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a b s t r a c t 

Woody plant encroachment into rangeland ecosystems is a widespread and often unwelcomed circum- 

stance affecting rangeland management decisions worldwide. In the rangeland management profession, 

varying philosophies have been employed in the management of woody plant encroachment. Following 

World War II, total eradication of woody plant cover was commonly practiced, eventually giving way 

to a mosaic approach that benefits livestock, wildlife, and recreational objectives, with cover increasing 

or even stabilizing in many areas. Cultural practices such as land fragmentation, lifestyles not depen- 

dent on agricultural income, and shifts in herbivory from predominately browsers to grazers may also 

be contributing factors. Modern image analysis technologies, such as object-oriented feature extraction 

and patch metric analyses, can shed light on past paradigm shifts through spectral and textural assess- 

ment of modern and historical aerial photography. In this study, woody plant cover and patch metrics 

were analyzed for a period spanning from 1938 to 1940 through 2018 in the Bennett and Sulphur Creek 

watersheds of the Lampasas Cut Plain of Central Texas. Object-based feature extraction was used to cal- 

culate woody plant cover, and Fragstats was used for landscape patch metrics. Total woody cover was 

compared with past stewardship paradigms. There was a net decrease of total woody plant cover from 

1938 to 1940 through 2018, with variation in between as management paradigms shifted. A pattern of 

decline, regrowth, and stabilization, like that observed in other research, was noticed for the Bennett 

Creek watersheds but was not apparent in Sulfur Creek. Patch size/shape varied as well, but fractal patch 

complexity was relatively stable through time. Raster algebra analysis showed that < 10% of the initial 

woody cover from 1938 to 1940 remained in 2018, although total cover went through various expan- 

sion/reduction phases. This research underscores the importance of long-term datasets and locally based 

knowledge in the application and interpretation of historical management paradigms. 

© 2021 The Authors. Published by Elsevier Inc. on behalf of The Society for Range Management. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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The intrusion of woody plant species into grass-dominated 

angelands is a much documented and often maligned phe- 

omena affecting rangelands worldwide ( Archer 1994 and 1995 ;
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 combination of various factors such as modified fire return in-

ervals, altered livestock grazing regimes, climate change, altered 

O 2 concentrations, nitrogen depositions, and rural demographic 

hanges are all believed to be contributors of woody plant en-

roachment ( Young et al. 1948 ; Scifres 1980 ; Schlesinger et al.

990 ; Archer 1994 ; Miller and Wigand 1994 ; Van Auken 20 0 0 ;

rummond et al. 2012 ; Berg et al. 2015 ; Berg et al. 2016 ). Range-

ands are an important natural resource, making up approximately 

4% of the conterminous United States ( Vogelmann et al. 2001 )

nd 40% of the earth’s total land surface ( Chapin et al. 2001 ; Bailey

009 ), contributing to one-third of worldwide net terrestrial pro- 

uctivity ( Field et al. 1998 ). Woody plant encroachment therefore

an have negative implications on hydrological and biogeochemi- 
nge Management. This is an open access article under the CC BY-NC-ND license 
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https://doi.org/10.1016/j.rama.2021.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/rama
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rama.2021.05.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:edward.rhodes@agnet.tamu.edu
https://doi.org/10.1016/j.rama.2021.05.006
http://creativecommons.org/licenses/by-nc-nd/4.0/


E.C. Rhodes, J.P. Angerer and W.E. Fox et al. / Rangeland Ecology & Management 78 (2021) 54–66 55 

c  

d  

g  

1  

a  

w  

a  

T

W

 

n  

o  

T  

m  

v  

w  

a  

e  

(  

t  

b  

m  

1  

E  

f  

t  

t  

p  

m  

a  

1  

w  

p

 

s  

m  

H  

e  

b  

f  

I  

A

 

T  

p  

t  

B  

t  

1  

2

 

i  

b  

H  

r  

l  

o  

m

 

t  

a  

f

a  

h  

a  

b  

v  

a  

t  

P  

m  

m  

h

t  

s  

K

R

 

l  

i  

i  

i  

R  

f  

m  

i  

t  

a  

m  

W  

c  

c  

a

 

u  

s  

e  

e  

i  

c  

w  

p  

m

 

s

i  

v  

t  

i  

l  

a  

r  

a  

(  

L  

p  

c  

d  

2  

b  

c  

h

I

 

c  

C  

t  

t  

Downloade
Terms of U
al processes, including biodiversity, primary and secondary pro-

uctivity, wildlife habitat, as well as the cycling of water, nitro-

en, and carbon ( Houghton et al. 1983 ; Archer 1994 ; Vitousek et al.

