

Molecular Phylogeny of Owls (Strigiformes) Inferred from DNA Sequences of the Mitochondrial Cytochrome b and the Nuclear RAG-1 gene

Authors: Wink, Michael, El-Sayed, Abdel-Aziz, Sauer-Gürth, Hedi, and

Gonzalez, Javier

Source: Ardea, 97(4): 581-591

Published By: Netherlands Ornithologists' Union

URL: https://doi.org/10.5253/078.097.0425

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Molecular phylogeny of owls (Strigiformes) inferred from DNA sequences of the mitochondrial cytochrome *b* and the nuclear *RAG-1* gene

Michael Wink^{1,*}, Abdel-Aziz El-Sayed¹, Hedi Sauer-Gürth¹ & Javier Gonzalez¹

Wink M., El-Sayed A.-A., Sauer-Gürth H. & Gonzalez J. 2009. Molecular phylogeny of owls (Strigiformes) inferred from DNA sequences of the mitochondrial cytochrome *b* and the nuclear *RAG-1* gene. In: Johnson D.H., Van Nieuwenhuyse D. & Duncan J.R. (eds) Proc. Fourth World Owl Conf. Oct–Nov 2007, Groningen, The Netherlands. Ardea 97(4): 581–591.

For 97 owl taxa from 15 of the larger genera (some monotypic taxa are not represented) a molecular phylogeny was inferred from a combined dataset of nucleotide sequences of mitochondrial cytochrome b and nuclear RAG-1 genes. The molecular phylogeny can be used to create a taxonomic framework, which agrees with cladistics. Strigiformes are divided into two families: Tytonidae and Strigidae. The Tytonidae are subdivided into the subfamilies Tytoninae (with Tyto) and Phodilinae (with Phodilus). The Strigidae cluster in three subfamilies: Striginae, Surniinae and Ninoxinae (with the genera Ninox, and possibly the monotypic Uroglaux and Sceloglaux). The Surniinae are subdivided in three tribes Surnini (with Surnia, Glaucidium and Taenioglaux), Athenini (with Athene) and Aegolini (with Aegolius). The Striginae are subdivided into six tribes: Bubonini (with Bubo including the former Nyctea, Ketupa and Scotopelia), Strigini (with Strix and Jubula), Pulsatrigini (with Pulsatrix and Lophostrix), Megascopini (with Megascops and Psiloscops), Otini (with Otus and Mimizuku) and Asionini (with Asio, Ptilopsis and possibly the monotypic Nesasio and Pseudoscops).

Key words: Strigiformes, Strigidae, Tytonidae, cytochrome b, RAG-1, phylogeny, cladistics

¹Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; *corresponding author (wink@uni-hd.de)

INTRODUCTION

The avian order Strigiformes represents a fascinating group of nocturnal raptor with a complex biology (Bock & McEvey 1969, Eck & Busse 1973, Mikkola 1983, Amadon & Bull 1988, Burton 1992, del Hoyo *et al.* 1999, König *et al.* 1999, König & Weick 2008). In order to occupy the ecological niche of a nocturnal raptor, owls had to evolve several adaptations. Besides specialized hunting strategies, owls developed a sophisticated acoustical communication system. Morphology is often cryptic and invariant in many owl species but the distinctive calls, which are inherited and not learned, are of considerable taxonomic value (Hekstra 1982, König 1991a,b, 1994a,b). If phylogenetic relationships were reconstructed on the basis of the morphological charac-

teristics alone, wrong conclusions might be drawn since some of these characteristics may be convergent traits that are not related to the underlying phylogeny.

The Strigiformes are subdivided into two families (Sibley & Monroe 1990, del Hoyo *et al.* 1999, Weick 2006): Tytonidae and Strigidae. Whereas the Tytonidae consist of two subfamilies and two genera (and no further substructure), the Strigidae have a much more complex structure being split in three subfamilies which are further subdivided in six tribes:

- subfamily Striginae with tribes Otini, Bubonini and Strigini,
- subfamily Asioninae,
- subfamily Surniinae with tribes Surnini, Aegolini and Ninoxini.

We have chosen the mitochondrial (mt) cytochrome *b* gene to study the finer details of speciation and phylogeny of owls (Wink & Heidrich 1999, 2000, Wink *et al.* 2004, 2008). We have enlarged our cytochrome *b* data base and have additionally sequenced the nuclear (nc) *RAG-1* gene for all groups that were critical in order to get better support for the deeper branches. Basically, the ncDNA data support the results obtained from mtDNA (Wink & Heidrich 1999, Wink *et al.* 2004, 2008). Our present dataset has a good coverage for most genera. The missing genera belong to monotypic ones, so that a general picture on the phylogeny of owls becomes possible with this analysis.

METHODS

The cytochrome b and RAG-1 genes were amplified by PCR (primer sequences in Groth & Barrowclough 1999, Wink 2000). First, sequences were obtained by using AlfExpress (Amersham Pharmacia Biotech) or ABI 3100 (Applied Biosystems). Since 2003, sequences were determined using the DYEnamic ET Terminator Cycle Sequencing Kit (Amersham Pharmacia Biotech). SephadexTM G-50 columns (Amersham Biosciences) and MultiScreen filter plates (Millipore Corporation) were used for sequencing purification products. Sequences were analyzed by capillary electrophoresis using a MegaBACETM 1000 sequencer (Molecular Dynamics Inc., Amersham Pharmacia). Sequences of 900–1000 base pairs (bp) for cytochrome b and 953 bp for RAG-1 have been deposited in GenBank (Appendix 1).

The sequences were aligned by BioEdit version 7.0.5 (Hall 2004). Basic statistics, variable and parsimony informative sites, and p-distances were calculated with MEGA version 4.0 (Tamura et al. 2007). Molecular phylogenies were constructed using maximum likelihood (ML) in PAUP* v. 4.0b10a (Swofford 2002) and Bayesian inference (BI) in MPI-MrBayes version 3.1.2. (Ronquist & Huelsenbeck 2003, Altekar et al. 2004). Phylogenetic analyses were performed for both genes separately and concatenated (cytb + RAG-1) as well. We explored the model of sequence evolution that fits the data best with Modeltest version 3.7 (Posada & Crandall 1998). The best model was then used with the ML analyses. Robustness of nodes was assessed by 1000 bootstrap replicates using the program GARLI version 0.951 (Zwickl 2006). For BI analyses, two independent runs of 8 000 000 generations each were performed along with four Markov chains. The evolutionary model selected for BI analysis was the GTR + Γ + I. Trees were sampled every 500 generations and the first 4000 samples were discarded as 'burn-in'. Two partitions (*cytb* and *RAG-1*) were considered in BI analysis in the combined dataset.

