Isolation and Identification of EST-SSR Markers in Chunia bucklandioides (Hamamelidaceae)

Authors: Meng, Kaikai, Li, Mingwan, Fan, Qiang, Tan, Weizheng, Sun, Jian, et al.

Source: Applications in Plant Sciences, 4(10)

Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps. 1600064

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Isolation and identification of EST-SSR markers in Chunia bucklandioides (Hamamelidaceae) ${ }^{1}$

Kaikai Meng ${ }^{2}$, Mingwan Li², Qiang Fan ${ }^{2}$, Weizheng Tan ${ }^{2}$, Jian Sun ${ }^{2}$, Wenbo Liao ${ }^{2}$, and Sufang Chen ${ }^{2,3}$
${ }^{2}$ State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Premise of the study: Chunia bucklandioides (Hamamelidaceae), endemic to Hainan, China, is listed as threatened in the IUCN Red List and is now only found on Mt. Diaoluo and Mt. Jianfeng. Thus, microsatellite markers were developed for future conservation genetic studies of this species.
- Methods and Results: A total of 115 primers were designed on the basis of the transcriptome data of C. bucklandioides. Of them, 59 successfully amplified in C. bucklandioides and polymorphisms were detected in 11; the number of alleles per locus varied from two to five, the observed heterozygosity ranged from 0.000 to 0.941 , and the expected heterozygosity ranged from 0.000 to 0.699. A total of 13 primers amplified in Mytilaria laosensis, and five primers amplified in Exbucklandia tonkinensis and E. populnea
- Conclusions: The markers screened here provide a basis to assess genetic structure and further establish conservation strategies for C. bucklandioides.

Key words: Chunia bucklandioides; Hamamelidaceae; microsatellite markers; transcriptome

Hamamelidaceae, a family of woody plants ranging from tall trees to small shrubs, is an ancient family of approximately 26 genera and 100 species (Endress, 1993). The genera in this family are small: 14 are monotypic, six contain only two to three species, and others are composed of five to 14 species. Furthermore, most species in this family are narrow endemics or are very restricted in their distribution mostly due to past climatic changes (Endress, 1993). Fourteen species of Hamamelidaceae are currently listed as threatened in the IUCN Red List of Threatened Species (IUCN, 2015). To date, only sporadic studies have emphasized the genetic study and conservation of these species (Yu et al., 2014; Hatmaker et al., 2015).

Chunia bucklandioides H. T. Chang (Hamamelidaceae), the only species in Chunia H. T. Chang, was listed as threatened in the IUCN Red List in 1997. It is a tall tree endemic to Hainan, China, and the wood can be applied in agricultural implements, furniture, and construction. However, it is now found only on Mt. Diaoluo and Mt. Jianfeng (IUCN, 2015). Here, we developed and characterized 11 polymorphic expressed sequence tagsimple sequence repeat (EST-SSR) markers and tested their cross-transferability in three related species-Mytilaria laosensis Lecomte, Exbucklandia tonkinensis (Lecomte) H. T. Chang, and

[^0]doi:10.3732/apps. 1600064
E. populnea (R. Br. ex Griff.) R. W. Brown-on the basis of the phylogenetic tree of Hamamelidaceae (Shi et al., 1999). We expect that these markers will be useful for future conservation genetic studies of the species.

mETHODS AND RESULTS

The total RNAs were extracted from the fresh leaves of one individual of C. bucklandioides (Mt. Diaoluo; Appendix 1) using the optimized cetyltrimethylammonium bromide (CTAB) method (Gambino et al., 2008). A normalized cDNA library was constructed and sequenced using the HiSeq 2000 system (Illumina, San Diego, California, USA). A total of 55.34 million 100-bp pairedend reads were produced and de novo assembled into 88,011 contigs (N50: 1056 bp) using Trinity (Grabherr et al., 2011). With the MISA tool (Thiel et al., 2003; http://pgrc.ipk-gatersleben.de/misa), 11,100 SSRs were detected in 9456 contigs. Of them, dinucleotide repeat motifs (72.73%) were the most common, followed by tri- (24.69%), tetra- (2.23%), penta- (0.19%), and hexanucleotide (0.16%) repeats. Using Primer3 (Rozen and Skaletsky, 1999), 115 paired primers were designed on the basis of randomly selected contigs containing SSR loci, which were deposited in GenBank (Appendix S1).

