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In sagebrush (Artemisia spp.) ecosystems, encroachment of pinyon (Pinus spp.) and juniper (Juniperus spp.;
hereafter, “pinyon-juniper”) trees has increased dramatically since European settlement. Understanding the
impacts of this encroachment on behavioral decisions, distributions, and population dynamics of greater sage-
grouse (Centrocercus urophasianus) and other sagebrush obligate species could help benefit sagebrush ecosystem
management actions. We employed a novel two-stage Bayesian model that linked avoidance across different
levels of pinyon-juniper cover to sage-grouse survival. Our analysis relied on extensive telemetry data collected
across 6 yr and seven subpopulationswithin the Bi-StateDistinct Population Segment (DPS), on the border of Ne-
vada and California. The first model stage indicated avoidance behavior for all canopy cover classes on average,
but individual grouse exhibited a high degree of heterogeneity in avoidance behavior of the lowest cover class
(e.g., scattered isolated trees). The second stage modeled survival as a function of estimated avoidance parame-
ters and indicated increased survival rates for individuals that exhibited avoidance of the lowest cover class. A
post hoc frailty analysis revealed the greatest increase in hazard (i.e., mortality risk) occurred in areas with
scattered isolated trees consisting of relatively high primary plant productivity. Collectively, these results provide
clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper,
especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover.
Such areas may function as ecological traps that convey attractive resources but adversely affect population
vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper
cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of
pinyon-juniper cover in areas with similar ecological conditions to those of the Bi-State DPS, where populations
occur at relatively high elevations and pinyon-juniper is abundant and widespread.
@ 2017 Published by Elsevier Inc. on behalf of The Society for Range Management. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The degradation, fragmentation, and loss of native shrub-steppe
ecosystems, as well as the concurrent decline of wildlife populations
that depend on them, are among the most pressing issues facing land
managers across western North America (Davies et al., 2011; CFR,
2015a). In sagebrush ecosystems of the Great Basin, distribution and
abundance of pinyon (primarily Pinusmonophylla) and juniper (primar-
ily Juniperus osteosperma) woodlands (hereafter, “pinyon-juniper”) has
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increased dramatically (i.e., N150%) since European settlement (Miller
et al., 2008) owing to changes in land-use practices (Romme et al.,
2009), climate (Miller andWigand, 1994; Romme et al., 2009), and dis-
turbance regimes (Miller and Rose, 1999). For the purposes of this
paper, we define encroachment to include both expansion (establish-
ment of pinyon-juniper into areas previously devoid of trees) and infill
(increasing closure of previously sparse pinyon-juniper canopies), as
modified from Miller et al. (2013). Although pinyon-juniper is a native
component contributing to landscape heterogeneity in the Great Basin
and some encroachment may stem from natural recovery of pinyon-
juniper woodlands previously cleared by European settlers (Romme
et al., 2009), the overall current rate of encroachment is profoundly
influencing contemporary sagebrush ecosystem processes (Miller
et al., 2005; Davies et al., 2011). Accordingly, a variety of management
actions have been directed toward decreasing the rate of pinyon-
juniper expansion into sagebrush plant communities (Tausch et al.,
2009), and many of these actions are the focus of studies presented in
this volume of Rangeland Ecology & Management.
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
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Habitat selection theory generally predicts that animals will occupy
areas that optimize their fitness (i.e., survival and reproduction;
Rosenzweig, 1981; Morris, 1989), and identifying mechanisms that
link selection of environmental features with fitness is a lynchpin for
implementing management actions that improve habitat suitability
(VanHorne, 1983; Aldridge and Boyce, 2007; Casazza et al., 2011). Yet in-
dividuals do not always make decisions that maximize their fitness as
they move through their environment, perhaps owing to variability in
how they perceive environmental cues (Matthiopoulos et al., 2015) or re-
spond to intraspecific competition for limited resources (Fretwell and
Lucas, 1970). Moreover, maladaptive selection can lead to the formation
of ecological traps, which can be defined as environments that provide at-
tractive cues that yield lower survival and/or reproduction output, there-
by decoupling an individual’s perception of the habitat’s fitness-harming
traits (Robertson and Hutto, 2006). Directly linking an organism’s fitness
to its decisions becomes even more daunting and complex when these
sources of variation are coupled with logistical difficulties in obtaining
sufficient data on movement processes, environmental features, and fit-
ness repercussions in a time-dependent fashion for multiple individuals
of a species that occupy remote and vast landscapes (Morales et al., 2010).

Greater sage-grouse (Centrocercus urophasianus, hereafter sage-
grouse) require large continuous areas of sagebrush-dominated ecosys-
tems for population persistence (Knick et al., 2013), and this species is
considered an indicator species for the health of sagebrush ecosystems
because they require distinct ecological states to fulfill their diverse
life history requirements at large spatial scales (Rowland et al., 2006;
Hanser and Knick, 2011). Populations of sage-grouse have declined con-
comitantly with the loss and fragmentation of sagebrush ecosystems
that now occupy slightly more than half of their former range
(Schroeder et al., 2004; Miller et al., 2011). In large parts of the Great
Basin, encroachment of pinyon-juniper has been identified as a primary
threat to sage-grousepopulations (CFR, 2015a)by contributing to fragmenta-
tionof continuousexpansesof sagebrushandaccelerating apositive feedback
between wildfire and invasive annual grass (the other primary threat in the
Great Basin) that often eliminates and replaces sagebrush (Brooks et al.,
2004; Balch et al., 2013; Chambers et al., 2014a).

Several studies have documented strong avoidance of pinyon-
juniper by sage-grouse at multiple spatial scales and across different
grouse life history stages (Doherty et al., 2008; Atamian et al., 2010;
Casazza et al., 2011; Knick et al., 2013) even at relatively low density
(e.g., b4% canopy cover; Baruch-Mordo et al., 2013). Importantly, avoid-
ance of pinyon-juniper by sage-grouse can have population-level conse-
quences to brood survival (Casazza et al., 2011) and lek persistence
(Baruch-Mordo et al., 2013), and can lead to genetic isolation (Oyler-
McCance et al., 2005; Oyler-McCance et al., 2014). Different levels of
pinyon-juniper cover (e.g., sagebrush dominant to pinyon-juniper
woodland) may vary in their effects on sage-grouse behavior and pop-
ulation dynamics. For example, important resources to sage-grouse
such as food and concealment cover decrease disproportionately as
the percent of pinyon-juniper overstory increases (Bates et al., 2005;
Miller et al., 2005; Miller et al., 2011). Additional tall vertical structures
(such as trees) that provide perching and nesting habitat in an other-
wise flat landscape can increase risk of avian predation (Coates et al.,
2014a; Howe et al., 2014), which sage-grouse may perceive as a threat
that changes with the density of trees on the landscape.

For management purposes, continuous encroachment of pinyon-
juniper is often categorized into three transitional phases (i.e., Phase I, II,
and III) indicating the dominant vegetation influencing ecological pro-
cesses (Miller et al., 2005;Miller et al., 2013). For plant community struc-
ture, Phase I is characterized by relatively low pinyon-juniper canopy
cover and overall dominance of sagebrush and associated perennial
grasses. During Phase II, herbaceous sagebrush understory begins to
thin significantly and become codominant with pinyon-juniper, while
Phase III is characterized by dominance of pinyon-juniper and little to
no herbaceous sagebrush understory. For sage-grouse, these transitional
phases may elicit different demographic and behavioral responses that
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 03 D
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have important implications for management of pinyon-juniper and the
mechanisms underlying degradation of sage-grouse habitat suitability.

A deeper understanding of relationships between evolved envi-
ronmental cues that influence sage-grouse behavioral choices (e.g., to
avoid or select an area) and the demographic consequences
(e.g., mortality) of those choices could benefit conservation actions for
sage-grouse populations. In the case of restoring sagebrush ecosystems
by removing recently established pinyon-juniper trees, identifying
these complex patterns and processes in relation to transitional phase
is especially important because specific management actions designed
to improve habitat suitability (e.g., removal of all trees in lower-density
stands vs. thinning of higher-density stands) may elicit different behav-
ioral responses from sage-grouse, which in turnmight yield unique con-
sequences for sage-grouse fitness components and management
efficacy. Furthermore, quantifying thresholdswithin phaseswhereman-
agement actions achieve desired goals (e.g., maintain or increase fitness)
is paramount for effective conservation planning (Baruch-Mordo et al.,
2013). Identifying linkages between ecological mechanisms driving
both the “how” and “why” (e.g., selection and fitness) is an integral, yet
largely unknown, part of the conservation planning process.