For most species we have determined the cytochrome b at least from two individuals, so that the sequences used in this analysis are unequivocal and reliable (Heidrich 1998, Wink & Heidrich 1999, Wink et al. 2008). When a significant haplotype differentiation was absent the molecular analysis were conducted with a single sequence (cytb + RAG-1) per taxon.

Three outgroup species were selected to root the owl tree: Mountain Owlet-nightjar *Aegotheles albertisi*, the Greater White-fronted Goose *Anser albifrons* and the chicken *Gallus gallus*. The sequences for these taxa were available from GenBank.

RESULTS AND DISCUSSION

ML and BI trees were inferred from a combined dataset (cytb + RAG-1) of 97 sequences (Fig. 1), which resolves even the deeper nodes. Most of the clades are supported by high bootstrap and posterior probability values allowing a re-evaluation of the traditional owl systematics in terms of families, subfamilies, tribes and genera.

Relationships within the family Tytonidae

The genetic data support the view of a monophyletic family Tytonidae which consists of two monophyletic subfamilies: Tytoninae and Phodilinae (Fig. 1).

Although several taxa in the *Tyto* complex have been recognized as distinct species already (Sibley & Monroe 1990, König *et al.* 1999, Weick 2006, König & Weick 2008), several others within *T. alba, T. delicatula, T. novaehollandiae, T. longimembris, T. tenebricosa* and *T. furcata* are considered to be subspecies. Some of them, especially some island taxa, may apparently represent distinct and endemic species. According to König & Weick (2008) and Weick (2006) 25 species are recognized.

The Australian region is settled by two different lineages of the genus *Tyto*: (1) *T. novaehollandiae, T. castanops, T. multipuncta, T. longimembris* and *T. tenebricosa* and (2) *T. delicatula* (including the more derived *T. d. sumbaensis* – from Sumba Islands – which probably merits species status).

The Eurasian Barn Owl *Tyto alba* has been divided into several subspecies, of which a number have already been converted into true and distinct species. Whereas the subspecies *T. alba* and *T. guttata* can hardly be distinguished genetically, *T. erlangeri* (from the eastern Mediterranean) and *T. affinis* (from Africa)

form distinct but not highly diverged lineages within the *T. alba* complex. *Tyto soumagnei* from Madagascar is a sister to *T. alba* and *T. furcata*, which together share ancestry with the *T. delicatula* group from Australasia (Wink *et al.* 2008).

Relationships within the subfamily Striginae

Within the Striginae in its traditional circumscription, three tribes are recognised (Weick 2006): Strigini (with Strix, Jubula, Lophostrix and Pulsatrix), Bubonini (with the genera Bubo, Nyctea, Ketupa and Scotopelia) and Otini (with the genera Otus, Megascops, Macabra, Pyrroglaux, Gymnoglaux, Psiloscops, Ptilopsis and Mimizuku).

TRIBE STRIGINI

Presently, 18 species are recognised in the genus *Strix* (Weick 2006). Tawny and Wood Owls (genus *Strix*) always form a monophyletic clade (94% bootstrap support, see Fig. 1) and cluster as a sister group to the *Bubo* complex (tribe Bubonini) with a 73% of bootstrap proportion.

The New World species *S. rufipes* and *S. varia* form a monophyletic clade and cluster as a sister to the Old World species, which diverged from a common ancestor 5–6 Myr ago (Wink & Heidrich 1999). Future studies, which should include several of the numerous New World species, will show whether this assumption holds true for all New World species.

Three species are recognized in the Central and South American genus *Pulsatrix*, of which we have studied *P. perspicillata* and *P. koeniswaldiana*. The phylogenetic position of *Pulsatrix* cannot be resolved with certainty even with the concatenated dataset (*cytb* + *RAG-1*): in ML analyses (Fig. 1) it clusters between *Strix* and *Megascops*, but nodes are not supported by high bootstrap values. It is therefore questionable whether *Pulsatrix* is a true member of the tribe Strigini.

Lophostrix and Jubula are both monotypic genera: Jubula lettii occurs in West and Central Africa while Lophostrix cristata in Central and South America. Only a short DNA sequence of cytb has been submitted to GenBank, which corresponds to L. cristata. A preliminary DNA analysis would place it as a sister to Pulsatrix (Wink et al. 2008). Whether both taxa belong to the tribe Strigini cannot be answered with certainty at present. It is more likely that Lophostrix and Pulsatrix form their own tribe, the Pulsatrigini.

TRIBE BUBONINI

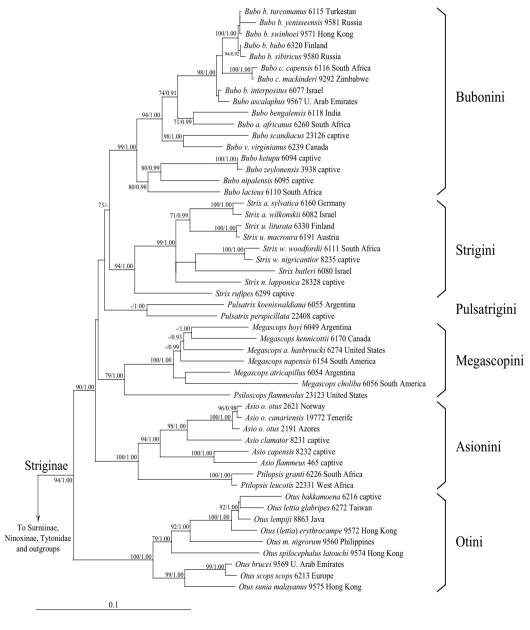
Members of the tribe Bubonini form a monophyletic clade in all the phylogenetic reconstructions (with 99–100% of bootstrap support). About 19 species are

recognised in the genus *Bubo* (Weick 2006). *Bubo* ascalaphus, which occurs in North West Africa and the Near East, has been treated as a distinct species (Sibley & Monroe 1990). In our analysis, *B. bubo* and *B. ascalaphus* differ by an uncorrected *p*-distance of 3.5%. Also *B. b. interpositus*, which is morphologically distinct from *B. bubo* and thrives in the desert from Israel, is also genetically distinct (*p*-distance of 2.8%, Wink & Heidrich 1999); it clusters as a sister to *Bubo* ascalaphus. Since a sequence divergence of more than 2% is indicative of species level, it could be justified to treat both taxa, *Bubo* ascalaphus and *Bubo* interpositus, as distinct species or at least *B. interpositus* as a subspecies of *B. ascalaphus*.

