small fragments [<2 kb]) (Appendix 1, Ap-
pendix S1). These degradation scores were strongly related to
specimen age, as all 21 group 1 DNAs (least degraded) were
collected since 1992 (Appendix 1). Reduced representation li-
brary construction and Illumina sequencing yielded 230,232,173
(100 bp) reads. Of these, 197,917,774 were considered quality
reads, exhibiting no N’s in the first 72 bases and including both
a full barcode and the expected remnant of the restriction cut
site (Elshire et al., 2011). These quality reads were then col-
lapsed into 18,947,823 identical sequence tags. The blank sam-
ple returned 7604 quality reads, which was 0.003% of the total
quality reads and 0.04% of the mean quality reads (2,076,237)
per nonblank sample. Two samples were designated as failures
by the GDF based on a quality read number <10% of this mean.
Overall, quality read number per sample was significantly
lower in older specimens (r> = 0.27, P = 6.8 x 107%; Fig. 1A).
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Fig. 1.

Effect of Solidago specimen age on data quantity/quality. (A) Relationship between specimen age and the number of quality reads obtained for

the 95 analyzed samples (r> = 0.27, P = 6.8 x 107%). (B) Relationship between specimen age and the percentage of the 8470 unfiltered SNPs missing for the 95

analyzed samples (r>=0.22, P =9.2 X 1077).

While still significant, the relationship between age and read
number was less pronounced in specimens >10 yr old (r* =
0.080, P = 0.011). There were significant differences between
the three DNA degradation categories [one-way ANOVA:
F(2,92) = 18.44, P < 0.0001], with category 1 exhibiting more
quality reads than categories 2 and 3 (Tukey honestly signifi-
cant difference [HSD] test). The UNEAK pipeline identified
8470 unfiltered SNPs that were present in at least 10 of the 96
samples (blank included). Missingness, or the percentage of
these SNPs exhibiting missing data in a given sample, was sig-
nificantly higher in older specimens (> = 0.22, P =9.2 x 1077)
(Fig. 1B). There were again significant differences between the
three DNA degradation categories [F(2,92) = 20.44, P < 0.0001],
with category 1 DNAs exhibiting reduced missingness relative
to category 2, which in turn exhibited reduced missingness rela-
tive to category 3 (Tukey HSD). Filtering to recover SNPs pres-
ent in at least 70% of samples resulted in individual data sets of
547 (subsect. Junceae), 185 (subsect. Squarrosae), and 359
(subsect. Triplinerviae) SNPs. Filtering to recover SNPs pres-
ent in at least 30% of samples resulted in individual data sets of
1633 (subsect. Junceae), 1447 (subsect. Squarrosae), and 2168
(subsect. Triplinerviae) SNPs. Original read data (FASTQ)
have been deposited in the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (http://www.ncbi
.nlm.nih.gov/sra) under BioProject ID PRINA284163, and fil-
tered subsection-specific HapMap matrices are archived at the
Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.16pj5;
Beck and Semple, 2015).

Multivariate clustering—Correspondence between genetic
groups identified by PCO-MC multidimensional clustering
and morphospecies was strong in subsection Junceae (Fig.
2A). The five most highly ranked, and thus most cohesive in
multivariate space, genetic clusters corresponded either to
single morphospecies or groups of morphospecies. This result
is particularly striking for the widespread species S. missou-
riensis Nutt. and S. juncea Aiton. In each case, samples from
disparate portions of the morphospecies’ range (S. missouriensis
range shown in Fig. 2D) were identified as belonging to a
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significant genetic cluster. Also notable is the single incidence
of a genetic cluster not corresponding to an entire morphospe-
cies or group of morphospecies. PCO-MC identified a highly
ranked cluster comprising all three TN specimens of the rare,
strongly disjunct S. gattingeri Chapm. ex A. Gray, while the
two samples from MO were not placed in this or any other
cluster. This suggests that S. gattingeri comprises two morpho-
logically cryptic species separated by the Mississippi Embay-
ment (Fig. 2D), a hypothesis that is supported by multivariate
morphological analyses (J. Semple, unpublished data). Corre-
spondence between genetic clusters and morphospecies was
also strong in subsection Triplinerviae (Fig. 2B). The six most
cohesive clusters corresponded to single morphospecies (S. gi-
gantea Aiton, S. tortifolia Elliott, and S. elongata Nutt.) or
groups of morphospecies. While the four TX specimens of
S. juliae G. L. Nesom composed a single cluster, the two AZ
S. juliae specimens were not placed in this group. This again
suggests the presence of two geographically disjunct species
(Fig. 2D). The remaining samples, representing S. altissima L.,
S. canadensis L., S. lepida DC., and S. brendiae Semple, com-
posed a single cluster. These species can at times be difficult to
distinguish (Semple et al., 2013, 2015), and their lack of ge-
netic distinctiveness is not unexpected. Although correspon-
dence was not as strong in subsection Squarrosae, multiple
highly ranked clusters corresponded to single morphospecies
or putatively closely related morphospecies pairs (Fig. 2C).
The most highly ranked cluster comprised all individuals of
S. pallida (Porter) Rydb. and S. rigidiuscula (Torr. & A. Gray)
Porter, two morphologically similar species that were until re-
cently both part of the S. speciosa s.1. complex (Semple et al.,
2012). All individuals of S. erecta Banks ex Pursh, another
taxon historically placed in the S. speciosa complex, formed
the next most highly ranked cluster with those of S. speciosa
Nutt. itself. The third-ranked cluster comprised S. puberula
Nutt. and two of three S. pulverulenta Nutt. individuals, two
species that until recently were considered northern and south-
ern subspecies of S. puberula s.1. (Semple and Cook, 2006;
Fig. 2D). Finally, all three individuals of S. squarrosa Muhl.
formed the fifth most highly ranked cluster.
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Fig. 2. Multidimensional clustering (PCO-MC) of GBS data for three Solidago subsections. (A) Graphical representation of the five most highly
ranked, statistically significant clusters recovered for subsection Junceae. The rank of each cluster by stability (see Methods) and this value (in parentheses)
appear at the bottom right of each cluster. Locality information for each specimen refers to the collection locality in Appendix 1. (B) Results for subsection
Triplinerviae. (C) Results for subsection Squarrosae. (D) Range maps for select species (scale bars = 100 km).