Typical quantitative approaches for linking sage-grouse habitat se-
lection with fitness consequences use available habitat as a covariate
in traditional survival (Aldridge and Boyce, 2007; Aldridge and Boyce,
2008; Casazza et al., 2011) or regression-type analyses (Baruch-Mordo
et al., 2013). These approaches treat survival probability as a function
of habitat in a time-independent or static manner and often link overall
estimates of resource selection at the individual level to demographic
performance at the population level without explicit consideration of
the frequency or timing of encounters with landscape features (such
as pinyon-juniper among different phases). Time-dependent analyses,
in contrast, can be more computationally complex, yet they can more
clearly establish a linkage between how individual sage-grouse respond
behaviorally and demographically to specific encounters of pinyon-
juniper among different phases. Studies that integrate both time-
dependent and independent analyses can better identify mechanisms
driving selection and survival.

Herein, we employ a novel two-stage Bayesianmodeling approach to
link estimated probability of avoidance of different pinyon-juniper cover
classes with concomitant changes in annual probability of survival, while
accounting for confounding factors and uncertainty in parameter estima-
tion. Most importantly, this Bayesian approach incorporates the range of
behavioral heterogeneity among individual sage-grouse, which allows
for uncertainty in behavioral choices and their consequences for fitness.
To provide target values for conifer removal to reach survivability, we
then carried out a post hoc analysis that estimated survival directly as a
functionof time-dependent use of pinyon-juniper cover under conditions
with varying levels of primary plant productivity. We focus on sage-
grouse within the Bi-State Distinct Population Segment (Bi-State DPS)
along the central border of California and Nevada, which has been re-
cently ruled unwarranted for protection under the Endangered Species
Act. Pinyon-juniper encroachment has been identified as the primary
threat to the Bi-State DPS (CFR, 2015b), and the listing decision was in-
formed in large part by planned implementation of large-scale treat-
ments (thinning or removal) of encroaching pinyon-juniper across
thousands of acres of habitat (Bi-State Action Plan, 2012).

Study Area

The Bi-State DPS comprises 18 325 km2 split along the border of
Nevada and California at the interface of the Sierra Nevada Mountains
to the west and the Great Basin to the east (Fig. 1A; lat 119°11′1.94′′N,
long 38°6′30.80′′W). We collected sage-grouse data from seven sub-
populations: Bodie Hills (BH), Long Valley (LV), Parker Meadows
(PM), Pine Nut Mountains (PN), Mount Grant (MG), Desert Creek/
Fales (DF), andWhite Mountains (WM), which comprise three distinct
subregions: northern (consisted of PN), central (consisted of BH, LV, PM,
ec 2024



Figure 1. Greater sage-grouse telemetry data across study subregions separated by A, north, central, and southern region, and B,mapped pinyon-juniper classes (1, 2, and 3) at the 1-m
resolution within the Bi-State Distinct Population Segment during 2003–2005 and 2011–2013.
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MG, and DF), and southern (consisted of WM) (see Fig. 1A). The subre-
gions were delineated based on distinct differences in vegetative com-
munities, topography, and sage-grouse population genetics (Oyler-
McCance et al., 2014). We considered subregions in this analysis to be
separate because they represent empirically supported subdivision of
the populations within the Bi-State area.

The Bi-State area was topographically diverse, and several mountain
ranges separated the northern and southern ends. Elevations ranged
from 1 386 to 4 344 m with numerous rugged mountain ranges
intermixed with broad valleys. General vegetation communities pre-
dominantly consisted of mountain big sagebrush (Artemisia tridentata
vaseyana) interspersed with areas of low sagebrush (A. arbuscula), and
Wyoming big sagebrush (A. t. wyomingensis). Silver sagebrush (A.
cana) and basin big sagebrush (A. t. tridentata) occurred locally. Other
common shrub species included snowberry (Symphoricarpos spp.), cur-
rant (Ribes spp.), bitterbrush (Purshia tridentata), green rabbitbrush
(Chrysothamnus viscidiflorus), rubber rabbitbrush (Ericameria nauseosa),
and Mormon tea (Ephedra viridis). Primary grass species included nee-
dle grass (Hesperostipa comata), squirrel tail (Elymus elymoides), and
Indian rice grass (Achnatherum hymenoides). Cheatgrass (Bromus
tectorum) was present but uncommon. Dominant forbs included phlox
(Phlox spp.), lupine (Lupinus spp.), buckwheat (Eriogonum spp.), and
hawksbeard (Crepis spp.) (Kolada et al., 2009). Singleleaf pinyon
(Pinus monophylla) and Utah juniper (Juniperus osteosperma) wood-
lands occurred at elevations of 1 850–3 000 m.

Methods

Field Techniques

We captured male and female sage-grouse from multiple lek sites
(traditional breeding areas) within each of the subregions using
ed From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 03 Dec 2
se: https://bioone.org/terms-of-use
spotlighting techniques at night (Wakkinen et al., 1992) during
March–April and October–November over two 3-yr periods. We
monitored marked sage-grouse in the central and southern regions
during 2003–2005 and the northern region during 2011–2013.
Across all subregions, sage-grouse were fitted with a necklace-
style, very high frequency (VHF) radio-transmitter (Advanced Te-
lemetry Systems, Isanti, MN) equipped with mortality sensors
(Sveum et al., 1998). We sought to locate sage-grouse (within 30
m) ≥ 2 times per wk during spring months and N 1 per wk during
fall and winter months using handheld Yagi antennas and radio re-
ceivers (Advanced Telemetry Systems, Isanti, MN). Hand-held Global
Positioning Systems (GPSs) were used to generate Universal Trans-
verse Mercator (UTM) coordinates (North American Datum 83,
Zone 11).We attempted to avoid flushing grouse to prevent observer
bias in selection of habitat. Periodic (monthly) flights were conduct-
ed to search for missing sage-grouse.

Within the northern subregion, we fit rump-mounted GPS-
Platform Transmitter Terminal (GPS-PTT) (GeoTrack Technology
Inc., Greenville, SC) units on a separate subsample of sage-grouse,
allowing us to collect and store data remotely via satellite commu-
nications. Unit mass of both types of transmitters (VHF or GPS-PTT)
did not exceed 3% of sage-grouse body mass (transmitter mass for
VHF = 21 g, GPS-PTT female = 22 g, and GPS-PTT male = 30 g).
The GPS-PTT unit power source consisted of a solar array with
rechargeable battery (operational life = 2–3 yr). For GPS-PTT
telemetry, duty cycles were programmed to record between 10 and
13 locations per day, recorded in UTM, and included date and time
stamps (Greenwich Mean Time) with location accuracy estimates.
Data were downloaded using Argos and decoded (PTT Tracker Soft-
ware; GeoTrack Technology Inc., Greenville, SC) and screened for erro-
neous locations. Sampled sage-grouse were a reliable representation of
populations within the Bi-State DPS (see Fig. 1A).
024
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Geographical Data Sources