The Snowy Owl (*Bubo scandiacus*, formerly *Nyctea scandiaca*) shares definite common ancestry with the genus *Bubo* (Fig. 1), especially with the New World species *B. virginianus*. The separation from a common ancestor took place more than 4 Myr ago (Wink & Heidrich 1999). *Nyctea* represents a monotypic genus but unambiguously clusters within the *Bubo* complex, which would make the genus *Bubo* paraphyletic. Since paraphyletic taxa should be avoided in systematics, the taxonomic consequences would be to lump *Nyctea* with *Bubo* and call the species *Bubo scandiacus*. This change has been accepted already by most authorities, except Weick (2006).

A similar paraphyly as in *Nyctea* can be seen in Ketupa, of which three species (*K. zeylonensis, K. flavipes* and *K. ketupu*) have been described from Southeast Asia. *Ketupa zeylonensis* and *K. ketupu* cluster as close relatives to the Asian *Bubo* species, such as *B. nipalensis* (Fig. 1). Also the general appearance of *Ketupa* is similar to that of *Bubo*; because of genetic relationships (*p*-distance of 9–10%) we agree with Amadon & Bull (1988) to merge *Ketupa* in *Bubo*. Also this change has been accepted by now by most authorities (König & Weick 2008).

Three species have been described in African Fishing Owls of the genus *Scotopelia*. So far, we could only compare the *cytb* sequence of a single individual from *S. peli* with other members of the tribe Bubonini. According to this analysis (Wink *et al.* 2008), *Scotopelia* unequivocally clusters together with *Bubo vossleri*, *B. nipalensis* and *B. sumatranus* (Wink *et al.* 2008). Such a position would make the genus *Bubo* paraphyletic. In order to overcome the problem, the simplest way would be to merge *Scotopelia* in *Bubo*, as suggested for *Nyctea* and *Ketupa*.


TRIBE OTINI

The combined dataset (cytb + RAG-1) unambiguously

shows that members of the tribe Otini cluster in at least three different monophyletic lineages, indicating that the genus *Otus* and the tribe Otini are paraphyletic or polyphyletic in their former circumscriptions (Wink & Heidrich 1999); a systematic revision of the genus *Otus* and the tribe Otini was a logical consequence.

The Screech Owls of the New World represent a distinct group, which is separated from Old World mem-

bers of *Otus* by genetic distances of 12–16% (equivalent to 6–8 Myr, Wink & Heidrich 1999). Within the Screech Owl complex, which has its radiation centre in South and Central America, several species have been recognized on account of different acoustic repertoires (König 1994a). Sequence data could corroborate these findings (Heidrich *et al.* 1995a), stressing the importance of vocalization for speciation and taxonomy.

Figure 1. ML bootstrap phylogram of the generic relationships in owls based on a combined dataset of *cytb* and *RAG-1* sequences. ML bootstrap values/BI posterior probability values indicated for each node. The tree is separated in two parts in order to make it readable.

The American taxa have been either placed in the genus *Megascops* (with 25 species) or *Psiloscops*. The Flammulated Owl *Otus flammeolus* differs in vocalisation and genetics (Fig. 1) from *Megascops*, therefore a monotypic genus *Psiloscops* (Coues 1899), which clusters as a sister group to *Megascops*, appears to be adequate (Penhallurick 2002, Weick 2006, König & Weick 2008). *Megascops albogularis* has been placed in the subgenus *Macabra* (Weick 2006); however, the phylogenetic data do not support such a monotypic subgenus (Wink *et al.*, 2008).

Several Old World Scops Owls (44 species) have been described (overview in Sibley & Monroe 1990, Weick 2006) of which 10 have been included here as representatives for this group. As can be seen from Fig. 1 these Scops Owls fall into a common clade, which is very distinct from the New World Megascops/Psiloscops complex. Using 12S mt rDNA sequences, Mindell et al. (1997) showed that O. mirus, O. mindorensis and Mimizuku gurneyi cluster together with O. megalotis and O. longicornis. Since we studied also the latter two species, we can conclude that Mimizuku gurneyi is a

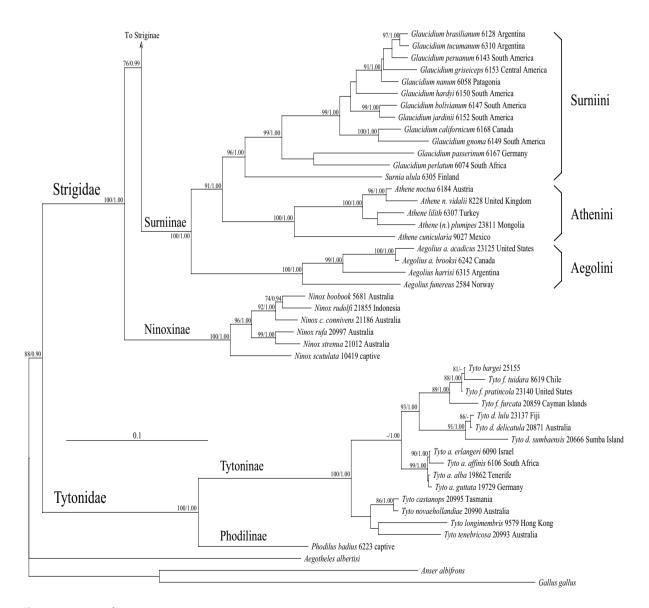


Figure 1. Continued

likely member of the Old World *Otus* group. Since *Mimizuku* clusters within this group it is doubtful whether this monotypic genus is valid.

The African White-faced Owl (formerly *Otus leucotis*) differs both morphologically and genetically from the other Old World *Otus* species (Wink & Heidrich 1999) and has therefore been placed in the genus *Ptilopsis*. In Africa two taxa occur, *P. leucotis* in West, Central and East Africa and *P. granti* in southern Africa. In all reconstructions (Fig. 1) *Ptilopsis* figures as a sister group to the genus *Asio*.

Pyrroglaux and Gymnoglaux represent monotypic genera. Pyrroglaux podarginus has been described from Palau Islands and Gymnoglaux lawrencii from Cuba. DNA analyses are required to see whether both taxa represent monotypic genera and with which other genus they share ancestry.

Concluding, it seems obvious that the different monophyletic clades of the former *Otus* complex should also be revised taxonomically, i.e., by creating the genera *Otus, Megascops, Psiloscops* and *Ptilopsis*, which has been done by several authorities already (Penhallurick 2002, König & Weick 2008). As can be seen from Fig. 1, the former tribe Otini is paraphyletic and interrupted by the Asionini. In order to create a cladistically coherent system, we need to split the former tribe Otini in the tribes Otini, Megascopini and Asionini (taking care of *Ptilopsis*).