A total of 48 individuals of C. bucklandioides representing two populations were used to evaluate the polymorphisms of the target SSR loci, and 28 individuals of M. laosensis, E. tonkinensis, and E. populnea were used to test their transferability (Appendix 1). Total genomic DNA was extracted from silicadried leaves of these individuals using the modified CTAB method (Doyle, 1987). Voucher specimens of these species were deposited at the Herbarium of Sun Yat-sen University, Guangzhou, Guangdong Province, China.

The PCR amplification trials were performed on two individuals from each of the two C. bucklandioides populations according to Fan et al. (2013), with appropriate annealing temperature $\left(52-55^{\circ} \mathrm{C}\right.$; Table 1$)$. For the 59 primer pairs that showed clear peaks with expected allele size, six individuals from each population were selected to tentatively assess their size polymorphism. The products were inspected with the Fragment Analyzer Automated CE System (Advanced Analytical Technologies [AATI], Ames, Iowa, USA) using the Quant-iT PicoGreen dsDNA Reagent Kit (35-500 bp; Invitrogen, Carlsbad, California, USA). The raw data were further processed to obtain allele size and
Table 1. Characteristics of 19 microsatellite loci isolated from Chunia bucklandioides that showed polymorphism in C. bucklandioides or that could be amplified in closely related taxa.

Locus	Primer sequences ($5^{\prime}-3$)	Repeat motif	Expected allele size (bp)	$T_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	GenBank accession no.	Putative function [organism] ${ }^{\text {a }}$
N31	F: Attagtccatancgactagt	(CTA) ${ }_{5}$	161	52	KX254740	-
	R: CCAAGAGAAGACAATGAACC		311	52	KX254743	
N34	F: GCTTCCTCGTCCTTCTCT	$(\mathrm{GAC})_{6}$				PREDICTED: RING-H2 finger protein ATL67-like [Nelumbo nucifera]
N50	R: CGGCATCATTCTAATCATCTC		204	52	KX254759	
	R: CCAATCTCCGATACGACTT	(TTGT) ${ }_{6}$				Conserved hypothetical protein [Ricinus communis]
N54	F: CGGGAGATGATAAAGGATACA	$(\mathrm{AT})_{8}$	237	52	KX254763	Hypothetical protein ZeamMp042 [Zea mays subsp. mays]
	R: GGATCGGAGAAGCATTCG				KX254800	
N91	F: GСТАССТGACCTCTTCTTC	$(\mathrm{CT})_{6}$	361	55		Uncharacterized protein LOC100854009 [Vitis vinifera]
	R: GATTACTCGGACGGTGAC				KX254710	
N1	F: ATCGCCATTCTTGCTCTC	(AG) ${ }_{6}$	300	52		-
	R: GCTCCAATACACGCCATA					
N6	F: GCCTCCGTtAATTGTGTAC	$(\mathrm{AT})_{6}$	317	52	KX254715	Hypothetical protein, partial (mitochondrion) [Nicotiana tabacum]
	R: AGCCTTCGATGTAGTGATG					
N49	F: GGAACAACCACGAAGAAGA	(AAG) ${ }_{7}$	219	52	KX254758	PREDICTED: nucleolar protein 56-like [Vitis vinifera]
N65	R: GTCTACTCTGCCACAACTATA		187		KX254774	Uncharacterized protein LOC100262883 [Vitis vinifera]
	R: ACAGTCTTCTCTTCAATGGA	$(\mathrm{CTT})_{5}$		52		
N89	F: CCGCAACAATATCGTCATT	$(\mathrm{TCA})_{5}$	257	52	KX254798	Uncharacterized protein LOC100262883 [Vitis vinifera]
	R: GGAAGAAGGTGGAGAACAT					
N90	F: ATAGATAGACACTGGTGGATAG	$(\mathrm{GGT})_{5}$	163	52	KX254799	-
	R: AACAGGCTCACATTACATCA					
N97	F: CGTAAGGTGTGCGATTCT	$(\mathrm{AAC})_{5}$	305	52	KX254806	Uncharacterized protein LOC105794361 [Gossypium raimondii]
	R: AGAGTTGCCAACAGAGATG					
N98	F: GCAGCAGTGAGTCAAGTG	$(\mathrm{GAG})_{5}$	242	52	KX254807	Uncharacterized protein LOC105111436 [Populus euphratica]
	R: CCTATCCTCCATCTCATCCA					
N23	R: GTTCGGAGAAGAGGAAAGTA	$(\mathrm{AC})_{6}$	194	55	KX254732	-
N43	F: ATTCAACGGAGTTAGGACAT	(TA) ${ }_{7}$	147	52	KX254752	-
	R: GATTGACGAGAACACATCAT					
N45	F: CCTGATTACAATGAAGTCTTGG	$(\mathrm{GA})_{7}$	189	52	KX254754	Tau class glutathione transferase GSTU43 [Theobroma cacao]
N64	R: AGTAGTTCTGCCTTGAAGTT $\mathrm{F}: ~ \mathrm{TGACGGTGGTAAGAAGGTA}$					
	R: GAACGCAACAGGCATCTA	$(\mathrm{AT})_{9}$	199	52	KX254773	-
N84	F: ССтtGTCTCCTCATTGTCTT	$(\mathrm{AT})_{7}$	270	52	KX254793	PREDICTED: serine/arginine repetitive matrix protein 1 [Gossypium raimondii]
	R: GCTCTGCTGTTGCTTACT					
N114	F: ACCAGACGACCACTACAG	$(\mathrm{AGATG})_{5}$	149	52	KX254823	-
	R: CGAAGCATAAGGAGATTGGA					