Pinyon-Juniper. To complete the study objectives, we developed a rela-
tively high-resolution map of conifers across the entire Bi-State DPS
(Fig. 1B). Creating this map was necessary because existing mapping
products were too coarse in spatial scale and generally performed poor-
ly in identifying early stages of pinyon-juniper encroachment (i.e., b 20%
areal coverage), especially areas with isolated and sporadic trees. Such
areas are likely important to sage-grouse movement and demography
(Baruch-Mordo et al., 2013). The earlier mapping products were de-
rived fromLandsat Imagery, includingCalifornia Department of Forestry
and Fire Protection (CFRAP, 2006) and Landscape Fire and Resource
Management Planning Tools (Landfire, 2010), which represent conifer
as a binary classification at a 30× 30m resolution. Thus, wemapped co-
nifer cover at a 1 × 1 m resolution using 2013 National Agriculture Im-
agery Program (NAIP) imagery, whereby circular canopy extent was
classified with object recognition algorithms in Feature Analyst
(Overwatch Systems, Sterling, VA). Detailed assessments of omission
and commission errors of these mapped areas are currently in progress
(USGS, unpublished data). To create maps that correspond to phases of
encroachment, we first smoothed the surface using a circular moving
window with a 100-m radius (ArcGIS Spatial Analyst, Environmental
Systems Research Institute, Redlands, CA), which represented a contin-
uous proportion of pinyon-juniperwithin each pixel. Thismapwas then
resampled to a 30 × 30 m resolution and classified into three canopy
cover classes (CC1, CC2, and CC3) designed to correspond with
phases of encroachment similar to those described by Falkowski
and Evans (2012), where Phase I (CC1) = shrub dominant (N
0–10% tree canopy cover), Phase II (CC2) = shrub and pinyon-
juniper codominant (N 10–20% canopy), and Phase III (CC3) =
pinyon-juniper dominant (N 20% canopy), respectively. The cover classes
derived here should only approximate phases of encroachment because
our remote-sensing procedures could not consider microvegetation
characteristics (i.e., understory vegetation conditions) and age of trees,
which help to further classify phase of encroachment (Miller et al.,
2000; Miller et al., 2005; Miller et al., 2011). We report the percent of
each cover class within sage-grouse habitat boundaries, as defined by
the Final Environmental Impact Statement for the Bi-State DPS (BLM and
USFS, 2015), and the percent within the boundary of the entire Bi-State DPS
asdefined in theBi-StateActionPlan (Bi-StateActionPlan, 2012).Webinned
our analyses into cover classes to allow greater applicability of results to
managers who often evaluate conifer treatment options in relation to
transitional phases (Miller et al., 2005; Tausch et al., 2009). Where appli-
cable, however, we convert percent cover class into actual tree canopy
cover for comparisonwith other studies (e.g., Baruch-Mordo et al., 2013).

Variation in sage-grouse avoidance to land cover types can be
strongly scale dependent (Doherty et al., 2008; Casazza et al., 2011;
Aldridge et al., 2012). Thus, we measured the proportion of pinyon-
juniper cover class within each 30 × 30 m pixel that sage-grouse
might perceive across the landscape at three ecological spatial scales.
Specifically, we used circular moving windows with radii of 167.9 m
(9 ha), 439.5 m (61 ha), or 1 451.7 m (661 ha) that represented pub-
lished minimum, mean, and maximum daily movement distances of
sage-grouse (Coates et al., 2015a), respectively, to calculate the propor-
tion of conifers within each respective spatial scale. The purpose of
using these specific ecological spatial scales was to attempt to capture
the amount of pinyon-juniper that sage-grouse might perceive given
their quantified spatial use patterns.

Sagebrush. We included sagebrush cover in the analysis to account for
confounding estimated effects of pinyon-juniper, especially considering
sage-grouse are sagebrush obligate species. Data describing sagebrush
cover in Nevada and California were obtained from different sources.
For Nevada, detailed sagebrush classes were derived from the Nevada
SynthMap (Peterson, 2008) and reclassified into broader levels from
NatureServe (2014) and Landfire (2010). Sagebrush classes for the
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 03 D
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California portion of the project area were derived from SageStitch
(Comer et al., 2002), Landfire (2010), and CFRAP (2006) data sets. To
facilitate compatibility across sagebrush classes between states, each
data set was reclassified into the broadest category used to reclassify
the Nevada SynthMap and then compared across pixels. Pixel values
that matched for at least two of the data sets were chosen, whereas
the reclassified Landfire value was used where no agreement occurred.
The final Nevada and northeastern California layers were then merged.
Developing a sagebrushmap based onmultiple sources of datawas like-
ly muchmore robust than using one singlemap (e.g., LandFire, 2010) as
it likely reducedanalytical limitations andpotential biases.Most of theunderly-
ingmapping for sagebrushwascapturedduring the timeframeofwhich telem-
etry locationswere collected. Sagebrush cover classificationwas processed into
a separate binary raster that extended across CA and NV (Fig. 2A). Wemea-
sured the proportion of sagebrush cover class within each 30 × 30m pixel at
the same three ecological spatial scales as described for pinyon-juniper.

Productivity. Extensive research efforts in the Great Basin have been fo-
cused on how sagebrush ecosystem structure and function influence re-
silience to disturbance and resistance to invasive vegetation (hereafter
R&R; Chambers et al., 2014a). In general, R&R increases along a gradient
based on plant productivity and elevation that correlates with variation
in soil moisture and temperature (Chambers et al., 2014a, 2014b),
where corresponding vegetation types with underlying cold or cool
and moist soils have higher R&R than those with underlying warm
and dry soils. An R&R index (Fig. 2B) consisting of three classes (low,
moderate, and high) was created by a Fire and Invasive Assessment
Team (FIAT) from fine-scale soil temperature and moisture subclass
data extracted frommaps developed byMaestas et al. (2016).We incor-
porated R&R into our models to account for broad patterns in underly-
ing ecological processes that capture differences in productivity across
an elevational gradient. For our purposes we compiled the R&R classes
into two classes: 1) more productive areas (i.e., R&R class 1) with
temperature/moisture subclasses Cryic/Xeric-Typic (cold/moist),
Cryic/Aridic bordering on Xeric (cold/dry bordering on moist), and
Frigid/Xeric-Typic (cool/moist); and 2) less productive areas (all other
warmer and drier moisture subclasses; i.e., R&R classes 2 and 3).

Linking Avoidance of Pinyon-Juniper Encroachment to Survival

We conducted a novel, two-stage Bayesian analysis to estimate the
effects of pinyon-juniper within sagebrush ecosystems on sage-grouse
habitat selection and survival. Our analysis quantified avoidance of
pinyon-juniper across each cover class (CC1, CC2, and CC3) using
mixed effects logistic regression models that contrasted patterns of
used versus available resources (Boyce et al., 2002; Manly et al.,
2002; Johnson et al., 2006), and then linked those patterns (particu-
larly avoidance across each cover class) to sage-grouse survival.
Specifically, we evaluated whether sage-grouse tendencies to avoid
pinyon-juniper cover influenced a component of their fitness
(i.e., survival), ultimately informing the effects of pinyon-juniper
on habitat suitability. Specifically, the two-stage process consisted
of 1) modeling an “avoidance index of pinyon-juniper” using pre-
dicted negative log odds ratios while accounting for potentially con-
founding variables and deriving posterior distributions of estimated
avoidance parameters, β (slope coefficients), for each individual sage-
grouse; and 2) fitting the sampled parameters of individual-level avoid-
ance as covariates for survival using a frailty analysis. This two-stage
Bayesian model ran in parallel at each stage and used full posterior dis-
tributions to account for uncertainty in individual estimates of avoid-
ance, allowing the empirical evaluation of whether or not sage-grouse
that avoided pinyon-juniper were more likely to survive. Detailed ex-
planation for each stage follows.

We employed a used-available design to evaluate avoidance of
pinyon-juniper cover by sage-grouse similar to procedures described
in Casazza et al. (2011). Specifically, we employed a Design II approach
ec 2024



Figure 2.Maps depicting A, sagebrush cover and B, resilience and resistance classes, defined by soil and temperaturemodels (Maestas et al., 2016) within the Bi-State Distinct Population
Segment during 2003–2005 and 2011–2013.
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(Manly et al., 2002), meaning “use” of pinyon-juniper was measured at
the individual level, whereas “availability”wasmeasured at the popula-
tion level (i.e., Erickson et al., 2001). Sage-grouse telemetry locations
were imported into a geographic information system (GIS), and all
predictor variables were extracted. To characterize the availability of
pinyon-juniper cover, we extracted the same environmental attributes
at random locations (Manly et al., 2002). We calculated a minimum
convex polygon (MCP) of the combined sage-grouse relocations for
each of the subpopulations to represent the boundaries of available
habitat. We generated a random location for each used location, which
resulted in a range of random locations within eachmonitored subpop-
ulation as 751–3 279 (mean= 1 501). We considered this an appropri-
ate number of random locations to allow us to characterize availability
and yet be manageable computationally using our Bayesian analytical
approach. Before our modeling approach, we carried out a prerequisite
analysis to identify the most parsimonious ecological scale to represent
land cover variables (e.g., CC1, sagebrush) using single variable models.
Specifically, we compared evidence among single variable models for
each variable consisting of the three different spatial scales, and carried
forward the scale that best represented the variable on the basis of the
lowest value of Deviance Information Criterion (DIC; Spiegelhalter
et al., 2002) and the posterior probability of nonzeroness derived from
a stochastic search variable selection method (George and McCulloch
1996). DIC is particularly useful in this circumstance because of its sim-
plicity, ease of calculation using MCMC samples, and similarities to AIC
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for generalized linear models constructed within a Bayesian framework
(Hooten and Hobbs, 2015).