Relationships within the subfamily Asioninae

Three genera have been placed in the subfamily Asioninae, *Asio* and the monotypic *Pseudoscops* and *Nesasio*. Within *Asio*, seven species are distinguished (Weick 2006).

Asio otus, A. clamator, A. capensis and A. flammeus always fall into the same clade (Fig. 1); the genetic distances imply a divergence time of more than 5 Myr. Asio always clusters as a sister to Ptilopsis (Fig. 1). The combined dataset provides strong evidence (94% bootstrap support) that Asioninae does not form a distinct subfamily, but clusters within the Striginae (independent of the tree building methods used). Thus, we suggest merging Asioninae with Striginae in order to avoid paraphyletic groups. The rank of a tribe Asionini containing the genera Asio and Ptilopsis would be adequate.

Pseudoscops grammicus occurs in Jamaica, Nesasio solomonensis on the Solomon Archipelago, Bougainville, Choiseul and Santa Isabel. Without DNA evidence it is difficult to say whether they deserve the status of monotypic taxa and which affiliation they have (probably tribe Asionini).

Relationships within the subfamily Surniinae

The subfamily Surniinae in the traditional circumscription (Weick 2006) is formally subdivided in three tribes: Surniini (with the genera Surnia, Glaucidium, Taenioglaux, Xenoglaux, Micrathene and Athene), Aegolini (Aegolius), Ninoxini (Ninox, Uroglaux and Sceloglaux).

TRIBE SURNIINI

Pygmy Owls (32 species) of the former genus *Glaucidium* occur in the Old and New World. Whereas their plumage is very similar in most instances (a fact which makes their taxonomy so difficult), they can be distinguished by a unique repertoire of vocalizations (König 1994b). Recent taxonomical classifications based on differing acoustic signals (König 1994b) have been corroborated with DNA sequence data (Heidrich *et al.* 1995b). Fig. 1 clearly shows that Old and New World species cluster in separate monophyletic clades, which share common ancestry but have diverged more than 7–8 Myr ago (Wink & Heidrich 1999).

In the Pygmy Owls of the Old World two clades are apparent: *G. passerinum, G. tephronotum* and *G. perlatum* cluster as a sister to the New World species. Members of the subgenus *Taenioglaux* Kaup 1848, which differ in morphology from members of the genus *Glaucidium* s.str., are represented in our *cytb* dataset by *G. capense* and *G. cuculoides* (Wink *et al.* 2008). Apparently both species cluster in a more distant, separate clade and form a sister group to *Surnia/Glaucidium* s.str. A split of this subgroup into the genus *Taenioglaux* (see König & Weick 2008) is thus supported by molecular evidence.

The Northern Hawk Owl *Surnia ulula* of northern Eurasia and North America shares common ancestry and forms a monophyletic group (96% bootstrap support) with the *Glaucidium* s. str. complex (Fig. 1).

Three species have been recognized in the genus Athene, i.e. A. noctua (Eurasia), A. brama (southeast Asia) and A. blewitti (India). Within A. noctua several distinct lineages become visible (similar to the situation in the American Glaucidium complex) that indicate a high degree of geographic differentiation. So far we have detected three genetic lineages, which are supported by high bootstrap values; genetic differences (p-distance) between these groups account for 5-6%, exceeding the 2% which is typical for 'good' species in owls. Little Owls from Israel, Cyprus and Turkey have been recognised as A. n. lilith. On a genetic level, A. n. lilith is clearly separated from Little Owls of central and western Europe, representing the subspecies A. n. noctua and A. n. vidalii, but share ancestry with A. n. indigena from southeast Europe (Wink et al. 2008). Because of the significant genetic distances, it would be plausible to recognise *A. lilith* as a distinct species (König *et al.* 2008). Also *A. n. plumipes* from Mongolia and China shows a distinct genetic lineage (Fig. 1), probably indicating species status; we suggest recognising this taxon as *A. plumipes*.

The former *Speotyto cunicularia* represents the genus *Athene* in the New World and this species has sometimes been considered as a member of the genus *Athene*. Because DNA-DNA hybridization suggested significant differences (Sibley & Monroe 1990), a separation into a monotypic genus appeared justified. However, according to the sequence data, it is clear that *Speotyto* and *Athene* share common ancestry (divergence approximately 6 Myr ago) and that they form a monophyletic group. Because of similarities in morphology, general outlook and in behaviour, we suggested to merge *Speotyto* back into *Athene* (Wink & Heidrich 1999). Most authorities have accepted this suggestion (König *et al.* 1999, König & Weick 2008).

The genetic analyses of *A. noctua* and *A. cunicularia* are still incomplete. Because of the phylogeographic variation detected in both taxon complexes, a more detailed study, which would cover the whole distribution range, will certainly reveal a more complex pattern with several distinct species and subspecies.

The Athene complex clusters as a sister to Glaucidium/Taenioglaux/Surnia in all reconstructions, independent of the methods used for tree reconstruction (Fig. 1). This clade corresponds to the tribe Surniini. From a cladistic point of view, such a tribe would agree with basic rules. On the other hand, the subfamily Striginae needs to be subdivided into several smaller tribes, which would make a tribe Surniini rather large. In order to create tribes of more even shape it would also be possible to recognise a distinct tribe Athenini as a sister to Surniini, the latter containing the genera Glaucidium, Taenioglaux and Surnia.

TRIBE AEGOLINI

Owls in the genus *Aegolius* can be found as a third major monophyletic group (Fig. 1) (tribe Aegolini) besides the tribe Surniini with *Glaucidium, Surnia* and *Athene*. The North American *A. acadicus* diverges with 12.9% (*p*-distance) from *A. funereus*, implicating a divergence time of more than 6 Myr (Wink & Heidrich 1999). Two geographically separated subspecies, *A. a. acadicus* and *A. a. brooksi* can be recognized (*p*-distance of 0.7%). The South American *A. harrisii* is more closely related to the North American *A. acadius* than to *A. funereus* (Fig. 1), suggesting a common ancestor for the New World species.

The tribes Aegolini and Surniini share common ancestry with a high bootstrap proportion (100%); this group excludes the tribe Ninoxini (Fig. 1).

TRIBE NINOXINI

The genus *Ninox* comprises 25 species with Australasian distribution. According to the general appearance they could be related to the *Glaucidium/Athene* complex and formally they were recognised as the tribe Ninoxini within the subfamily Surniinae. In our phylogenetic analyses, *Ninox* clusters basal within Strigidae (Fig. 1) indicating that the subfamily Surniinae is paraphyletic. As a consequence, the tribe Ninoxini should be excluded from the Surniinae and possibly form a subfamily of its own, the Ninoxinae (with the genera *Ninox*, *Uroglaux* and *Sceloglaux*).