997 ; Ramankutty and Foley 1999 ; Huxman et al. 2005 ; Huang et

l. 20 06 ; Wilcox 20 07 ; Tennesen 20 08 ). In the following sections,

e explore woody plant management paradigms in the literature

nd remotely sensed cover trends over an 80-yr period in central

exas, United States. 

oody Plant Expansion 

As early as the 1890s, woody plant encroachment had become a

oticeable concern in Texas, with estimates of up to 26 million ha

f affected rangelands ( Smith 1899 ; Bray 1904 ; Young et al. 1948 ).

he introduction of barbed wire in the 1870s led to the confine-

ent of livestock ( Hamilton and Ueckert 2004 ) while providing

ertical structures (fenceposts and wire) that served as vectors for

oody plant seed dispersal by birds ( Phillips 1910 ; Holthuijezen

nd Sharik 1985 ). Young et al. (1948) estimated that woody plant

ncroachment cost the Texas ranching industry $18.5 million USD

 ∼$196 million adjusted 2019 dollars) in lost rangeland produc-

ivity. It is well documented that in much of the United States,

rush control became a top priority within the rangeland manage-

ent profession in the early 20th century ( Moses 1956 ; Holechek

981 ; McKenzie et al. 1984 ; Hamilton et al. 2004 ). In 1933, the Soil

rosion Service, later renamed the Soil Conservation Service, was

ounded and is now known as the Natural Resources Conserva-

ion Service (NRCS) ( Holechek 1981 ). Throughout its 88-yr history,

he NRCS has assisted landowners on numerous land management

ractices, including woody plant removal. The Agricultural Adjust-

ent Act of 1938 established one of the first programs for federal

ssistance in the removal of woody plants ( Cartwright 1966 ). The

940s were marked by the development of 2,4-D, which became a

idely used herbicide for the control of woody and other noxious

lants ( Holechek 1981 ). 

In the years following World War II, the spread of large tractors,

urplus heavy equipment, and anchor chain enabled woody plant

anagement effort s to expand considerably ( McKenzie et al. 1984 ;

amilton and Hanselka 20 0 0 ; Hamilton et al. 2004 ). The heavy

quipment industry, which had emerged around 1900, received a

oon of production during World War II that continued to grow

ollowing passage of the 1949 Housing Act and the 1956 Federal

nterstate Highway Act ( US Senate 1956 ; Lassiter and Kruse 2009 ;

mmon 2016 ; Caterpillar 2021 ). 

By the 1950s, the Texas Agricultural Experiment Station (now

exas A&M AgriLife Research) had conducted extensive field ex-

eriments on chemical and mechanical woody plant removal and

heir effects on grass recovery and productivity ( Moses 1956 ).

rush management had become a major land management prac-

ice, often focused on total brush eradication ( Moses 1956 ; Carter

958 ; Holecheck 1981 ; McKenzie et al. 1984 ; Hamilton and Ueckert

0 0 0 ; Hamilton and Hanselka 20 0 0 ; Hamilton et al. 2004 ). 

Over time, the philosophical attitude toward woody plant erad-

cation shifted and a new paradigm of woody plant management

egan to take hold in the late 1950s ( Hamilton and Hanselka 20 0 0 ;

amilton et al. 2004 ), as it was shown that not all kinds of brush

emoval methods were economically reasonable on every range-

and type ( Allison and Rechenthin 1956 ). In addition, the adoption

f steel “T” fence posts in the 1950s dramatically reduced the de-

and for juniper fence posts ( Cartwright 1966 ; Ferguson 2019 ). 

Concurrently, in the 1960s and 1970s there were considerations

hat leaving some woody species was desirable for wildlife habitat

nd browse ( Scifres 1980 ; Hamilton et al. 2004 ). In central Texas,

or example, the golden-cheeked warbler (Dendroica chrysoparia) 

nd black-capped Vireo (Vireo atricapilla) are two species that are

ighly dependent on woody cover. The golden-cheeked warbler is
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 02 Dec 20
se: https://bioone.org/terms-of-use
n Ashe juniper obligate species, requiring mature trees for nest-

uilding sites and materials ( Kroll 1980 ), while the black-capped

ireo prefers areas of mixed juniper and oak ( Quercus spp.) ( Bailey

nd Thompson 2005 ). Both species are reliant on edge-to-area ra-

ios ( Kroll 1980 ; Bailey and Thompson 2005 ; Magness et al. 2006 ;

ope et al. 2013 ) and may therefore benefit from woody treat-

ents that exercise a mosaic structure. In South Texas, a brush

anagement systems approach was used that integrated the use of

erbicides, mechanical treatments, fire, and grazing management 

o enhance grazing for livestock and wildlife and created patch mo-

aics that could provide edge and cover ( Scifres 1980 ; Scifres and

oerth 1986 ; Hamilton et al. 2004 ). 

emote Sensing/Feature Extraction 

One persistent challenge when trying to understand historical

and cover changes over time is the lack of widespread long-term

n-situ field data. Quality, long-term datasets are generally local-

zed in nature and do not capture the full scope of variability

n vast heterogenous ecosystems ( Washington-Allen et al. 2006 ;

ango et al. 2008 ). Thus, past data collection methods may not

ully address modern research questions. Moreover, as manage-

ent priorities evolve, so do the variables measured; leading to

nformation that is not necessarily repeated to the same degree

hrough space and time ( West 2003 ). However, high-resolution

erial photography datasets from fixed-wing aircraft became com-

ercially available to portions of the United States just after World

ar I ( Lillesand et al. 2015 ) and can be useful for examining

hanges in vegetation over space and time. Today, many histori-

al imagery datasets are maintained in private collections and state

nd federal government repositories. 

Historical aerial photographs provide a trove of information

seful for not only for the study of rangelands but also under-

tanding historical agricultural practices ( Zomenii et al. 2008 ; Berg

t al. 2016 ), carbon storage ( Asner et al. 2003 ), hydrology ( Berg

t al. 2016 ), urban growth ( Herold et al. 2005 ), and even identify-

ng archaeological sites ( Stichelbaut 2011 ). By using remote-sensing

lassification analyses on historical aerial photographs, changes in

oody plant cover and patch metrics may be assessed from a time

eriod predating implementation of modern rangeland improve-

ent practices. 