[^1]Table 2. Amplification and polymorphism of 19 microsatellite loci in populations of the four species. ${ }^{\text {a }}$

Locus	Chunia bucklandioides							Mytilaria laosensis ($N=16$)				Exbucklandia tonkinensis $(N=9)$ and E. populnea $(N=3)$Allele size (bp)
	Mt. Diaoluo $(N=24)$			Jianfengling ($N=24$)			Allele size (bp)					
	A	$H_{\text {o }}$	$H_{\mathrm{e}}{ }^{\text {b }}$	A	$H_{\text {o }}$	$H_{\mathrm{e}}{ }^{\text {b }}$		A	$H_{\text {o }}$	$H_{\mathrm{e}}{ }^{\text {b }}$	Allele size (bp)	
N31	1	0.000	0.000	1	0.000	0.000	161	1	0.000	0.000	161	161
N34	1	0.000	0.000	1	0.000	0.000	309	1	0.000	0.000	315	315
N50	2	0.435	0.340	3	0.000	0.169***	187-204	1	0.000	0.000	195	195
N54	1	0.000	0.000	1	0.000	0.000	234	1	0.000	0.000	238	218
N91	1	0.000	0.000	1	0.000	0.000	359	1	0.000	0.000	364	364
N1	1	0.000	0.000	1	0.000	0.000	300	1	0.000	0.000	296	-
N6	1	0.000	0.000	1	0.000	0.000	317	1	0.000	0.000	317	-
N49	1	0.000	0.000	2	0.083	0.080	211-226	3	0.200	0.380*	284-311	-
N65	1	0.000	0.000	5	0.091	0.504***	167-187	3	0.375	0.537	155-173	-
N89	2	0.773	0.474	2	0.941	0.524	257-266	1	0.000	0.000	257	-
N90	2	0.217	0.258**	2	0.174	0.159	145-164	2	0.125	0.375*	161-164	-
N97	1	0.000	0.000	1	0.000	0.000	305	1	0.000	0.000	308	-
N98	1	0.000	0.000	1	0.000	0.000	242	1	0.000	0.000	203	-
N23	4	0.565	0.699	4	0.304	0.521*	187-199	-	-	-	-	-
N43	2	0.500	0.486**	2	0.200	0.420	133-147	-	-	-	-	-
N45	2	0.000	0.423***	2	0.217	0.496**	181-189	-	-	-	-	-
N64	2	0.130	0.122	3	0.095	0.459***	184-199	-	-	-	-	-
N84	2	0.227	0.416**	2	0.059	0.327***	266-272	-	-	-	-	-
N114	2	0.087	0.083	1	0.000	0.000	140-150	-	-	-	-	-