Recently, a new owl was discovered on Sumba Island, which was assumed to be a member of the genus *Otus*. DNA analysis revealed unequivocally that it is a member of the genus *Ninox*. It was described as *Ninox sumbaiensis* (Olsen *et al.* 2002).

Two monotypic genera have been included in the tribe Surniini, *Xenoglaux loweryi* from northern Peru and *Micrathene whitneyi* from southwestern North America. Preliminary DNA sequence data only exist for *M. whitneyi*, which would place it outside the tribe Surniini (Wink *et al.* 2008) but close to the subfamily Surniinae. *Uroglaux dimorpha* (north-western New Guinea) and *Scelogalux albifacies* (New Zealand) have been included in the tribe Ninoxini, which would make sense in view of distribution and general appearance. DNA samples are needed to see whether their status as monotypic genera and their affiliation can be maintained.

Phylogenetic position of owls as compared to diurnal raptors and nightjars

Linné (1758) placed owls, vultures, eagles and falcons together as an order Accipitres. In 1827 owls were separated from diurnal raptors as a distinct order by L'Herminier; Nitsch (1840) already recognized the differences between Tytonidae and Strigidae. This view was supported by Fürbringer (1888) and Gadow (1892), who also stressed a close relationship between Strigiformes and Caprimulgiformes, a view maintained by Mayr & Amadon (1951). However, Cracraft (1981) using a cladistic approach, concluded a closer relationship between owls and falcons. Sibley & Ahlquist's (1990) study using DNA-DNA hybridisation implied that Caprimulgiformes, rather than falcons, are the nearest neighbour to the owls. However, mtDNA sequences do not support a Strigiformes/Caprimulgiformes clade (Wink and Heidrich 1999).

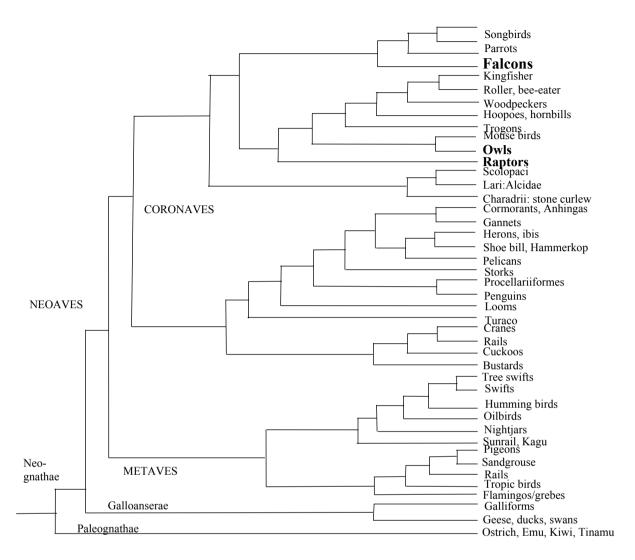


Figure 2. Phylogeny of birds (simplified after Ericson et al. 2006 and Hacket et al. 2008).

Table 1. Summary of a systematic classification of owls rigorously based on monophyletic groups.

Family	Subfamily	Tribe	Genera
Tytonidae	Tytoninae		Tyto
	Phodilinae		Phodilus
Strigidae	Striginae	Bubonini Strigini Pulsatrigini Megascopini Asionini Otini	Bubo (including the former Nyctea, Ketupa and Scotopelia) Strix and Jubula Pulsatrix and Lophostrix Megascops and Psiloscops Asio and Ptilopsis (probably including Nesasio and Pseudoscops) Otus and Mimizuku
	Surniinae	Surnini Athenini Aegolini	Surnia, Glaucidium and Taenioglaux Athene (including former Speotyto) and Micrathene (?) Aegolius
	Ninoxinae		Ninox, Uroglaux and Sceloglaux

Recently, a large dataset of five nuclear genes (Fain & Houde 2004, Ericson *et al.* 2006) has provided good evidence that Caprimulgiformes are part of the Metaves, whereas owls are members of the Coronaves. Within the Coronaves, owls are found in a clade with diurnal raptors except falcons, the latter clustering as a sister to parrots and song birds (Fig. 2).

Morphological and anatomical similarities between owls and nightjars, which were the basis for the hypothesis of a closer relationships to owls, are probably influenced by convergence (as implied already by Bock & McEvey 1969, Mikkola 1983, Feduccia 1996), cannot be supported by gene sequence data.

Conclusions

About 120 taxa of the Strigidae and 23 taxa of Tytonidae have been studied so far in our laboratory (Wink *et al.* 2008) and phylogenetic analyses based on cytochrome *b* and nuclear markers (*RAG-1*) provide insight into the evolution of owls. Phylogenetic analyses suggest a few changes in overall owl systematics to generate monophyletic taxa, as has been discussed in this paper (summarized in Table 1). Sequence data of mt and ncDNA provide a powerful tool (besides morphology, anatomy, behaviour and bioacoustics) to elucidate and reconstruct the evolutionary past and speciation in owls.

ACKNOWLEDGEMENTS

We thank W. Bednarek, G. Ehlers, O. Hatzofe, R. Krahe, D. Reynolds, A. Kemp, C. Fentzloff, W. Grummt, C. König, J. Yom-Tov, D. Ristow, E. Thaler, B. Etheridge, J. Perry-Jones, C. White, J. Olsen, J. Penhallurick, H.-H. Witt, the Owl Trust and U. Schneppat for providing blood or tissues of owls. The study of owl phylogenetics has been performed in close collaboration with C. König (Stuttgart) and J. Penhallurick (Canberra) whom we would like to thank for his help and encouragement. Professor Dr. H. Bock (Managing Director of IWR) and S. Friedel kindly provided access to the parallel computing facilities at the Interdisciplinary Center for Scientific Computing (IWR, Heidelberg University).

REFERENCES

- Altekar G., Dwarkadas S., Huelsenbeck J.P. & Ronquist F. 2004.
 Parallel Metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20: 407–415.
- Amadon D. & Bull J. 1988. Hawks and owls of the world. Proc. W. Found. Vertebr. Zool. 3: 297–357.
- Bock W.J. & McEvey A. 1969. The radius and relationships of owls. Wilson Bull. 81: 55–68.