Image classification has long been the nucleus of remote

ensing—transforming imagery into a useful geographic commod- 

ty (dos Santos et al. 2012 ) that is the foundation of many en-

ironmental and socioeconomic uses ( Lu and Weng 2007 ). Tradi-

ional pixel-based classifications assign pixels (cells) of an image

nto classes based on each pixel’s spectral characteristics. This can

ead to noisy classifications that have a salt-and-pepper appear-

nce ( Lu and Weng 2007 ). Object-oriented classification is more

obust than pixel-based classification, by first segmenting an im-

ge into objects based on spectral, textural, and spatial attributes

 Baatz and Schape 1999 ; Franklin et al. 20 0 0 ; Thomas et al. 2003 ;

aliberte et al. 2004 ; Mitri and Gitas 2004 ). Object-oriented ap-

roaches have been shown to increase image classification ac-

uracy by 10 −15% ( Franklin et al. 20 0 0 ) and are successful in

elineating tree canopies ( Gibbes et al. 2010 ; Poznanovic et al.

014 ). In Idaho, Davies et al. (2010) found a strong correlation

etween ground measurements of western juniper ( Juniperus oc-

identalis subsp. Occidentalis Hook.) and classifications made with

igh-resolution US Department of Agriculture National Agriculture 

magery Program (NAIP) imagery. 

Our objective was to quantify landscape-level total woody plant

over and patch metrics for five watersheds within the Lampasas

ut Plain in central Texas over a period of 80 yr and compare

hat with published land management paradigms through time. In

his paper, we specifically address the following questions: How
24
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Figure 1. Study area. The five watersheds are located in central Texas in Mills, Lampasas, and Burnet Counties. BC indicates Bennett Creek; NBC, North Bennett Creek; SBC, 

South Bennett Creek; SC4, Sulfur Creek 4; SC5, Sulfur Creek 5. Note the hole in Bennett Creek (BC) watershed coverage due to missing/incomplete data. 
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Terms o
uch woody cover was present in the past? Did brush manage-

ent practices implemented in the region follow 20th century 

and management paradigms? How has the landscape responded 

ince then; were there any other localized factors that may have

ontributed to the woody plant expansion or decline; and how 

uch of the initial woody cover (from the beginning of the avail-

ble spatial data) remains? 

ethods 

tudy Area 

For this study, we selected five watersheds located in Lampasas,

urnet, and Mills Counties of central Texas ( Fig. 1 ). As of the 2010

S Census, Mills County had a total population of 4 936, while

ampasas and Burnet had 19 677 and 42 750, respectively ( US Cen-

us Bureau 2019 ). These five watersheds are within the Lampasas
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 02 De
f Use: https://bioone.org/terms-of-use
ut Plain and are identified as Bennett Creek (BC), North Bennett

reek (NBC), South Bennett Creek (SBC), Sulphur Creek 4 (SC4), and

ulphur Creek 5 (SC5). The Bennett Creek watersheds are primarily 

ocated in Mills County, while the Sulphur Creek Watersheds span 

ampasas and Burnet Counties. 

The Lampasas Cut Plain of central Texas is located within the

S Environmental Protection Agency Limestone Cut Plain Ecoregion 

 Griffith et al. 2007 ). This area is a transitional zone between the

rairies and woodlands of north Texas and the Edwards Plateau 

egion of central Texas ( Berg et al. 2016 ), where mean annual pre-

ipitation is 746 mm ( NOAA CPC 2018 ). Precipitation follows a bi-

odal pattern, with peaks in May and October. The Lampasas Cut

lain is marked by shallow soils over a limestone substrate. Low-

and areas typically contain grasslands; however, some areas may 

nclude pasture and cropland ( Griffith et al. 2007 ). The mesas are

apped by Edwards Limestone and support oak and juniper savan- 

ah ( Griffith et al. 2007 ). Dominant woody vegetation throughout
c 2024
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Table 1 

Acquired imagery metadata. 

County Image yr Acquisition Date Image type Source Cell size (m) 

Mills 1938 Dec 1937-Nov 1938 BW P2 0.40 

1958 Dec 1957-Nov 1958 BW APFO 0.51 

1975 Nov 1975 BW APFO 1.02 

1980 Nov 1980 BW P2 0.63 

1995 Jan 1995 CIR P2 1.01 

2004 Dec 2004 CIR NAIP 1.00 

2008 Sept-Nov 2008 NC/CIR NAIP 1.00 

2012 Oct 2012 NC NAIP 1.00 

2014 Jul 2014 NC NAIP 1.00 

2018 Oct-Nov 2018 M4B NAIP 0.60 

Burnet/Lampasas 1940 Feb-Apr 1940 BW P2 0.45 

1958 Dec 1957-Nov 1958 BW APFO 0.24 

1974 Feb 1974 BW APFO 1.02 

1982 Dec 1982 BW P2 0.90 

1995 Jan-Feb 1995 CIR P2 1.01 

2004 Sept-Dec 2004 CIR NAIP 1.00 

2008 Sept-Nov 2008 NC/CIR NAIP 1.00 

2012 Oct 2012 NC NAIP 1.00 

2014 Jul 2014 NC NAIP 1.00 

2018 Oct 2018 M4B NAIP 0.60 

BW indicates black and white; CIR, color infrared; NC, natural color; M4B, 4-Band; 

P2, P2 Energy Solutions; APFO, USDA Aerial Photography Field Office; NAIP, USDA 

National Agriculture Imagery Program. 
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he region includes the evergreens Ashe juniper ( Juniperus ashei J.

ucholz) and escarpment live oak ( Quercus fusiformis Small) and

he deciduous shrub honey mesquite ( Prosopsis glandulosa Torr.)