Note: - = no amplification; $A=$ number of alleles; $H_{\mathrm{e}}=$ expected heterozygosity; $H_{\mathrm{o}}=$ observed heterozygosity; $N=$ sampled individuals from each population.
${ }^{\text {a Population and locality information are provided in Appendix } 1 .}$
${ }^{\mathrm{b}}$ Significant deviations from Hardy-Weinberg equilibrium after sequential Bonferroni corrections: *** represents significance at the 0.1% nominal level; ** represents significance at the 1% nominal level; * represents significance at the 5% nominal level.
number using PROSize version 2.0 software (AATI). The results showed that 11 loci were polymorphic in C. bucklandioides, and 48 loci were monomorphic. Further PCR amplification was performed on 48 individuals of C. bucklandioides with these 11 polymorphic primer pairs. The statistical parameters, including the number of alleles per locus (A), observed heterozygosity $\left(H_{0}\right)$, and expected heterozygosity $\left(H_{\mathrm{e}}\right)$, were calculated with GenAlEx version 6.5 (Peakall and Smouse, 2012). GENEPOP 4.3 was used to measure the departure from HardyWeinberg equilibrium (HWE) (Rousset, 2008). The results showed that A varied from two to five, and H_{o} and H_{e} ranged from 0.000 to 0.941 and from 0.000 to 0.699 , respectively. Four and six loci showed significant deviation from HWE in the Mt. Diaoluo and Mt. Jianfeng populations, respectively (see Table 2).

Finally, the cross-amplification of the 59 primers that successfully amplified in C. bucklandioides was also tested in M. laosensis, E. tonkinensis, and E. populnea. Of them, 13 amplified in M. laosensis, and five amplified in E. tonkinensis and E. populnea (Table 2).

CONCLUSIONS

Here, we isolated and characterized a set of 11 polymorphic EST-SSR markers, which may be useful for future conservation genetic studies of C. bucklandioides. The cross-genus amplification and polymorphism were also tested in three related species.

LITERATURE CITED

Doyle, J. J. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin 19: 11-15.
Endress, P. K. 1993. Hamamelidaceae. In K. Kubitzki [ed.], The families and genera of vascular plants, Vol. 2, 322-331. Springer, Berlin, Germany.
Fan, Q., S. F. Chen, M. L. Li, S. Y. He, R. C. Zhou, and W. B. Liao. 2013. Development and characterization of microsatellite markers from the transcriptome of Firmiana danxiaensis (Malvaceae s.l.). Applications in Plant Sciences 1: 1300047.
Gambino, G., I. Perrone, and I. Gribaudo. 2008. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis 19: 520-525.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644-652.
Hatmaker, E. A., P. A. Wadl, K. Mantooth, B. E. Scheffler, B. H. Ownley, and R. N. Trigiano. 2015. Development of microsatellites from Fothergilla ×intermedia (Hamamelidaceae) and cross transfer to four other genera within Hamamelidaceae. Applications in Plant Sciences 3: 1400123.
IUCN (International Union for Conservation of Nature and Natural Resources). 2015. IUCN Red List of Threatened Species. International Union for Conservation of Nature and Natural Resources, Cambridge, United Kingdom. Website http://www.iucnredlist.org [accessed 12 September 2016].
Peakall, R., and P. E. Smouse. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-An update. Bioinformatics (Oxford, England) 28: 2537-2539.
Rousset, F. 2008. GENEPOP'007: A complete reimplementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103-106.
Rozen, S., and H. Skaletsky. 1999. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365-386. Humana Press, Totowa, New Jersey, USA.
Shi, S. H., Y. L. Huang, Q. Zhang, L. H. Qu, and H. D. Zhang. 1999. The phylogenetic relationships between Mytilarioideae and the other subfamilies of Hamamelidaceae inferred from the ITS sequences of nuclear ribosomal DNA. Acta Scientiarum Naturalium Universitatis Sunyatseni 38: 34-38.
Thiel, T., W. Michalek, R. K. Varshney, and A. Graner. 2003. Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 10: 411-422.
Yu, Y., Q. Fan, R. J. Shen, W. Guo, J. H. Jian, D. F. Cui, and W. B. Liao. 2014. Genetic variability and population structure of Disanthus cercidifolius subsp. longipes (Hamamelidaceae) based on AFLP analysis. PLoS ONE 9: e107769.