- Burton J.A. 1992. Owls of the world, their evolution, structure and ecology. Peter Lowe, London.
- Cracraft J. 1981. Towards a phylogenetic classification of recent birds of the world (class Aves). Auk 98: 681–714.
- del Hoyo J., Elliott A. & Sargatal J. (eds) 1999. Handbook of the birds of the world, Vol. 5. Barn-owls to Hummingbirds. Lynx Edicions. Barcelona.
- Eck S. & Busse H. 1973. Eulen. Ziemsem Verlag, Wittenberg-Lutherstadt.
- Ericson P.G.P., Anderson C.L., Britton T., Elzanowski A., Johansson U., Källersjö M., Ohlson J.I., Parsons T.J., Zuccon D. & Mayr G. 2006. Diversification of neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2: 543–547.
- Fain M.G. & Houde P. 2004. Parallel radiations in the primary clades of birds. Evolution 58: 2558–2573.
- Feduccia A. 1996. The origins and evolution of birds. Yale Univ. Press, New Haven.
- Fürbringer M. 1888. Untersuchungen zur Morphologie und Systematik der Vögel. Amsterdam.
- Gadow H. 1892. On the classification of birds. Proc. Zool. Soc. London 1892: 229–256.
- Groth J.G. & Barrowclough G.F. 1999. Basal divergences in birds and the phylogenetic utility of the nuclear *RAG-1* gene. Mol. Phylogenet. Evol. 12: 115–23.
- Hackett S.J., Kimball R.T., Reddy S., Bowie R.C.K., Braun E.L., Braun M.J. et al. 2008. A phylogenomic study od birds reveals their evolutionary history. Science 320: 1763–1768.
- Hall T. 2004 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.
- Heidrich P. 1998. Untersuchungen zur molekularen Phylogenie ausgewählter Vogelgruppen anhand von DNA-Sequenzen des mitochondriellen Cytochrom *b*-Gens. PhD Thesis, Heidelberg University.
- Heidrich P., König C. & Wink M. 1995a. Molecular phylogeny of the South American Screech Owls of the *Otus atricapillus* complex (Aves, Strigidae) inferred from nucleotide sequences of the mitochondrial cytochrome *b* gene. Z. Naturforsch. 50c: 294–302.
- Heidrich P.C., König C. & Wink M. 1995b. Bioakustik, Taxonomie und molekulare Systematik amerikanischer Sperlingskäuze (Strigidae: *Glaucidium* spp.). Stuttgarter Beiträge Naturkunde A 534: 1–47.
- Hekstra G.P. 1982. Description of twenty-four new subspecies of American *Otus* (Aves, Strigidae). Bull. Zool. Mus. Amsterdam 9: 49–63.
- König C. 1991a. Taxonomische und ökologische Untersuchungen an Kreischeulen (*Otus* spp.) des südlichen Südamerika. J. Ornithol. 132: 209–214.
- König C. 1991b. Zur Taxonomie und Ökologie der Sperlingskäuze (Glaucidium spp.) des Andenraumes. Ökol. Vögel 13: 15–76.
- König C. 1994a. Lautäußerungen als interspezifische Isolationsmechanismen bei Eulen der Gattung *Otus* (Aves: Strigidae) aus dem südlichen Südamerika. Beitr. Naturkde. Ser. A.
- König C. 1994b. Biological patterns in owl taxonomy, with emphasis on bioacoustical studies on neotropical pygmy (*Glaucidium*) and screech owls (*Otus*). In: Meyburg B.-U. & Chancellor R.D. (eds) Raptor conservation today. Pica Press, pp. 1–19.

- König C., Weick W. & Becking J. 1999. Owls. A guide to the owls of the World. Pica Press, Sussex.
- König C. & Weick W. 2008. Owls. A guide to the owls of the World. Second edition. Christopher Helm, London.
- Mayr E. & Amadon D. 1951. A classification of recent birds. Americ. Mus. Novit. 1496.
- Mikkola H. 1983. Owls of Europe. T. & A.D. Poyser, Calton.
- Mindell D.P., Sorenson M.D., Huddleston C.J., Miranda J., Knight A., Sawchuk S.J. & Yuri T. 1997. Phylogenetic relationships among and within select avian orders based on mitochondrial DNA. In: Mindell D.P. (ed.) Avian molecular evolution and systematic. Academic Press, San Diego, pp. 213–247.
- Nitsch C.L. 1840. System der Pterylographie. E. Anton, Halle.
- Olsen J., Wink M., Sauer-Gürth H. & Trost S. 2002. A new *Ninox* owl from Sumba, Indonesia. Emu 102: 223–232.
- Penhallurick J.M. 2002. The taxonomy and conservation status of the owls of the world: a review. In: Newton I., Kavanagh R., Olsen J. & Taylor I. (eds) Ecology and conservation of Owls. CSIRO Publishing, Australia, pp. 343–354.
- Posada D. & Crandall K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.
- Proudfoot G.A., Honeycutt R.L. & Slack R.D. 2006. Mitochondrial DNA variation and phylogeography of the Ferruginous Pygmy-Owl (*Glaucidium brasilianum*). Conserv. Genet. 7: 1–12.
- Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
- Sibley C.G. & Ahlquist J.E. 1990. Phylogeny and classification of birds. Yale Univ. Press, New Haven.
- Sibley C.G. & Monroe B.L. 1990. Distribution and taxonomy of birds of the World. Yale University Press, New Haven, London.
- Swofford D.L. 2002. PAUP-Phylogenetic analysis using parsimony. Version 4.0b10.
- Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.
- Weick F. 2006. Owls (Strigiformes). Annotated and illustrated checklist. Springer.
- Wink M. 2000. Advances in DNA studies of diurnal and nocturnal raptors. In: Chancellor R.D. & Meyburg B.-U. (eds) Raptors at risk. WWGBP/Hancock House, London, pp. 831–844.

- Wink M. & Heidrich P. 1999. Molecular evolution and systematics of owls (Strigiformes). In: König C., Weick F. & Becking J.H. (eds) Owls of the world. Pica Press, Kent, pp. 39–57.
- Wink M. & Heidrich P. 2000. Molecular systematics of owls (Strigiformes) based on DNA sequences of the mitochondrial cytochrome b gene. In: Chancellor R.D. & Meyburg B.-U. (eds) Raptors at Risk, 819–828. WWGBP/Hancock House, London.
- Wink M., Heidrich P., Sauer-Gürth H., El-Sayed A.-A. & Gonzalez J.M. 2008. Molecular phylogeny and systematics of owls (Strigiformes). In: König C. & Weick F. (eds) Owls of the world, Second edition. Christopher Helm, London, pp. 42–63.
- Wink M., Sauer-Gürth H. & Fuchs M. 2004. Phylogenetic relationships in owls based on nucleotide sequences of mitochondrial and nuclear marker genes. In: Chancelor R.D. & Meyburg B.-U. (eds) Raptors Worldwide. WWGBP, Berlin, pp. 517–526.
- Zwickl D.J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD dissertation, University of Texas, Austin.