 Griffith et al. 2007 ; Berg et al. 2016 ). This region is mostly rural,

ith a few scattered small communities. Primary drivers of the lo-

al economy are agribusiness, tourism, and hunting leases ( Alvarez

nd Plocheck 2017 ). 

magery 

Historical aerial imagery was acquired from the USDA Farm Ser-

ice Agency’s Aerial Photography Field Office (APFO), the USDA

AIP, and P2 Energy Solutions (formerly Tobin International). Im-

gery dates ranged from 1938 to 1940 to 2018 and are composed of

lack and white, natural color, color infrared, and four-band images

 Table 1 ). Fall and winter imagery was preferred to take advantage

f senescent herbaceous vegetation contrasting against the pre-

ominately evergreen woody overstory. Hard copy imagery from

PFO and P2 Energy were digitally scanned and georectified to

004 NAIP imagery ( < 1 m error). All imagery was resampled to 1-

 resolution using nearest-neighbor, converted to grayscale, and fi-

ally smoothed by a 3 × 3 kernel low-pass filter to reduce noise

 Laliberte et al. 2004 ). Due to an isolated combination of poor im-

ge quality and missing slivers of coverage in a portion of the BC

atershed, we chose to remove that spatial extent from each year

ithin the dataset for consistency (see Fig. 1 ). 

oody Cover Classification 

Woody cover was delineated via object-oriented classification

sing the Example-Based Feature Extraction tool in ENVI 5.2. This

as a supervised classification, using the support vector machine

SVM) algorithm to identify and classify objects. One major draw-

ack to historical panchromatic (black and white) imagery is that it

acks the additional spectral data required to identify woody plants

y species ( Browning et al. 2009 ). Fortunately, the ability to clas-

ify vegetation as woody/nonwoody in panchromatic imagery has

een shown to be comparable with classifications with modern

magery ( Browning et al. 2009 ). Therefore, all images were clas-

ified into two classes: woody and nonwoody. The nonwoody clas-

ification included anything not deemed to be woody vegetation,
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 02 Dec 20
se: https://bioone.org/terms-of-use
uch as roads, surface water, farmland, pasture, rangeland, and im-

ervious surfaces. Classification accuracy was assessed via a ran-

om stratified sampling of 100 points from each class (woody,

onwoody) per watershed for each of the available years. Clas-

ifications were deemed accurate if the point correctly identified

oody or nonwoody objects. 

atch/Landscape Metrics 

Landscape patch metrics were calculated using FRAGSTATS ver-

ion 4.2 ( McGarigal et al. 2012 ). FRAGSTATS is a freely available

andscape metrics computation program, provided through the 

niversity of Massachusetts, that is capable of calculating dozens

f landscape metrics. Ritters et al. (1995) established that fewer

ndices are often better, as many of them are redundant in na-

ure. Cain et al. (1997) further demonstrated that measures of di-

ersity, texture (contagion), and fractal dimension were more re-

iable measures of patch structure. Metrics that were gener-

ted in this study for each year of imagery included number of

atches (NUMPAT), patch density (DENS), percentage of land area

PLAND), area-weighted mean patch size (AWPAT), area-weighted 

ean shape (AWSHP), area-weighted fractal dimension (AWFRAC), 

nd contagion (CONTAG). 

NUMPAT, DENS, and PLAND are simple metrics used to clas-

ify the number, density, and percent of total land area of a patch

ype. Area-weighted means were chosen for patch size, shape, and

ractal dimension as they are landscape-centric rather than patch-

entric metrics and represent the conditions of a raster cell chosen

t random ( McGarigal 2015 ). AWPAT, also referred to as correlation

ength, represents the distance one may travel along a random vec-

or within a patch before encountering a new patch type ( Keitt et

l. 1997 ; McGarigal 2015 ). AWSHP is a widely used landscape met-

ic designed to measure the complexity of patches ( Forman and

odron 1986 ). AWSHP is a limitless metric, where a value of 1

ould represent a square patch. The AWSHP value increases with

ncreasing patch complexity. AWFRAC is a more robust measure of

hape complexity. Simple geometry with a straight-line boundary,

uch as a circle or a square, will have a value of 1, while increas-

ngly complex shapes will approach an AWFRAC value of 2, where

early the entire area consists of boundaries ( Mandelbrot 1977 ;

rummel et al. 1987 ; Forman 1995 ; McGarigal 2015 ). CONTAG is

nversely related to edge density and is an often-used measure of

atch aggregation, or clumpiness ( Turner 1989 ; McGarigal 2015 ).

s CONTAG approaches zero, the patch types are completely dis-

ersed (i.e., every single cell is a different patch type). As CONTAG

ncreases, large patches begin to form, until CONTAG reaches 100,

here a single patch type would dominate ( Li and Reynolds 1993 ;

cGarigal 2015 ). The methodologies of each metric may be found

n the FRAGSTATS documentation ( McGarigal 2015 ). 