During the first stage, we modeled the pinyon-juniper cover classes
(CC1, CC2, and CC3)while accounting for potential confounding variables.
We developed separatemodels for each cover class so that effects specific
to each cover class could be identified more clearly. All other variables
remained the same in each model. We followed the procedures for
modeling resource selection with random effects described in Gillies
et al. (2006), where the mixed effects logit model, g(x), took the form:

g xhijk
� �

¼ β0 þ βPJ;iP Jhijk þ βSBSBhijk þ βPRPRhijk þ ςi þ κ j þ ηk þ εhijk ½1�

denoting a population level intercept (β0), with coefficients β for covar-
iates pinyon-juniper (PJ; continuous, percent cover), sagebrush cover
(SB; continuous, percent cover), and productivity of area (PR; categori-
cal, more or less productive). As a diagnostic test, we estimated correla-
tion coefficients to reduce potential effects of multicollinearity between
PJ and SB covariates. Because variables did not show evidence of covary-
ing (r ≤ |0.65|), we retained both covariates in themodel.We fit random
effects to account for repeated measures within individual (bird[ςi]),
spatial (subregion [κj]), and temporal (year [ηk]) correlation (Gillies
et al., 2006). Subscripts h, i, j, and k reference telemetry location, bird,
subregion, and year, respectively. xhijk represents a data vector consisting
of (PJhijk, SBhijk, PRhijk). Further definitions of parameters and their prior
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Table 1
Median estimates (with 2.5 and 97.5 percentiles in parentheses) of posterior distributions based onmodeling the effects of pinyon-juniper cover classes (CC1, CC2, and CC3)with priors on
three responses: 1) avoidanceof each cover class (selectionmodel); 2) influence of themagnitudeof avoidanceon survival (linkedmodel); and 3) a time-varying effect of exposure to each
cover class directly on survival (frailty model) of greater sage-grouse within the Bi-State Distinct Population Segment during 2003–2005 and 2011–2013.

Model Symbol Description1 Prior2 CC1 CC23 CC3

Selection βSB Effect of sagebrush U (−20, 20) 5.00 (4.99-5.00) 4.99 (4.96-5.00) 5.00 (4.97-5.00)
βRR1 Effect of high productivity areas U (−20, 20) 0.10 (−1.05-1.82) 1.30 (0.22-2.91) 0.61 (−0.76-1.77)
βRR23 Effect of low productivity areas U (−20, 20) −0.49 (−1.63-1.24) 0.54 (−0.53-2.15) 0.34 (−1.02-1.5)
σκ Subregion standard deviation U (0, 10) 0.84 (0.21-3.62) 0.96 (0.29-4.1) 1.04 (0.33-4.08)
ση Year standard deviation U (0,10) 0.05 (0-0.26) 0.12 (0.01-0.54) 0.48 (0.2-1.37)
μ αBIRD Mean intercept for bird U (−30, 30) −1.25 (−2.73-0.14) −1.76 (−3.24 to −0.51) −1.95 (−3.86 to −0.4)
μ βPJ Mean slope of pinyon-juniper U (−30, 30) −4.18 (−8.48 to −0.25) −34.87 (−56.17 to −18.25) −34 (−63.37 to −10.99)

Linked4 μPJAI Mean Ln (hazard ratio) PJAI U (−5, 5) 1.02 (b1.01-1.05) 1.00 (0.99-1.01) N1.00 (0.99-1.01)
σPJAI SD of bird variation in βPJAI U (0, 5) 0.02 (0-0.06) 0 (0-0.02) 0 (0-0.02)

Frailty4 γ Baseline (constant) log hazard U (−6, −3) −4.50 (−5.65 to −4.02) −4.50 (−5.65 to −4.02) —
βSB Mean Ln (hazard ratio) of SB U (−5, 5) 1.02 (0.8-1.33) 1.03 (0.79-1.38) —
βVHF Mean Ln (hazard ratio) of VHF U (−5, 5) 0.50 (0.08-4.92) 0.56 (0.08-6.38) —
βGPS Mean Ln (hazard ratio) of GPS U (−5, 5) 1.28 (0.17-12.7) 1.22 (0.15-13.55) —
βM1 Mean Ln (hazard ratio) of Jan U (−5, 5) 0.88 (0.07-7.47) 0.95 (0.08-7.54) —
βM2 Mean Ln (hazard ratio) of Feb U (−5, 5) 3.69 (0.41-15.65) 3.64 (0.38-15.42) —
βM3 Mean Ln (hazard ratio) of Mar U (−5, 5) 3.94 (0.47-15.81) 3.98 (0.44-16.13) —
βM4 Mean Ln (hazard ratio) of Apr U (−5, 5) 2.20 (0.26-9.75) 2.28 (0.25-9.75) —
βM5 Mean Ln (hazard ratio) of May U (−5, 5) 4.03 (0.49-15.14) 3.97 (0.48-15.2) —
βM6 Mean Ln (hazard ratio) of Jun U (−5, 5) 3.09 (0.37-12.24) 2.92 (0.33-11.96) —
βM7 Mean Ln (hazard ratio) of Jul U (−5, 5) 4.79 (0.6-17.16) 4.44 (0.51-16.48) —
βM8 Mean Ln (hazard ratio) of Aug U (−5, 5) 5.23 (0.65-17.83) 4.86 (0.58-17.34) —
βM9 Mean Ln (hazard ratio) of Sep U (−5, 5) 1.18 (0.12-6.62) 1.12 (0.11-6.21) —
βM10 Mean Ln (hazard ratio) of Oct U (−5, 5) 2.6 (0.29-11.39) 2.58 (0.3-11.38) —
βM11 Mean Ln (hazard ratio) of Nov U (−5, 5) 1.88 (0.2-9.63) 1.96 (0.2-9.87) —
βM12 Mean Ln (hazard ratio) of Dec U (−5, 5) 0.19 (0.05-2.34) 0.19 (0.05-2.24) —
σκ Subregion standard deviation U (0, 10) 0.60 (0.03-3.8) 0.74 (0.04-3.78) —
ση Yr standard deviation U (0, 10) 0.38 (0.02-1.85) 0.46 (0.02-2.04) —
μPJP Mean Ln (hazard ratio) PJ in high prod. U (−5, 5) 1.61 (1.11-2.21) 0.84 (0.35-1.35) —
μPJ Mean Ln (hazard ratio) PJ in low prod. U (−5, 5) 0.95 (0.65-1.36) 0.66 (0.26-1.05) —

1 Table only includes parameters with estimated distributions. Those with deterministic nodes were not included. Parameters in the linkedmodel that were redundant with the frailty
model are not shown in table.

2 All priors were uninformative.
3 For frailty models, CC2 and CC3 were pooled and modeled as CCP.
4 For interpretation, mean Ln(hazard ratio) values were exponentiated and calculated in relation to a grand mean of hazard.
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specifications are listed in Table 1. Negative log odds ratios indexed avoid-
ance while positive log odds ratios indexed selection. We did not
exponentiate predicted log-odds to estimate resource selection probability
functions because availability was estimated and not censused (Boyce
et al., 2002). All parameters were assigned objective priors. We followed
procedures for the random-coefficients model described in Kéry (2010)
with correlation between intercepts and slopes, which allowed estimation
of different levels of pinyon-juniper avoidance among individuals de-
scribed conceptually in Gillies et al. (2006). Thus, we derived posterior dis-
tributions for βPJ for each bird (i), which were used as an index of
avoidance behavior of pinyon-juniper (PJAI) and inputted into the second
frailty model stage. In other words, this random effects structure allowed
individual slope estimation for each bird to then relate to survival.