Appendix 1. Voucher specimen information for populations used in this study. Specimens are deposited at the Herbarium of Sun Yat-sen University, Guangzhou, Guangdong Province, China.

Species	Voucher no.	Collection locality ${ }^{\text {a }}$	Geographic coordinates	N
Chunia bucklandioides H. T. Chang	Fan and Li 13194	Jianfengling, Hainan	$18^{\circ} 44^{\prime} 58.90^{\prime \prime} \mathrm{N}, 108^{\circ} 55^{\prime} 07.20^{\prime \prime} \mathrm{E}$	24
	Fan and Li 13040	Mt. Diaoluo, Hainan	$18^{\circ} 41^{\prime} 40.22^{\prime \prime} \mathrm{N}, 109^{\circ} 50^{\prime} 39.28^{\prime \prime} \mathrm{E}$	24
Mytilaria laosensis Lecomte	Fan, Li and Liu 13481	Heishiding, Guangdong	$23^{\circ} 27^{\prime} 13.81^{\prime \prime} \mathrm{N}, 111^{\circ} 52^{\prime} 19.63^{\prime \prime} \mathrm{E}$	4
	Fan, Li and Liu 13497	Tongledashan, Guangxi	$23^{\circ} 12^{\prime} 28.00^{\prime \prime} \mathrm{N}, 111^{\circ} 24^{\prime} 13.00^{\prime \prime} \mathrm{E}$	4
	Fan, Li and Liu 13502	Xinyi, Guangdong	$22^{\circ} 24^{\prime} 12.62^{\prime \prime} \mathrm{N}, 111^{\circ} 30^{\prime} 38.26^{\prime \prime} \mathrm{E}$	4
	Fan, Li and Liu 13528	Yangchun, Guangdong	$21^{\circ} 54^{\prime} 23.95^{\prime \prime} \mathrm{N}, 111^{\circ} 30^{\prime} 32.71^{\prime \prime} \mathrm{E}$	4
Exbucklandia tonkinensis (Lecomte) H. T. Chang	Liu Lxp-09-6584	Taoyuandong, Hunan	$26^{\circ} 34^{\prime} 06.32^{\prime \prime} \mathrm{N}, 114^{\circ} 04^{\prime} 46.71^{\prime \prime} \mathrm{E}$	3
	Fan, Li and Liu 13484	Heishiding, Guangdong	$23^{\circ} 25^{\prime} 52.00^{\prime \prime} \mathrm{N}, 111^{\circ} 52^{\prime} 43.89^{\prime \prime} \mathrm{E}$	3
	Fan, Li and Liu 13540	Yangchun, Guangdong	$21^{\circ} 51^{\prime} 31.73^{\prime \prime} \mathrm{N}, 111^{\circ} 25^{\prime} 18.75^{\prime \prime} \mathrm{E}$	3
Exbucklandia populnea (R. Br. ex Griff.) R. W. Brown	Fan 13585	Malipo, Yunnan	$23^{\circ} 11^{\prime} 20.52^{\prime \prime} \mathrm{N}, 104^{\circ} 49^{\prime} 17.23^{\prime \prime} \mathrm{E}$	3

[^2]
[^0]: ${ }^{1}$ Manuscript received 23 May 2016; revision accepted 26 July 2016.
 This work was supported by the National Natural Science Foundation of China (31570195 and 31400192), the Special Program for Science and Technology Basic Research of the Ministry of Science and Technology of China (2013FY111500), the Science and Technology Planning Project of Guangdong Province, China (2015A030302020), and Chang Hungta Science Foundation of Sun Yat-sen University.
 ${ }^{3}$ Author for correspondence: chsuf@ mail.sysu.edu.cn

[^1]: Note: $T_{\mathrm{a}}=$ annealing temperature.
 ${ }^{\mathrm{a}} \mathrm{E}$-value $<10^{-6}$.

[^2]: Note: $N=$ number of individuals sampled.
 ${ }^{a}$ City and province in China.