oody Cover Attrition 

Woody plant cover attrition from 1938/1940-2018 was esti-

ated by assigning each raster cell a value of 1 (woody) or 0

nonwoody). Using map algebra in ArcGIS 10.3, a simple multi-

lication was made beginning with the first 2 yr of data (i.e.,

938 × 1958). The resulting output raster was then multiplied

gainst 1974, and so forth. Cells that remained woody throughout

he entire 1938/40-2018 timeframe would maintain its cell value

f 1 throughout all multiplications ( Fig. 2 ). 

and Use History 

Finally, available historical livestock (cattle, sheep, and goat)

opulations, farm size, and number of farms were obtained

rom the USDA Census of Agriculture for the yr 1935 −2012
24
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Figure 2. Woody plant cover attrition was calculated by multiplying successive rasters against one another, where a cell value of 1 signifies woody plant cover and 0 

nonwoody. Through each iteration, what remained of the original woody plant cover dwindled. 

Table 2 

Image classification accuracy (%) based on identification of 100 randomly generated 

points per class per watershed. 

Watershed 

Yr BC NBC SBC SC4 SC5 

W NW OVR W NW OVR W NW OVR W NW OVR W NW OVR 

1938/40 89 100 94.5 84 97 90.5 92 96 94.0 80 100 90.0 86 98 92.0 

1958 92 97 94.5 83 99 91.0 89 95 92.0 94 88 91.0 87 100 93.5 

1975 90 99 94.5 86 95 90.5 87 96 91.5 87 98 92.5 92 97 94.5 

1982 88 99 93.5 80 93 86.5 74 96 85.0 90 93 91.5 91 93 92.0 

1995 74 98 86.0 75 97 96.0 83 99 91.0 92 97 94.5 85 96 90.5 

2004 94 98 96.0 85 97 91.0 96 97 96.5 98 92 95.0 90 100 95.0 

2008 95 100 97.5 96 98 97.0 97 94 95.5 99 92 95.5 96 99 97.5 

2012 93 96 94.5 95 97 96.0 96 98 97.0 97 96 96.5 90 95 92.5 

2014 96 96 96.0 96 99 97.5 95 97 96.0 95 97 96.0 97 99 98.0 

2018 91 100 96.5 98 97 97.5 94 95 94.5 98 92 95.0 97 93 95.0 

W indicates woody; NW, nonwoody; OVR, overall accuracy; BC, Bennett Creek; NBC, 

North Bennett Creek; SBC, South Bennett Creek; SC4, Sulfur Creek 4; SC5, Sulfur 

Creek 5. 
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Table 3 

Attrition of woody cover from 1938/1940 through 2018. Values are in percent of 

1938/1940 cover remaining. 

Yr BC NBC SBC SC4 SC5 

1938/40 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 

1958 37.83 54.63 25.09 31.96 49.56 

1975 22.08 22.75 10.93 18.24 22.49 

1982 16.62 15.50 6.62 15.42 17.68 

1995 11.82 12.37 8.13 12.90 14.75 

2004 10.02 10.40 4.58 11.50 12.93 

2008 9.11 9.21 4.11 10.93 11.72 

2012 7.47 6.69 3.05 10.19 10.19 

2014 7.33 6.48 2.93 9.88 9.84 

2018 6.17 5.82 2.68 9.05 9.10 

BC indicates Bennett Creek; NBC, North Bennett Creek; SBC, South Bennett Creek; 

SC4, Sulfur Creek 4; SC5, Sulfur Creek 5. 
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Terms o
 USDA-NASS 2014 ). Animal unit equivalents were also calculated 

nd summed across all three classes ( NRCS 2020 ) to provide a con-

istent metric of grazing presence on the landscape. Historical data 

n livestock types, populations, and farm demographics may aid in 

eciphering woody cover dynamics over time. 

esults 

mage Classification 

Classification accuracy for all watersheds was high ( Table 2 ).

verall map accuracy in 47 of the 50 image classifications were

 90 %; the remaining three were > 85%. Woody cover class accu-

acy was > 90% for 32 images, 80 −89% for 14 images, and 74 −75%

or three images. The three lowest woody classifications occurred 

n 1995 and 1982 imagery. Classification accuracy of nonwoody ob- 

ects was quite high, with 49 classifications above 92% and a single

lassification of 88%. 

otal Woody Plant Cover and Patch Metrics 

Class and landscape level metrics for all watersheds are avail-

ble in Figures 3 and 4 . The three Bennett Creek watersheds had

 net loss of woody cover from 1938 to 2018, while the Sulphur

reek watersheds had a net increase (see Fig. 3 , A). However, the

imeframe in between is marked with periods of woody cover de-

line and regrowth. All but one watershed (SC5) had declines in

otal woody cover from 1938 to 1940 to 1958. Woody plant cover

egan to rebound between 1958 and 1975 for BC, SBC, and SC4,

hile woody cover for NBC and SC5 began to increase after 1975.

BC and SBC follow similar trends of rebound and decline post

995, as do SC4 and SC5. BC is an outlier among all of the wa-
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 02 De
f Use: https://bioone.org/terms-of-use
ersheds, as the woody plant cover has remained near or below

0% since 1958. 