In a simultaneous second stage, a frailty model (Halstead et al.,
2012) was used to fit individual-level avoidance of each pinyon-
juniper cover class (PJAI) on individual survival probability. Hence,
avoidance was formally linked to survival by randomly sampling the
posterior distribution of slope coefficients (βPJ,i) for individual sage-
grouse. The major advantage of this two-stage approach was to make
inferences on survival as related to heterogeneity in the range of behav-
ioral tendencies related to encountering pinyon-juniper among individ-
ual grouse, which aligns more with a biological evaluation of habitat
suitability. Additionally, this analysis accounts for multiple levels of un-
certainty inherent in parameter estimation such as 1) individual-level
estimates of avoidance, 2) individual-level effects of avoidance on sur-
vival, and 3) population-level effects of avoidance on survival consider-
ing variation in avoidance among individuals. To prepare the data for
this component of the analysis, we first developed encounter histories
for sage-grouse using 10-day incremental relocation data. Ten days
was a conservative measure to minimize the number of censored inter-
vals (intervals missing relocation data) and align the telemetry
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sampling frequency with the scale of inference. We considered right
censoring to be random and occurred undermultiple circumstances, in-
cluding when 1) the study period ended before death was classified;
2) the transmitters failed; or 3) sage-grouse were lost prior to follow-
up monitoring. Thus, all individuals either died or were eventually
right censored. We modeled survival as a continuous process but ob-
served at the discrete 10-day interval. We assumed that mortality risk
was independent among individuals considering that sage-grouse do
not engage in social defense strategies. Importantly, numerous teleme-
try points were required to estimate slope coefficients for individual
grouse and thereby precludedfitting avoidance as a time-varying covar-
iate in this specific analysis (see Post Hoc Analysis). However, this anal-
ysis effectively evaluates whether or not the overall tendency of an
individual to avoid pinyon and juniper influences survival. The model
was expressed as:

UHijk ¼ exp γ þ βPJAI � PJAIijk þ ε
� �

½2�

denoting a change in unit hazard (UH; 10-day risk of mortality) of mag-
nitude β for a unit change in the PJAI. Using UH, a cumulative hazard
(CH) was calculated as:

CHijk ¼ ∑T¼36
j¼1 UHijk ½3�

where thirty-six 10-day intervals derived an annual survival parameter
(S) as:

San;ijk ¼ e−CHijk ½4�
ec 2024



31P.S. Coates et al. / Rangeland Ecology & Management 70 (2017) 25–38

Download
Terms of U
For both avoidance and survival models, wemodeled each cover class
separately and evaluated evidence of the cover class variable using 95%
credible limits of the sampled posterior distribution. For illustrative pur-
poses, we predicted the relative percent change in annual survival as a
function of the relative probability of avoiding each cover class.

Post Hoc Survival Analysis
We carried out a post hoc survival analysis and fit sage-grouse asso-

ciations with cover classes as time-varying covariates following similar
procedures as Halstead et al. (2012). This analysis provided direct esti-
mates of relationships between pinyon-juniper and survival that are
often more useable for managerial decisions. For example, such esti-
mates can be used to predict survival probabilities across various
pinyon-juniper cover values and identify differences between cover clas-
ses. Additionally, continuous variables can be fit for each 10-day interval
as time-varying individual covariates, allowing these variables to change
across each interval as sage-grouse moved from one location to another.
Such time-varying covariates also allow for a more thorough investiga-
tion of complex ecological relationships. Accordingly, we investigated
how sage-grouse use of areas with varying levels of productivity (i.e.,
more versus less) altered the effect of pinyon-juniper on survival. Be-
cause we measured variables only at time intervals when sage-grouse
were relocated, we implemented a first-orderMarkov process to impute
data for covariates at intervals when sage-grouse were not relocated as
described in Halstead et al. (2012). Because sage-grouse largely avoided
areas with N 10% pinyon-juniper cover, we pooled CC2 and CC3 into one
grouping (CCP) for this post hoc survival analysis.

We fit a frailtymodel in this analysis similar to the linked avoidance-
survival analysis. However, because we modeled survival directly as a
function of pinyon-juniper as an environmental variable, and without
avoidance, we fit other environmental variables directly into the
model that might otherwise confound the effects of pinyon-juniper.
The model was expressed as:

UHhijkl ¼ exp γ þ βSBSBhijkl þ βTT þ βM þ βPJ;lP Jhijkl þ κ j þ ηk þ ∈hijkl

� �
½5�

where the unit hazard (UH) represented a constant hazard function, γ,
with estimated coefficients for sagebrush (βSB), transmitter type (βTT,
which represents βVHF or βGPS in accordance with type), month (βM,
which representsβM1,...,βM12 in accordancewithmonth of 10-d time in-
terval, h), and βPJ. To investigate the effect of PJ, we specified a shared
frailty across the two levels of productivity, referenced as l. This specifi-
cation allowed us to estimate differences in the PJ effects on survival be-
tween areas with low and high productivity. Sagebrush and transmitter
type were included as covariates to account for potential confounding
effects. Month was included because sage-grouse have been shown to
have unequal survival probabilities across their annual lifecycle
(Blomberg et al. 2013a, Moynahan et al. 2006). Subscripts h, i, j, and k
reference 10-d time interval, bird, subregion, and year, respectively.
Models were specified with random effects for subregion (κJ) and year
(ηK) to account for spatial and temporal intraclass correlation, respec-
tively. Similar to the previous analyses, as a diagnostic testwe estimated
correlation coefficients to reduce potential effects of multicollinearity
between PJ and SB covariates. Variables did not show evidence of co-
varying (r ≤ |0.65|), sowe retained them in themodel. Definitions of pa-
rameters and their prior specifications are listed in Table 1. Priors for all
parameters were selected to be uninformative. We evaluated evidence
of each cover class variable across the two productivity classes using
95% credible limits of the sampled posterior distribution. For illustrative
purposes, we predicted the cumulative annual survival for every unit in-
crease in cover within each cover class by productivity class. Lastly, also
for illustrative purposes, we mapped pinyon-juniper areas that are at
highest risk to sage-grouse populations within the Bi-State DPS, based
on our model results. All models were run on three chains of 10 000 it-
erations each following a burn-in period of 40 000 iterations and
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thinned by a factor of 5. Model convergence was assessed visually
using history plots and the R-hat statistic (Gelman et al., 2004). We
did not find a lack of convergence among any of the parameters moni-
tored (maximum R-hat = 1.1). Posterior probability distributions for
each model procedure were estimated using Program R version 3.1.1
(R-Core-Team, 2014) and package “rjags” (Plummer et al., 2015).

Results

We captured and marked 162 sage-grouse (129 females and 33
males) across the 6 study years (2003–2005 and 2011–2013), of
which we attached 139 VHF and 23 GPS transmitters and obtained 6
942 and 3 565 relocations, respectively. We obtained 3 137, 6 619, and
751 locations from 49, 95, and 18 sage-grouse within the northern, cen-
tral and southern regions, respectively. Overall, the majority of trans-
mitters (55%) were deployed within the central region of the Bi-State
DPS, while the southern region only received VHF transmitters and
had the least amount of representation (12%). Within the Bi-State DPS
boundary, we estimated that CC1, CC2, and CC3 composed 33.2%,
11.6%, and 9.8% of all land cover, respectively (northern subregion =
36.7%, 13.3%, and 17.5%; central subregion= 35.7%, 12.6%, and 9.4%;
and southern subregion = 27.1%, 9.2%, and 7.1% of CC1, CC2, and CC3,
respectively). Within defined sage-grouse habitat within the Bi-State
DPS boundary (BLM and USFS, 2015), we estimated CC1, CC2 and CC3
represented 46.2%, 8.9%, and 6.1% of land cover, respectively (northern
subregion = 16.4%, 4.3%, and 6.2%; central subregion = 20.9%, 3.9%,
and 2.0%; and southern subregion = 4.3%, 0.7%, and 0.2% of CC1, CC2,
and CC3, respectively).