DISCUSSION

low sequence divergence among goldenrod species. Schilling
et al. (2008) observed <1% sequence divergence among Soli-

We were able to routinely attain data at >1700 SNPs in a set dago species at the often highly variable internal transcribed
of herbarium specimens representing 23 species obtained by spacer (ITS) region of the nuclear rDNA cistron. Among the

numerous collectors over a 40-yr time span, and these data car- eight groups examined in Kress et al. (2005), Solidago harbored
ried clear biological signal. Of the 20 strongest clusters identified ~ the lowest level of diversity at 10 highly variable plastid loci,
by PCO-MC, seven comprised all individuals of a single spe- exhibiting no substitutions at the putatively universal barcoding
cies, two comprised clear geographic subsets of a single spe- region psbA-trnH. Fazekas et al. (2008, 2009) examined nine

cies, and three comprised all individuals of potentially sister =~ potential barcoding regions in 32 genera and commented that
species. This signal is particularly encouraging given the extremely Solidago was one of the two most “intractable” genera. It
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should also be noted that the inability of these data to recover
clusters corresponding to all morphospecies may simply reflect
biological reality, as it is unlikely that all currently recognized
goldenrod species correspond to genetically cohesive groups
(Semple and Cook, 2006). Taken together, these results indi-
cate that the pairing of GBS with next-generation sampling
holds considerable promise for species delimitation in large
groups.

Recommendations—We were able to consistently recover
DNA of sufficient quantity/quality for library construction with
a standard CTAB extraction protocol modified for 96-well
plates, and the inexpensive and high-throughput nature of this
approach pairs well with the large sample sizes we propose.
Although specimen age did negatively affect both the number
of quality reads and the amount of missing data per sample
(Fig. 1), this effect was less pronounced for specimens >10 yr
old. This suggests that much of this detrimental effect occurs at
the time of collection (drying technique or length of time the
sample was held before drying) or during the early years of
curation, an insight consistent with studies that have explicitly
evaluated the timing of DNA damage (Staats et al., 2011) and
shearing (Adams and Sharma, 2010; Neubig et al., 2014) in her-
barium material. Sampling could perhaps then be focused on
relatively recent specimens if sufficient material is available.
Specimen preparation practices and storage conditions have
also been shown to exert a strong effect on DNA quality
(Ribeiro and Lovato, 2007; Sarkinen et al., 2012; Lander et al.,
2013; Neubig et al., 2014), and sampling from air-dried mate-
rial stored in humidity/temperature-controlled facilities should
be favored. Following DNA extraction, our data suggest that a
qualitative gel-based assessment of DNA degradation can be
a strong predictor of downstream success. Regardless, future
studies will need to evaluate the timing and degree of herbar-
ium DNA degradation in a range of plant groups, as this process
has been shown to proceed at varying rates in different taxa
(Neubig et al., 2014).

Future studies could greatly enhance SNP discovery by be-
ginning with low-coverage sequencing of one target species.
The reference-aided GBS Discovery pipeline is robust to higher
levels of divergence during locus identification and often iden-
tifies more SNPs, particularly in diverse data sets. Even a highly
fragmentary assembly greatly improves SNP discovery, be-
cause short (64 bp) GBS reads can be matched to very small
contigs. Genome size should also be considered. A recently ex-
amined diploid Solidago species exhibited a 1C-value = 1.02 pg
(Kubesova et al., 2010), which is considered a relatively small
angiosperm holoploid genome size (Leitch and Leitch, 2013).
Genome size estimates across the group of interest should be
considered during project design, particularly in the choice of
restriction enzyme (Elshire et al., 2011). If funds permit, addi-
tional sequencing can be performed to reduce missingness in
large-genome taxa (Chen et al., 2013). We also recommend the
inclusion of multiple replicate samples to assess the background
error rate. This is expected to be particularly important at the
low read depths likely to be encountered in studies incorporat-
ing large numbers of specimens with varying DNA quality. Re-
garding analysis, a clear limitation of the cluster analysis of
GBS data are the inability to reconstruct the pattern/timing of
divergence among inferred lineages (Carstens et al., 2013), and
fully leveraging these data for species delimitation and phylog-
eny reconstruction will require analytical tools that allow spe-
cies trees to be inferred with the short read data obtained with
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GBS methods (Cariou et al., 2013; Hipp et al., 2014). These
tools will no doubt soon be available (Leaché et al., 2014), as
will increasingly longer read lengths of reduced representa-
tion libraries. These considerations notwithstanding, we feel
strongly that pairing herbarium collections with GBS and other
increasingly accessible genomic workflows (Straub et al., 2012;
Stull et al., 2013; Weitemier et al., 2014) should be a top prior-
ity in plant systematics. Besides allowing for rapid and eco-
nomical sampling of large groups, next-generation sampling
allows specimen selection to be performed in collaboration
with group experts. Genomic data sets spanning both species’
ranges and intra/interspecific morphological variation can then
be used to rigorously test a wide range of hypotheses, thanks to
the synergy between big data and big sampling.
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