Area-weighted fractal dimension was variable between the wa- 

ersheds (see Fig. 3 , B). All five watersheds declined from 1938 to

940 to 1975. After 1975, the Bennett Creek and Sulphur Creek

atersheds diverge. The three Bennett Creek watersheds all reach 

heir lowest fractal dimension in 2008 and begin rising back up

hrough 2018. SC4 and SC5 remained more stable through the 

980s and 1990s and begin to climb in 2012. Contagion values

or all watersheds ranged from 40.5 to 67.89 (see Fig. 3 C). Con-

agion increased from 1938 to 1940 to 2018 for all Bennett Creek

atersheds and declined across the Sulphur Creek watersheds 

see Fig. 3 C). 

Number of patches and patch density increased for all five wa-

ersheds, illustrating that the landscape is more segmented and 

atchier in 2018 than in 1938/1940, regardless of whether woody 

over increased (SC4, SC5) or decreased (BC, NBC, SBC) over the

revious 7 decades (see Fig. 4 A and 4 B). Area-weighted mean

atch size was variable throughout the time series as patches coa-

esced and fragmented (see Fig. 4 C). 

Area-weighted mean patch shape was also variable between the 

atersheds (see Fig. 4 D). All three Bennett Creek watersheds be-

an with high shape complexity in 1938/1940 and declined initially 

s woody cover was reduced early on. NBC and SBC have main-

ained relatively low patch complexity since 2004, while BC has 

ad a moderate level of shape complexity rebound. The Sulphur 

reek watersheds have slightly increased their shape complexity 

ver time. 

oody Plant Attrition 

Data for woody plant cover attrition are found in Table 3 and

igure 5 . From 1938/1940 to 1958, approximately 45 −75% of the

riginal woody cover had been displaced. By 1975, the initial 

oody cover had been reduced by 77 −89%. The rate of attrition
c 2024
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Figure 3. FRAGSTATS-generated metrics. A, Percent land area of woody vegetation. B, Area-weighted fractal dimension. C, Contagion index. BC indicates Bennett Creek; NBC, 

North Bennett Creek; SBC, South Bennett Creek; SC4, Sulfur Creek 4; SC5, Sulfur Creek 5. 
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Figure 4. FRAGSTATS-generated metrics. A, Total number of patches. B, Patch density. C, Area-weighted mean patch size in hectares. D, Area-weighted mean patch shape. 

BC indicates Bennett Creek; NBC, North Bennett Creek; SBC, South Bennett Creek; SC4, Sulfur Creek 4; SC5, Sulfur Creek 5. 
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Figure 5. Woody plant cover attrition as seen at 1938/1940 (top left), 1958 (top right), 1995 (bottom left), and 2018 (bottom right). Black areas represent woody plant cover 

that has not been lost between 1938 to 1940 and 2018. 
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egins to slow by 1982, where, by 2018 each watershed contains

 10% of the original 1938/1940 woody plant cover. 

ivestock Population and Farm Size 

Livestock population and average farm size for Mills, Lampasas,

nd Burnet Counties are found in Figure 6 . Mills County histori-
 6  

d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 02 Dec 20
se: https://bioone.org/terms-of-use
ally had a high number of sheep and goats as the primary herbi-

ores. The sheep population reached a maximum of 133 737 head

n 1940, while the goat population peaked in 1964 at 118 009 (see

ig. 6 A). Sheep and goat populations in the 2012 census were 34

94 and 23 325, respectively. The cattle population has varied from

 low of 16 279 in 1940 to a maximum of 48 901 in 1978 (see Fig.

 A). In 2012, there were 32 663 head of cattle in the county. To-
24
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Figure 6. US Department of Agriculture National Agriculture Statistics Service (NASS) data for A, Mills, B, Lampasas, and C, Burnet Counties. Individual livestock classes are 

reported as total number of head. Total animal unit (AU) was derived from NRCS conversion estimates for Texas. Average farm size is in hectares. 
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al animal units (AUs) were 41 745 in 1935, peaking in 1969 at 69

29, and decreasing to 42 568 in 2012. Average farm size gradually

ncreased from 109 ha in 1935, reaching a maximum of 256 ha in

978 and decreasing to 219 ha by 2012. 

Lampasas and Burnet Counties had similar sheep population

rends compared with Mills County (see Figs. 6 B and 6 C). Sheep

umbers peaked in Lampasas County in 1940 at 180 731 and in

urnet County in 1945 at 144 120 head (see Figs. 6 B and 6 C). Goats

ere less prevalent here than in Mills County, with maximum pop-

lations of 51 453 in 1969 and 85 110 in 1964 for Lampasas and

urnet Counties, respectively (see Figs. 4 B and 4 C). By 2012, goat

opulations had been reduced to 8 576 and 15 208, respectively

see Figs. 6 B and 6 C). The cattle populations in Lampasas County

ave ranged from 16 255 in 1935 to 21 636 in 2012, with a max-

mum of 61 232 in 1978 (see Fig. 6 B). Burnet County followed a

imilar trend of rise and decline, beginning with 19 889 head of

attle in 1935, peaking in 1978 at 46 786 and dropping to 13 175

n 2012 (see Fig. 6 C). 