Modeling Pinyon-Juniper Avoidance and Effects on Survival

Based on the prerequisite analyses, the ecological scale of 1 451 m
garnered the most support from the data (lowest DIC and highest
SSVS) for the sagebrush covariate, while a 439-m scale garnered the
most support for all pinyon-juniper cover classes (Table S1 in the online
version at http://dx.doi.org/10.1016/j.rama.2016.09.001). Thus, these
scales were carried forward in subsequent modeling procedures. Each
model in stage 1 of the analysis consisted of a cover class covariate
(CC1, CC2, or CC3) and the sagebrush and productivity covariates as ad-
ditive fixed effects. These variables were evidenced by the data and
retained in themodel on the basis of SSVS values (see Table S1 in the on-
line version at http://dx.doi.org/10.1016/j.rama.2016.09.001). Posterior
distributions of parameters for potentially confounding variables were
reported in Table 1. Sage-grouse exhibited evidence of avoidance of
pinyon-juniper across all three conifer cover classes (Fig. 3A–C). How-
ever, we found clear differences in evidence among those classes. Spe-
cifically, although the CC1 model indicated evidence of avoidance
from the data, the data also provided the least support for consistent
strong avoidance of this cover class (median estimate = −4.18, 95%
CI =−8.48 to−0.25; see Fig. 3A). Model parameter interpretation in-
dicated that for each 1% increase in the amount of CCI, the relative
avoidance increased by 4.2% (95% CI; 2.5–8.8%). Sage-grouse also used
areas with proportionately less CC1 in comparison with the proportion
available (Table 2). Although a large majority of sage-grouse demon-
strated evidence of avoidance of CC1 (i.e., population-level trend), a
portion of individuals demonstrated proportionate use to availability,
while others demonstrated selection for CC1. Evidence of avoidance
for CC2 and CC3 was substantial. For example, a 1% increase in the
amount of CC2 and CC3 decreased the probability of selection by
34.9% (95% CI; 18.3–56.2%) and 34.0% (95% CI; 11.0–63.4%; see Fig. 3B
and C), respectively. Similarly, sage-grouse used areas with proportion-
ately less CC2 and CC3 in comparisonwith the respective amounts avail-
able (see Table 2). Furthermore, we found substantially more variation
among individuals in their avoidance of CC1 (see Fig. 3A) than that of
CC2 and CC3 (see Fig. 3B and C, respectively).
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Figure 3. A−F, Summary of Stage 1 (left panels) and Stage 2 (right panels) analyses by pinyon-juniper cover class (CC) for greater sage-grouse populations within the Bi-State Distinct
Population Segment during 2003–2005 and 2011–2013. Stage 1 inferences the log odds response (avoidance) of sage-grouse to increasing pinyon-juniper cover across three classes (CC1,
CC2, and CC3). Samples were derived from posterior distribution of individuals (thin lines; red depicts avoidance trend and blue depicts selection; log-odds of 0 equates to proportionate
use to availability). Median avoidance trends (thick black lines) represent the population-level pattern. Stage 2 describes the effect of relative probability of pinyon-juniper avoidance on change
in survival from a baseline hazard function. Samples were randomly chosen from posterior distributions of individuals (thin red lines) to illustrate variation among individuals. Median (thick
black lines) survival probabilities are depicted across continuous cover class values. The dashed black line indicates the threshold of effect of avoidance on survival (zero slope).
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Using the predictive response curve (median values) of the relative
probability of selection across different proportions of the cover classes,
we identified thresholds in the proportion of each cover class where
sage-grouse exhibited avoidance. For example, at the population level,
sage-grouse were tolerant of CC1 until the value reached between 30%
and 40% (see Fig. 3A); hence, sage-grouse would be expected to exhibit
Table 2
Mean proportion of area estimates (95% confidence intervals) of continuous variables grouped b
within the Bi-State Distinct Population Segment during 2003–2005 and 2011–2013.

Variable Used Available

CC1 (439 m) 0.36 (0.33-0.40) 0.43 (0.4
CC2 (439 m) 0.02 (0.02-0.02) 0.12 (0.1
CC3 (439 m) 0.01 (0.00-0.06) 0.11 (0.0
Sagebrush (1451 m) 0.79 (0.55-0.97) 0.53 (0.3
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avoidance once that threshold was surpassed. The 30–40% CC1 thresh-
old value calculates to ~1.5–2.0% of actual pinyon-juniper cover that oc-
curs within the CC1 class. Thus, at the population level, evidence of
avoidance (negative log odds, see Fig. 3A) was reached within this
threshold range. Sage-grouse are likely to use areas with cover below
1.5% because they represent values with positive odds (better than 1:1
y used and available locations, aswell as locationswhere sage-grousewere alive and dead

Alive Dead

0-0.48) 0.36 (0.32-0.40) 0.47 (0.40-0.54)
1-0.13) 0.02 (0.02-0.02) 0.04 (0.02-0.05)
1-0.27) 0.06 (0.00-0.15) 0.05 (0.00-0.19)
8-0.65) 0.79 (0.56-0.97) 0.77 (0.21-0.98)
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odds, see Fig. 3A). For CC2 and CC3, we found a precipitous increase in
avoidance as the proportion increased from zero (see Fig. 3B and
C) with no clear threshold.

We recorded 87 mortalities from the 162 telemetered sage-grouse.
In the frailty stage of the linked model consisting of CC1, we found
95% CIs (1.002–1.051) for the 10-day hazard function of avoidance of
pinyon-juniper did not overlap 1.0, indicating that sage-grouse that
chose to avoid CC1 were more likely to survive (see Fig. 3D). Nearly all
posterior samples exhibited positive relationships between relative
avoidance of CC1 and an increase in annual survival. Given the estimates
from the posterior distribution, a 10% increase in relative avoidance of
CC1 (based on odds) was associated with an increase in annual survival
of 1.91% (95% CI= 1.54–2.02%; see Fig. 3E). The proportion of CC1 at lo-
cationswhere sage-grousewere detected alive (mean=0.36; 95% CI=
0.32–0.40)was less than the proportionwhere theywere detected dead
(mean=0.47; 95% CI=0.40–0.54; see Table 2). These descriptive sum-
maries of raw data corroborate model inferences and provide evidence
of a threshold near 30–40% of CC1 (~ 1.5–2% actual cover). Amodel that
consisted of CC2 and CC3 showed similar trends, but 95% CIs for changes
to annual survival probability included zero (CC2: 95% CI = −1.01 to
0.81%; CC3: 95% CI=−0.14 to 2.21%). Furthermore, 95% CIs for propor-
tions of CC2 and CC3 at locations where sage-grouse were alive versus
dead overlapped (see Table 2). Variation among individuals in avoid-
ance of areas with isolated and scattered trees suggests that sage-
grouse that avoided such areas were at less risk of dying (see Fig. 3D).
Although overall avoidance was most evident for areas with denser
tree canopy (CC2 and CC3), benefits of avoiding these areas in terms
of consistent increase in survival were not supported strongly by the
data (see Fig. 3E−F).
Post Hoc Survival Analysis

In the post hoc survival analysis, we found that the time-varying ef-
fect of CC1 of pinyon-juniper on sage-grouse survivalwas dependent on
the primary plant productivity of areas sage-grouse used. The inclusion
of this productivity term (see Equation 5) to represent this more
Figure 4. The relationship between pinyon-juniper cover class 1, primary plant
productivity (based on soil moisture and temperature data; Maestas et al., 2016), and
survival of greater sage-grouse populations within the Bi-State Distinct Population
Segment during 2003–2005 and 2011–2013. Model inferenced greater sage-grouse
annual survival probabilities (median values as thick lines and samples from posterior
distribution as thin lines) across increasing area of cover class 1 within areas of relatively
higher primary productivity (blue lines) compared with those of less productivity (red
lines).
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complex effect was supported by SSVS (Table S1 in the online version
at http://dx.doi.org/10.1016/j.rama.2016.09.001) and the 95% credible
interval for the parameter describing this term did not include zero, in-
dicating substantial support from the data. Namely, areas that were
more productive were associated with increased hazard within CC1
(Fig. 4). The 95% CIs for the 10-day hazard function for CC1 within
more productive areas did not overlap 1.0 (95% CI = 1.1–2.2). On the
basis of estimates from the posterior distribution, a 10% increase in
CC1 within relatively more productive areas (i.e., equivalent to a 0.5%,
on average, increase in actual cover conifer) was associated with a de-
crease in annual survival by 4.9% (95% CI = 2.9–5.2%; see Fig. 4). Thus,
our model predicted that a 1% reduction of actual pinyon-juniper cover
within areas of CC1 and higher primary productivity equated to an ap-
proximate 10% change in annual survival. However, in less productive
areas, ourmodel did not supportmeasurable effects on survival as CC1 in-
creases (see Fig. 4). On the basis of the intersection of predictive response
curves (median values) for both levels of productivity, we identified a
threshold of 38% cover of CC1 where the benefits to survival from
inhabiting high productive areas were nullified by increases in CC1
cover. For example, at relatively low levels of CC1, survival was greater
in more productive areas than those that were less productive. However,
survivalwas greater in the areaswith lower rather than higher productiv-
ity once the thresholdwas surpassed. Thus, areaswith N 38% cover of CC1
(corresponding to ~2%actual cover) contribute to lower than average sur-
vival probabilities, as a result of increased hazardwithin productive areas
usually associated with higher elevations. In contrast, a post-hoc survival
analysis that evaluated the time-varying effect of CCP was not supported
by the data, given that 95% CIs for the hazard function for CCP and by hab-
itat productivity included 1.0 (see Table 1).
Discussion