SAMENVATTING

Op grond van moleculair onderzoek is de onderlinge verwantschap van 97 uilensoorten vastgesteld. Dergelijke gegevens zijn tegenwoordig een belangrijke basis voor de naamgeving en ordening van soorten. De orde van de Uilen is opgesplitst in de families Tytonidae en Strigidae. De Tytonidae zijn onderverdeeld in de onderfamilies Tytoninae (met het geslacht Tyto) en Phodilinae (met *Phodilus*). De Strigidae zijn onderverdeeld in de onderfamilies Striginae, Surniinae en Ninoxinae (met het geslacht Ninox, en mogelijk de monotypische Uroglaux and Sceloglaux). De Surniinae zijn onderverdeeld in de takken Surnini (met Surnia, Glaucidium en Taenioglaux), Athenini (met Athene) en Aegolini (met Aegolius). De Striginae zijn onderverdeeld in de takken Bubonini (met Bubo waaronder de vroeger geheten Nyctea, Ketupa en Scotopelia), Strigini (met Strix en Jubula), Pulsatrigini (met Pulsatrix en Lophostrix), Megascopini (met Megascops en Psiloscops), Otini (met Otus en Mimizuku) en Asionini (met Asio, Ptilopsis en mogelijk de monotypische Nesasio en Pseudoscops).

Appendix 1. Origin, collection codes and accession numbers of owl taxa investigated in this study. Taxa are in alphabetical order.

	IPMB Accession numbers ^b				IPMB	Accession numbers ^b	
Taxon	Codea	cytb	RAG-1	Taxon	Code ^a	cytb	RAG-1
Aegolius acadicus acadicus	23125	EU348958	EU348862	Ninox connivens connivens	21186	EU348981	EU348913
Aegolius acadicus brooksi	6242	EU348959	EU348863	Ninox boobook	5681	AJ004007	EU348914
Aegolius funereus	2584	AJ004353	EU348864	Ninox rudolfi	21855	EU348982	EU348915
Aegolius harrisii	6315	AJ003940	EU348865	Ninox rufa	20997	EU348983	EU348916
Asio capensis	8232	EU348960	EU348866	Ninox scutulata	10419	AJ004008	EU348917
Asio clamator	8231	EU348961	EU348867	Ninox strenua	21012	EU348984	EU348918
Asio flammeus	465	EU348962	EU348868	Otus bakkamoena	6216	AJ004020	EU348919
Asio otus otus	2621	EU348963	EU348869	Otus brucei	9569	EU348985	EU348920
Asio otus canariensis	19772	EU348964	EU348870	Otus lettia glabripes	6272	EU348986	EU348921
Athene cunicularia	9027	EU348965	EU348871	Otus lempiji	8863	EU348987	EU348922
Athene noctua	6184	AJ003945	EU348872	Otus lettia erythrocampe	9572	EU348988	EU348923
Athene lilith	6307	AJ003949	EU348873	Otus megalotis nigrorum	9560	AJ004032	EU348924
Athene noctua plumipes	23811	EU348966	EU348874	Otus scops scops	6213	AJ004037	EU348925
Athene noctua vidalii	8228	EU348967	EU348875	Otus spilocephalus latouchi	9574	EU348989	EU348926
Asio otus otus	2191	EU348968	EU348876	Otus sunia malayanus	9575	EU348990	EU348927
Bubo bengalensis	6118	AJ003954	EU348877	Phodilus badius	6223	AJ004042	EU348928
Bubo bubo bubo	6320	AJ003969	EU348878	Ptilopsis granti	6226	EU348991	EU348929
Bubo bubo interpositus	6077	EU348969	EU348879	Ptilopsis leucotis	22331	EU348992	EU348930
Bubo bubo sibiricus	9580	EU348970	EU348880	Pulsatrix koeniswaldiana	6055	EU348993	EU348931
Bubo bubo swinhoei	9571	EU348971	EU348881	Pulsatrix perspicillata	22408	AJ004043	EU348932
Bubo bubo turcomanus	6115	EU348972	EU348882	Strix aluco sylvatica	6160	AJ004043	EU348933
Bubo bubo yenisseensis	9581	EU348973	EU348883	Strix aluco sylvatica Strix aluco wilkonskii	6082	AJ004045	EU348934
Bubo ketupu	6094	EU348974	EU348884	Strix dideo wiikonskii Strix butleri	6080	EU348994	EU348935
Bubo lacteus	6110	AJ003970	EU348885	Strix nebulosa lapponica	28328	AJ004058	EU348936
Bubo nipalensis	6095	AJ003970 AJ003972	EU348886	Strix rufipes	6299	AJ004038 AJ004060	EU348937
Bubo scandiacus	23126	AJ003972 AJ004011	EU348887	Strix rujipes Strix uralensis liturata	6330	AJ004063	EU348937
	3938	EU348975	EU348888	Strix uralensis macroura	6191	AJ004063 AJ004062	EU348939
Bubo zeylonensis	6260	AJ003951	EU348889		6111	AJ004062 AJ004064	
Bubo africanus africanus				Strix woodfordii woodfordii			EU348940
Bubo ascalaphus	9567	EU348976	EU348890	Strix woodfordii nigricantior	8235	EU348995	EU348941
Bubo capensis capensis	6116	EU348977	EU348891	Surnia ulula	6305	AJ004068	EU348942
Bubo capensis mackinderi	9292	EU348978	EU348892	Tyto delicatula lulu	23137	EU348996	EU348943
Bubo virginianus virginianus	6239	AJ003973	EU348893	Tyto alba erlangeri	6090	EU348997	EU348944
Glaucidium bolivianum	6147	AJ003975	EU348894	Tyto alba affinis	6106	EU348998	EU348945
Glaucidium brasilianum	6128	AJ003983	EU348895	Tyto alba alba	19862	EU348999	EU348946
Glaucidium californicum	6168	AJ003993	EU348896	Tyto bargei	25155	EU349000	EU348947
Glaucidium gnoma	6149	AJ003994	EU348897	Tyto delicatula delicatula	20871	EU349001	EU348948
Glaucidium griseiceps	6153	AJ003995	EU348898	Tyto furcata furcata	20859	EU349002	EU348949
Glaucidium hardyi	6150	AJ003996	EU348899	Tyto alba guttata	19729	EU349003	EU348950
Glaucidium jardinii	6152	AJ003998	EU348900	Tyto furcata pratincola	23140	EU349004	EU348951
Glaucidium nanum	6058	AJ003999	EU348901	Tyto delicatula sumbaensis	20666	EU349005	EU348952
Glaucidium passerinum	6167	AJ004002	EU348902	Tyto furcata tuidara	8619	EU349006	EU348953
Glaucidium perlatum	6074	EU348979	EU348903	Tyto castanops	20995	EU349007	EU348954
Glaucidium peruanum	6143	AJ004005	EU348904	Tyto longimembris	9579	EU349008	EU348955
Glaucidium tucumanum	6310	AJ003988	EU348905	Tyto novaehollandiae	20990	EU349009	EU348956
Megascops asio hasbroucki	6274	AJ004015	EU348906	Tyto tenebricosa	20993	EU349010	EU348957
Megascops atricapillus	6054	AJ004013	EU348907				
Megascops choliba 6056 AJ004021 EU348908			^a IPMB: Institut für Pharmazie un	d Molelmie	Diotochnol-	io.	
Psiloscops flammeolus	23123	AJ004022	EU348909	" IPMB: Institut für Pharmazie und Heidelberg University.	u woiekuiare	г винесппонод	e,
Megascops napensis	6154	AJ004023	EU348910	b cytb = cytochrome b gene, RAG-	1 = recombi	ination activati	ng gene 1.
Megascops hoyi	6049	AJ004024	EU348911	, , , , , , , , , , , , , , , , , , , ,			
Megascops kennicottii	6170	EU348980	EU348912				