Both Lampasas and Burnet Counties had dramatic reductions in

otal animal units from 1935 to 2012 (see Figs. 6 B and 6 C). Lam-

asas County had 44 317 AU in 1935, reaching a maximum 65 906

U in 1969 and declining to 24 747 AU in 2012. Burnet County

egan with 48 523 AU in 1935, climbing to 60 168 in 1959, and

nding with 16 629 in 2012. 

Average farm size for Lampasas and Burnet Counties tracked

losely together (see Figs. 6 B and 6 C). Lampasas County went from

n average farm size of 156 ha in 1935 to a maximum of 301 ha in

969 and dropping to 177 ha in 2012 (see Fig. 6 B). Burnet County

egan at an average farm size of 162 ha in 1935, peaking at 294

a in 1964 and declining to 133 in 2012 (see Fig. 6 C). 

iscussion 

During the period of this study, the Bennett Creek watersheds

ll had an overall net decrease in total woody plant cover, while

ulphur creek had a net increase. However, these snapshots in

ime often do not tell the whole story. Each watershed did have a

emonstrable reduction in total woody cover up to 1982, with the

reatest decline occurring from 1938 to 1958. This is indicative of

he post −World War II mindset of brush eradication on rangelands

oupled with the newfound availability of heavy machinery and

arvesting of juniper for fence posts. A local subculture supplanted

rom Appalachia to central Texas, known as the “Cedar Cutters,” cut

nd sold juniper wood—first for charcoal and later for fence posts

s barbed wire became popular ( Cartwright 1966 ; Patoski 1997 ;

erguson 2019 ). Conversion of wooded areas to cropland was less

ikely to occur in these counties, as there was a rapid decline in

otal cropland area during the same period ( Ramankutty and Fo-

ey 1999 ; Berg et al. 2016 ), so the removal of brush was likely for

razing land management and wood harvesting. 

Between 1958 and 1975, woody plant cover loss begins to sta-

ilize and woody cover begins to slowly increase in most water-

heds. This is consistent with changing attitudes toward the eco-

omics of “one-size-fits-all” land management practices ( Allison

nd Rechenthin 1956 ), growing interest in managing rangelands

or wildlife habitat ( Hamilton et al. 2004 ), the shift from predom-

nantly browsing animals (sheep and goats) to cattle ( Brown and

arter 1998 ), a reduction in harvesting juniper for fence posts, and

ragmentation of private property ( Kjelland et al. 2007 ; Sorice et

l. 2014 ; Berg et al. 2015 ). 

From a patch dynamics perspective, there are some interest-

ng points to consider (see Figs. 3 and 4 ). In the 20 0 0s, there is

 noticeable increase in the total number of patches (NUMPAT)

nd patch density (DENS), with little change to the total woody

over (PLAND). This is most likely indicative of landscape frag-

entation as land ownership demographics, management strate- 
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 02 Dec 20
se: https://bioone.org/terms-of-use
ies, and priorities are shifting. As land ownership is fragmented,

ew woody plant patches are carved from cross-fencing and other

nthropogenic activities, so the expansion of some patches is miti-

ated by the dissection of others. This is also reflected in the con-

agion (CONTAG) index. As an overall metric of raster cell disper-

ion and aggregation, all values of CONTAG ranged from 40.5 to

7.7, demonstrating that the landscape was predominately made

p of moderately sized patches. Area-weighted mean patch size

as declined in the Bennett Creek watersheds, where total woody

over has decreased, but increased in the Sulphur Creek watershed,

here total cover has had a net increase over time. Interestingly,

he fractal index (AWFRAC) has remained relatively stable through-

ut the dataset, suggesting that the overall patch shape complexity

as remained consistent through various management paradigms, 

hough the number and sizes of patches has fluctuated. 

Stabilization of woody plant cover in recent years may also be

ttributable to climatic shifts, where warmer, drier climates favor

ewer shrubs. In southern Arizona, Huang et al. (2018) found that

oody plant cover on long-term transects has stabilized at around

5% total cover. They were able to identify three distinct phases

f woody plant cover; an expansion period from 1961 to 1991, a

ecline from 1992 to 1997, and finally stabilization from 1998 to

012. Broad-scale woody plant stabilization was confirmed from

ssessing 28 yr of Landsat data spanning 1984 −2011. This pattern

f decline, regrowth, and stabilization is suggestive in the woody

over trends from the Bennett Creek watersheds, though not in the

ulfur Creek watersheds. 

Differences in woody plant trends between the Bennett and

ulphur Creek watersheds may be attributable to the demographic

ariances between the two areas ( Berg et al. 2016 ). Bennett Creek

n Mills County is more rural, has a much lower human population,

nd a larger average farm size than Sulphur Creek in Lampasas and

urnet Counties. In the neighboring Cowhouse Creek watershed,

orice et al. (2012) found that 39% of landowners owned their

roperty solely for lifestyle reasons and only 24% of landowners

sed the land as their main source of income. Lifestyle landowners

ay be less likely to employ land management measures due to

ack of knowledge or skillsets needed to appropriately implement

hem ( Sorice et al. 2014 ). Factors impacting long-time agricultural

perations include livestock market stability, cultural factors relat-

ng to land use, and the availability of labor ( Hurst et al. 2017 ). 

Total animal unit decline over time may be attributed to a few

actors. Total AU climbed in each county as the average farm size

lso climbed and woody cover initially dwindled, suggesting that

arger landowners may have been clearing newly acquired land

o maintain larger herds. As the average farm size began to de-

line after 1978, the newer-lifestyle landowners likely kept fewer

r no animals at all. In many cases, there may be instances where

 small landowner would only have the minimum number of ani-

als needed to maintain local agricultural property tax exemptions

 Rowan 1994 ; Machen and Lyons 20 0 0 ). 