This study identified clear and predictable relationships between
pinyon-juniper cover and sage-grouse demography. The effects were
especially apparent where pinyon-juniper cover was relatively low.
Sage-grouse avoided environments that consisted of pinyon-juniper
trees but exhibited distinct differences in the strength of avoidance
based on the approximate phase of encroachment (Phase I, II, and III;
Miller et al., 2005, Falkowski and Evans, 2012). Specifically, the estimat-
ed variation in avoidance behavior among individuals was the greatest
for the lowest canopy cover (i.e., CC1), which indicated selection of
these sparsely encroached areas by some sage-grouse, whereas others
avoided them. However, areas with greater pinyon-juniper cover
(i.e., CC2 and CC3) were consistently and strongly avoided by all indi-
viduals, indicating a population-level effect with much less variation
among individuals. For CC1, trees were more likely to be scattered
across the landscape with b 10% canopy cover and approximated
Phase I encroachment, whereas for CC2 and CC3, trees were relatively
clustered, representing N 10% canopy cover and approximated Phase II
and III, respectively. Interestingly, the relative importance of cover
class was opposite for survival compared with avoidance, whereby dis-
proportionate use of CC1 imposed greater risks to survival compared
with CC2 and CC3. This finding was facilitated by our approach that
linked decisions by sage-grouse directly to a component of their fitness
and demonstrated that individual sage-grouse that avoided CC1 were
more likely to survive. In contrast, the effects on survival by avoiding
CC2 and CC3 were not clear because confidence limits for the change
in annual survival probability included zero. Upon further investigation,
we identified differences in the effect of CC1 on hazard rates in relation
to our proxy for plant productivity using time-dependent models.
Survival-enhancing resources afforded normally by areas with high
plant productivity were nullified (or reversed) when encroached by
CC1 pinyon-juniper areas. Hence, high levels of CC1 encroachment in
productive habitats can lead to substantial reductions in sage-grouse
survival.
024

http://dx.doi.org/10.1016/j.rama.2016.09.001


34 P.S. Coates et al. / Rangeland Ecology & Management 70 (2017) 25–38

Downlo
Terms 
Heterogeneity in pinyon-juniper cover also creates a landscape
mosaic, where areas with varying levels of tree cover and overall pro-
ductivity likely have distinctly different influences on local distribution-
al patterns and population viability of sage-grouse. For example,
because CC2 and CC3 (clustered trees) were largely avoided by sage-
grouse, these areas are not used widely and may confine space use by
sage-grouse to sagebrush communities with few or no trees. Although
areas of fewer scattered trees (i.e., CC1) were generally avoided at the
Figure 5. Map depicting encroachment of pinyon-juniper CC1 in areas of relatively high prim
juxtaposition to breeding leks within the Bi-State Distinct Population Segment.
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population level, many individuals selected these areas or used them
proportional to their availability, despite the relatively greater risk of
mortality. In addition, we discovered that this adverse effect pertains
to sage-grouse inhabiting areas with increased overall plant production
that occur typically at higher elevations (Chambers et al., 2014a) and
should otherwise contribute to increased survival in the absence of
trees. Encroachment of CC1 into productive areas comprises large
portions of the Bi-State DPS and is occurring within close proximity of
ary productivity based on soil moisture and temperature data (Maestas et al., 2016) and
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breeding leks (Fig. 5), so this pattern may strongly influence population-
level demographic rates.

We demonstrated that in the absence of pinyon-juniper, sage-
grouse using high-productivity habitat had greater annual survival
compared with those using low-productivity habitat (y-intercepts, see
Fig. 4). However, the pattern of decreasing annual survivalwith increas-
ing proportions of CCI encountered in high, but not low, productivity
habitats supports the notion that sparsely distributed trees in produc-
tive habitats (particularly at CC1 N 30%, actual cover N 1.5%) may facili-
tate development of an ecological trap for sage-grouse. Ecological
traps can occur when a habitat conveys attractive traits that act to de-
couple behavioral cues that an individual uses to assess habitat quality
and ultimately negatively impacts a component of their fitness. Unlike
population sinks, traps involve individual preference for particular re-
sources and can be highly ephemeral with environmental change
(Battin, 2004; Robertson and Hutto, 2006). Some studies of sage-
grouse indicate that habitat-mediated trade-offs in life history−
specific vital rates can occur, such as decreases in annual survival that
are offset by increased fecundity in productive habitats (Blomberg
et al., 2013b; Caudill et al., 2014). Thus, productive areas despite the
presence of isolated trees might ultimately contribute to population
growth. However, evidence of this scenario in the context of conifer en-
croachment is lacking and a recent study demonstrated that tree
removal can improve reproduction for sage-grouse (Sanford et al.,
2017-this issue). Furthermore, a recent range-wide meta-analysis indi-
cated that changes in female annual survival had the most influence on
annual population growth rate (Taylor et al., 2012). While not
discounting unmeasured impacts on fecundity in this study, it follows
that decreases in annual survival facilitated by encroaching pinyon-
juniper in habitats that sage-grouse will select can have nontrivial im-
pacts on a component of theirfitness and, perhaps, influence population
growth rates.

Our telemetry data and analyses provided a demographically-based
empirical explanation for previously reported large-scale adverse effects
of pinyon-juniper on sage-grouse population dynamics using lek data
(Baruch-Mordo et al., 2013). For example, the predictive curves reported
in Baruch-Mordo et al. (2013) demonstrate that little to no lek activity
was largely related to areas with scattered trees with relatively low cano-
py cover and are consistent with our model predictions of avoidance and
survival. Specifically, our findings indicate an avoidance response of
pinyon-juniper by sage-grouse at cover values that correspond to
CC1 = 30–40%, which correspond to ~1.5–2.0% actual tree canopy
cover. In Baruch-Mordo et al. (2013), b50.0% probability of lek activity
corresponded to ~2.0% actual tree cover. In addition,median survival pre-
dictions in our studywere identified at ~40.0% (2.0% actual cover) of CC1,
which also aligned closelywith the pointwhere survival in relatively high
productive areas decreased below the average value as tree cover in-
creased. Furthermore, a similar telemetry-based study in Oregon found
that sage-grouse habitat selection was negatively associated with N 3.0%
conifer cover (Severson et al., 2017–this issue). From amanagement per-
spective, the target value of 3.0–4.0% actual canopy cover suggested by
Baruch-Mordo et al. (2013) was consistent with patterns of high avoid-
ance and increased risk of mortality in our study. However, our results
indicate that pinyon-juniper treatments that allow N 2.0% tree cover
to remain standing may still lead to unintended reductions in sage-
grouse distribution, survival, and perhaps population persistence. For ex-
ample, a non-trivial proportion of sage-grouse in our study demonstrated
use of CC1where cover exceeded 80% (corresponding to ~4.0% actual tree
canopy cover). Based on modeled parameter estimates, sage-grouse that
use areas with 80% CC1 were predicted to have a median reduction of ~
10% in annual survival. Furthermore, grouse that use these lightly
encroached habitats in areas of relatively high plant productivity incur a
median reduction in annual survival by ~ 30% in comparison to those
that use the same high productivity areas with no trees (Fig. 4) (10%
less than the median). Thus, given the pattern of consistent results from
these studies and ours, land and wildlife managers might consider
ed From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 03 Dec 2
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focusing efforts in areas of CC1 and targeting removal in areas relevant
to sage-grouse as low as 1.5–2.0% tree canopy cover, which approximates
30–40% cover of CC1, especially in areas of high plant productivity.

The consensus among these studies in estimated effectswas reached
despite differingmethodologies that includedmeasurements of explan-
atory variables, types of species response, and overarching statistical
approaches. For example, Baruch-Mordo et al. (2013) calculated can-
opy cover using estimated crown areas from a spatial wavelet analy-
sis (Falkowski et al., 2006) and modeled lek activity as a function of
pinyon-juniper and other habitat covariates using a Random Forest
nonlinear modeling approach (Evans et al., 2011). In contrast, our
study estimated canopy cover using automated extraction algorithms
within Feature Analyst that utilize spatial context and spectral
information, and used a Bayesian approach to estimate avoidance of
pinyon-juniper from use versus available data and survival from time-
dependent frailty models. The latter two estimates also required individ-
ual bird-level data with encounter histories. Despite these differences,
consistent projections among studies indicate that estimated effects are
not spurious artifacts of a specific modeling technique. Instead, our
study complements Baruch-Mordo et al. (2013) by providing the expla-
nation that lek inactivity was likely a deterministic result of low sage-
grouse survival and describes functional differences between phases of
pinyon-juniper encroachment. Our results point to the importance of re-
ducing the scale of observation to identify processes driving broader pat-
terns (see Prochazka et al., 2017) and, when coupled with results from
Baruch-Mordo et al. (2013), indicate that pinyon-juniper encroachment
leads to population-level extirpation by adversely affecting demographic
rates. Furthermore, a similar study using extensive GPS data across the
Great Basin demonstrated shifts in movement speed of sage-grouse
when encountering pinyon-juniper that lead to increased hazard rates,
particularly for juveniles (Prochazka et al., 2017-this issue).