Downloaded From: https://bioone.org/journals/Ardea on 24 Sep 2024 Terms of Use: https://bioone.org/terms-of-use

TIJDSCHRIFT DER NEDERLANDSE ORNITHOLOGISCHE UNIE (NOU)

ARDEA is the scientific journal of the Netherlands Ornithologists' Union (NOU), published bi-annually in spring and autumn. Next to the regular issues, special issues are produced frequently. The NOU was founded in 1901 as a non-profit ornithological society, composed of persons interested in field ornithology, ecology and biology of birds. All members of the NOU receive ARDEA and LIMOSA and are invited to attend scientific meetings held two or three times per year.

NETHERLANDS ORNITHOLOGISTS'UNION (NOU)

Chairman - J.M. Tinbergen, Animal Ecology Group, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands

Secretary – P.J. van den Hout, Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands (hout@nioz.nl)

Treasurer - E.C. Smith, Ir. van Stuivenbergweg 4, 6644 AB Ewijk, The Netherlands (ekko.diny@planet.nl)

Further board members - E. Boerma, G.J. Gerritsen, J. Komdeur, J. Ouwehand, G.L. Ouweneel, J.J. de Vries

Membership NOU – The 2010 membership fee for persons with a postal address in The Netherlands is €42 (or €25 for persons <25 years old at the end of the year). Family members (€9 per year) do not receive journals. Foreign membership amounts to €54 (Europe), or €65 (rest of the world). Payments to ING-bank account 285522 in the name of Nederlandse Ornithologische Unie, Sloetmarke 41, 8016 CJ Zwolle, The Netherlands (BIC: INGBNL2A and IBAN: NL36INGB0000285522). Payment by creditcard is possible. Correspondence concerning membership, payment alternatives and change of address should be sent to: Erwin de Visser, Sloetmarke 41, 8016 CJ Zwolle, The Netherlands (nou.ledenadmin@gmail.com).

Research grants – The NOU supports ornithological research and scientific publications through its Huib Kluijver Fund and the 'Stichting Vogeltrekstation'. Applications for grants can be addressed to the NOU Secretary. Donations to either fund are welcomed by the NOU treasurer

Internet - www.nou.nu

Ardea

Editors of Ardea – Rob G. Bijlsma, Wapse (Editor in chief); Christiaan Both, Groningen; Niels J. Dingemanse, Groningen; Dik Heg, Bern; Ken Kraaijeveld, Leiden; Kees van Oers, Heteren; Jouke Prop, Ezinge (Technical editor); Julia Stahl, Oldenburg; B. Irene Tieleman, Groningen; Yvonne I. Verkuil, Groningen

Dissertation reviews - Popko Wiersma, Groningen

Editorial address - Jouke Prop, Allersmaweg 56, 9891 TD Ezinge, The Netherlands (ardea.nou@planet.nl)

Internet – www.ardeajournal.nl. The website offers free downloads of all papers published in Ardea and forerunners from 1904 onwards. The most recent publications are available only to subscribers to Ardea and members of the NOU.

Subscription Ardea – Separate subscription to Ardea is possible. The 2010 subscription rates are \in 36 (The Netherlands), \in 42 (Europe), and \in 50 (rest of the world). Institutional subscription rates are \in 53, \in 69, and \in 78, respectively). Papers that were published more than five years ago can be freely downloaded as pdf by anyone through Ardea's website. More recent papers are available only to members of the NOU and subscribers of Ardea-online. Receiving a hard-copy with additional access to Ardea-online costs \in 55 (The Netherlands and Europe), \in 70 (rest of the world), or \in 110 (institutions). Subscriptions to Ardea-online (without receiving a hard copy) cost \in 40 (individuals worldwide), or \in 85 (institutions). Payments to ING-bank account 125347, in the name of Nederlandse Ornithologische Unie, Ir. van Stuivenbergweg 4, 6644 AB Ewijk, The Netherlands (BIC: INGBNL2A and IBAN: NL16INGB0000125347). Correspondence concerning subscription, change of address, and orders for back volumes to: Ekko Smith, Ir. van Stuivenbergweg 4, 6644 AB Ewijk, The Netherlands (ekko.diny@planet.nl).

World Owl Conference Special

Editors - David H. Johnson, Dries Van Nieuwenhuyse and James R. Duncan, in cooperation with Jouke Prop and Rob G. Bijlsma

Technical editor – Jouke Prop

Dutch summaries - Arie L. Spaans, Dries Van Nieuwenhuyse, Jouke Prop, Rob G. Bijlsma, or authors

Graphs and layout - Dick Visser

Drawings - Jos Zwarts

Cover photos - Serge Sorbi

front - Snowy Owl

back - Snowy Owl, Great Grey Owl and young Tengmalm's Owl

Production - Hein Bloem, Johan de Jong and Arnold van den Burg

© Nederlandse Ornithologische Unie (NOU), 2009 Printed by Van Denderen, Groningen, The Netherlands, December 2009