Woody plant cover attrition from 1938 to 1940 to 2018 has

een substantive (see Table 3 , Fig. 5 ). Across all five watersheds,

0–97% of the woody plant cover that was present in 1938 to 1940

as been lost or replaced. This is an important dynamic to con-

ider in the context of woody plant encroachment, as nearly all of

he woody plant cover present in 2018 is < 80 yr old. Recent anal-

sis of old growth juniper stands on protected areas in Texas state

arks 90 km northeast of Goldthwaite (Bennett Creek) and 136 km

outhwest of Lampasas (Sulphur Creek) showed a mean age of 84

r, with a handful trees reaching > 147 yr old ( McLemore et al.

004 ). Archer and Bratton (2010) found that escarpment live oak

rees in an old growth stand near Waco, Texas ranged from 27 to

71 yr old. Clearly, these woodlands could reach ages surpassing

00 yr or more given the opportunity; however, due to a combina-

ion of the aforementioned anthropogenic, environmental, and cli-
24
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atic variables, woody plant cover has been in a constant state of

ux. Cover gained on one front has often been negated on another,

resumably due to a combination of management actions and nat- 

ral decline. 

A potential issue when using historical aerial imagery is that 

he image capture technology of the time may have limitations on

endering detail. The ability of lenses to resolve detail has dramat-

cally increased over time, and modern aircraft are equipped with 

orward-motion compensation systems (FCM) to reduce blurring of 

mages while the camera shutter is open ( Bozek et al. 2019 ). The

ynamic range (the lightest lights and darkest darks) that can be

ecorded on early film is much narrower than that of modern dig-

tal sensors. Any part of a scene that is outside of this range will

ot be rendered properly and may lack textural detail ( Robertson

t al. 2003 ). Additional error may be introduced due to the de-

ay of film negatives in storage or during the scanning of images.

ur intent with converting modern images to grayscale was an at-

empt to equalize modern imagery and provide consistency tem- 

orally; however, it appears that even when converted to single- 

and imagery, modern imagery still generally performed better 

n image classification. The overall classification accuracy of his- 

oric and modern imagery was comparable, but modern imagery 

ended to have a higher woody class accuracy. All classifications

ere above the commonly cited benchmark of 85% for overall ac-

uracy and 70% in-class accuracy ( Thomlinson et al . 1999 ; Wulder

t al . 2006 ), though this metric is more of a guideline that may not

e applicable universally ( Foody 2008 ; Stehman and Foody 2019 ).

onetheless, the classification accuracy of historical aerial imagery 

erformed quite well, likely due to having only two classes ( Shao

t al. 2019 ). 

The nature of the raster algebra approach to calculating attri- 

ion may be prone to some error, as a single misclassified image

ould have implications for subsequent temporal iterations. How- 

ver, we believe that this has been kept to a minimum due to the

igh overall and in-group classification accuracy of the imagery. 

lmost all classification errors identified were errors of commis- 

ion within the woody classification. This would have the effect of

lowing the observed rate of attrition in some cases, rather than

ccelerating it, since misclassified cells would be given a value of

1” in the raster multiplication process outlined in Figure 2 . Nev-

rtheless, this is a criterion that is worthy of more investigation. 

mplications 

This research underscores the importance of long-term datasets 

n the application and interpretation of land management trends 

ver time. In this study, we found that past documented trends

nd paradigms in rangeland woody plant management are con- 

istent with woody plant cover trends in this central Texas study

rea. Following drastic anthropogenic reductions of woody plant 

over post World War II, many concurrent, more nuanced variables 

eem to be at play in the current state of woody plant dynamics.

hese range from private land fragmentation, changing human and 

ivestock demographics, and climatic factors contributing to a rel- 

tively stable plant community over the past few decades. Studies 

hat rely solely on change in total cover over time or that do not

se multiple temporal stages may be missing important stand age 

nd patch characteristics. 

Some of the management measures used to remove woody 

lant cover may be easier to infer than others. For example, large-

cale removal between 1938 and 1958 is most likely attributed to

idespread availability and technological advances in heavy ma- 

hinery during this period. However, as time goes on, discerning

he exact type of management measure taken may prove difficult, 

s the management options have grown substantially to include 

ot only mechanical ones but also herbicides, prescribed burning, 
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 02 De
f Use: https://bioone.org/terms-of-use
nd biological control. In the future, studies of this nature will

enefit from an excess of multispectral imagery options with high 

emporal frequency, making inference of management treatments 

ore readily available, potentially even in near real-time. 

Given these lessons learned from the past, how will future 

anagement paradigms affect the decline or spread of woody 

lant cover? In addition, how can this information be used to bet-

er anticipate the long-term effects of management choices being 

ade today, especially in the face of changing climate and demo-

raphics? Pairing remote sensing analysis with ground truthing of 

ge structure will help verify measurements of attrition and pro- 

ide indications of emerging trends. Finally, future research and 

evelopment should include decision support tools and forecast- 

ng models to anticipate woody plant cover trends based on the

nfluence of cultural, environmental, technological, economic, and 

limatic drivers on management perspectives. 
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