These collective results align with findings in sage-grouse ecology
that view predation as the leading source of sage-grouse mortality
(Hagen, 2011; Blomberg et al. 2013), and the differences in mortality
risk among cover classes and plant productivity are likely attributable
to greater exposure to predators. For example, multiple species of
large Buteo hawks, which are effective predators of full-grown sage-
grouse (Schroeder et al., 1999), often prefer relatively flat, open
shrublands that interface pinyon-juniper woodlands, especially outlier
trees from the main woodlots (Bechard and Schmutz, 1995; Coates
et al., 2014b). Ferruginous (Buteo regalis) and Swainson’s (B. swainsoni)
hawks that nest in sagebrush ecosystems prefer nesting in single trees
or isolated groups of trees surrounded by open areas with sagebrush
cover (Coates et al., 2014b) and tend to build nests on large flat-
topped junipers. Another effective Buteo predator of sage-grouse, the
red-tailed hawk (B. jamaicensis), often uses areas with less tree canopy
cover to accommodate their relatively large size and wingspan (Leyhe
and Ritchison, 2004). Faster and riskier movements by sage-grouse in
sagebrush areas with pinyon-juniper, as indicated in Prochazka et al. (In
press), likely increase sage-grouse susceptibility to visually acute preda-
tors and may be a behavioral mechanism underlying part of the pattern
observed in our study. Additionally, large- and medium-sized mam-
malian predators can be a strong source of predation (Blomberg
et al., 2013a), and may also vary in abundance with tree canopy
cover and primary productivity as a result of indirect links with num-
bers of their principle food source, small mammals. For example,
within the range of precipitation observed in the Bi-State, total spe-
cies richness of small mammals should increase with productivity
(Reed et al., 2006). The abundance of small mammals is greater in
areas where trees were thinned compared with those without treat-
ment (Severson, 1984; Willis and Miller, 1999), largely as a result of
an increase in herbaceous understory (Miller et al., 2000; Miller
et al., 2005). Our study focused on sage-grouse survival, but future
studies that address nest and brood success in relation to trees
would be beneficial. For example, common ravens (Corvus corax)
(Coates and Delehanty, 2010) also tend to avoid foraging and nesting
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in juniper woodlands (Coates et al., 2014a; Howe et al., 2014) but are
highly likely to nest in single trees within shrub-dominated environ-
ments (Dunk et al., 1997; Coates et al., 2014a; Howe et al., 2014).

Implications

We recognize that these findings represent new trade-offs and ques-
tions (e.g., Tausch et al., 2009) that managers should consider when
evaluating treatment options for pinyon-juniper to conserve sage-
grouse populations. The response curves presented in this studyprovide
managers with support for such decisions across different canopy cover
classes and levels of productivity based on R&R classes.Most important-
ly, the curves demonstrate that relatively high-productivity areas that
consist of N 30% CC1 (equivalent to N 1.5% actual trees isolated and
scattered) offer resources attractive to sage-grouse but are risky envi-
ronmentswith respect to predation. This should be of conservation con-
cern within the Bi-State given that ~29% of CC1 may be found in high-
productivity habitats (i.e., R&R class 1) (Fig. 5). In addition, nearly half
(48%) of CC1 within identified sage-grouse habitat in the Bi-State
(BLM and USFS, 2015) also comprise high-productivity habitats. Impor-
tantly, these areas likely comprise upland wet meadow areas that are
vital habitat during late summer periods, especially for brooding fe-
males (Casazza et al., 2011), andmight prove to be important for resto-
ration success.

Additionally, prioritizing removal of all trees in CC1 over thinning of
those in CC2, particularly in productive areas, would likely benefit sage-
grouse population vital rates most because the overall hazard for the
population was predicted to decrease with less pinyon-juniper encoun-
ters. From a perspective of restoring sagebrush ecosystems, manage-
ment practices aimed at thinning pinyon-juniper trees in CC2 and CC3
(without removing all trees) are commonly conductedwith intent of re-
ducing woody fuel loads and wildfire risk (Bates et al., 2005; Roundy
et al., 2014a, 2014b), increasing soil moisture retention (Roundy et al.,
2014b), improving understory conditions (Bates et al., 2005; Miller
et al., 2014; Roundy et al., 2014a), and improving health and vigor of in-
dividual trees (Page, 2008). Because CC2 areas are also codominated by
sagebrush, complete removal of trees in these areas would likely make
more sagebrush habitat available to sage-grouse, assuming space for-
merly occupied by trees is not invaded by annual grass (Davies et al.,
2011). However, from a perspective of sage-grouse population ecology,
our models indicate that thinning trees (e.g., allowing isolated and
scattered trees to remain standing) in areas of CC2 with relatively
high primary production (i.e., R&R class 1) could have adverse conse-
quences on specific sage-grouse population vital rates by creating risk-
ier conditions, effectively similar to CC1 (e.g., ecological traps). For
example, we demonstrated that as low as 2.0% isolated and scattered
tree cover (40% CC1) can lead to avoidance and reduced survival of
sage-grouse.

Importantly, our results do not inform how sage-grouse might re-
spond to additional variation imposed by the specific type of pinyon-
juniper treatment employed. Sagebrush ecosystem processes respond
variably to mechanical, chemical, and controlled burning treatments
of pinyon-juniper (Tausch et al., 2009; Davies et al., 2011; Strand
et al., 2013; Pyke et al., 2014), and sage-grousewould be expected to re-
spond variably aswell. However, certain environmental conditionsmay
make some treatment options more tenable, thus benefiting both sage-
grouse and sagebrush ecosystems. In particular, high-elevation moun-
tain sagebrush habitats have become increasingly invaded by pinyon-
juniper, in part due to suppression of wildfire (Brooks et al., 2015).
Burning of sagebrush and associated pinyon-juniper in low-elevation
areas with warm and dry conditions has been clearly demonstrated to
increase risk of annual grass invasion and promote an annual grass-
fire cycle that consumes and destroys more sagebrush. However, wet
and cool high-elevation areas have inherently greater resilience to dis-
turbance (such as fire) and resistance to annual grass invasion
(Chambers et al., 2014a, 2014b). In the short term, burning of sagebrush
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 03 D
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across elevation gradients associateswith immediate reductions in pop-
ulation growth by decoupling positive benefits of precipitation
(Blomberg et al., 2012; Coates et al., In press). Over longer time periods,
however, burning high-elevation CC2 encroached areas that are highly
avoided by sage-grouse but costly to remove completely bymechanical
means may not have the same immediate adverse effects but instead
help increase population growth. Management strategies are system
dependent, and the expected effects of such strategies on sage-grouse
populations and restoration success will likely vary in response to the
underlying environmental constraints.

To the extent that the effects of pinyon-juniper in the Bi-State region
are somewhat representative of those experienced by other sage-
grouse populations, our results can be generalized to other portions of
sage-grouse range. A simple comparison of the proportion of CC1 and
CC2 within sage-grouse habitats between Bi-State DPS to proportions
of CC1 and CC2 mapped across the rest of NV and northeastern CA re-
ported by Coates et al. (2015) indicated that the Bi-State consisted of
15.7% and 1.6%, less CC1 and CC2, respectively. This comparison,
coupledwith our findings of adverse effects of CC1 on survival, indicates
the threat of pinyon-juniper encroachment to sage-grouse habitat is
likely similar ormore pronounced in other areas of theGreat Basin. Last-
ly, our analytical approach for linking selection to survival can be ap-
plied within existing conservation planning tool (CPT) frameworks on
the basis of resource selection functions (Farzan et al., 2015) to make
spatially explicit predictions for where pinyon-juniper removal might
best benefit sage-grouse, which would now take into account the rela-
tive mortality risk (hence, fitness consequences) caused by different
phases and densities of pinyon-juniper.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rama.2016.09.001.
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