

Neogene Palynostratigraphic Zonation of the Maranon Basin, Western Amazonia, Peru

Authors: Parra, F.J., Navarrete, R.E., di Pasquo, M.M., Roddaz, M., Calderón, Y., et al.

Source: Palynology, 44(4) : 675-695

Published By: AASP: The Palynological Society

URL: https://doi.org/10.1080/01916122.2019.1674395

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Check for updates

Neogene palynostratigraphic zonation of the Maranon Basin, Western Amazonia, Peru

F.J. Parra^{a,b,c} (b), R.E. Navarrete^c (b), M.M. di Pasquo^d (b), M. Roddaz^a (b), Y. Calderón^e (b) and P. Baby^a (b)

^aGéosciences-Environnement Toulouse, Université de Toulouse III-Paul Sabatier, Toulouse, France; ^bLaboratorio de Bioquimio-Estratigrafía, Facultad de Geociencias, Universidad Nacional de Colombia, Bogotá, Colombia; ^cDepartamento de Bioestratigrafía, Paleosedes EU, Bogotá, Colombia; ^dLaboratorio de Palinoestratigrafía y Paleobotánica, Centro de Investigaciones Científicas y Transferencia de Tecnología (CICYTTP-CONICET-ER-UADER), Diamante, Entre Ríos Province, Argentina; ^eDepartamento de Exploración, Perupetro, San Borja, Perú

ABSTRACT

The palynology (150 species of pollen grains, 43 species of spores, eight species of dinoflagellate cysts, five genera of algae, two genera of fungal spores, foraminiferal linings, and copepod eggs) of the Neogene succession in the Marañon Basin, north Peru, was thoroughly investigated for the first time from six industrial wells (Arabela-1X, Maynas-1, Tucunare-1X, Tigrillo-30X, Nahuapa-24X, and La Frontera-1). Six palynozones spanning the Early Miocene to the Early Pliocene were defined. The zones in stratigraphically ascending order are as follows: the Mar-A Corsinipollenites oculusnoctis Zone (Aquitanian to early Burdigalian: 23.03–17.71 Ma), delimited by the appearance of Acaciapollenites myriosporites, Retitricolporites wijmstrae and/or Corsinipollenites oculusnoctis and/or the disappearance of Cicatricosisporites dorogensis at the base; the Mar-B Malvacipolloides (Echitricolporites) maristellae Zone (Burdigalian: 17.71–16.1 Ma), from Malvacipolloides maristellae at the base to the disappearance of Retitricolporites wijmstrae at the top; the Mar-C Mauritiidites crassibaculatus Zone (latest Burdigalian to Late Langhian: 16.1-14.2/13.9 Ma), from the appearance of Grimsdalea magnaclavata at the base to the disappearance of Retitriporites dubiosus and/or the appearance of Crassoretitriletes vanraadshooveni and/or Psilastephanoporites tesseroporus; the Mar-D Crassoretitriletes vanraadshooveni Zone (Late Serravallian: 14.2-11.62 Ma), from the appearance of Crassoretitriletes vanraadshooveni and/or Psilastephanoporites tesseroporus to the disappearances of Mauritiidites crassibaculatus, Bombacacidites nacimientoensis, and Cyathidites congoensis; and the Mar-E Psilastephanoporites tesseroporus Zone (Early Tortonian to Late Messinian: 11.62-5.48 Ma) from the disappearance of Corsinipollenites oculusnoctis and/or Cyathidites congoensis to the disappearance of Psilastephanoporites tesseroporus and/or Siltaria santaisabelensis. These zones were corroborated by means of events ordination demonstrated using graphic correlation. The Mar-F Ctenolophonidites suigeneris Zone (latest Messinian to Zanclean) is described only in the Frontera-1 well from the disappearance of Psilastephanoporites tesseroporus to the last record of Ctenolophonidites suigeneris and/or Siltaria hammenii. This study suggests that Pliocene sedimentation is also recorded in the Western Amazonia of Peru, and provides new palynological information compared with the Mio-Pliocene Solimões, Acre, and eastern Amazonas basins.

KEYWORDS

South America; neotropical palynology; palynological zonation; Neogene; Western Amazonia; Marañon Basin; Peru

1. Introduction

The Marañon Basin is one of the most important basins in Peru in terms of hydrocarbon resources, but despite many decades of active exploration (Calderón et al. 2017a, 2017b; Baby et al. 2018), biostratigraphic research has not been conducted. The Marañon Basin contains Paleozoic and Mesozoic source rocks and Mesozoic reservoirs and subthrust traps. Recent studies by Calderón et al. 2017a, 2017b) have improved understanding and modeling of petroleum systems in this basin, especially regarding the formation and deformation of the subthrust traps. However, uncertainties remain concerning the timing and rate of Cenozoic burial, which forms part of the petroleum kitchen system. This is mainly because the Cenozoic deposits of the Marañon Basin are poorly dated (Roddaz et al. 2010). The stratigraphic ages of Cenozoic units are generally based on different groups of fossils, including algae (Marocco et al. 1995) and invertebrates, such as mollusks and ostracods, from the Chambira, Pebas, and Solimões formations (Whatley et al. 1998; Muñoz-Torres et al. 2006; Ramos 2006; Wesselingh et al. 2006a; Wesselingh and Ramos 2010), and ostracods, foraminifera, and palynomorphs from the adjacent Solimões Basin (Linhares et al. 2011, 2017, 2019; Leandro et al. 2019), as well as vertebrates (Monsch 1998; Salas-Gismondi et al. 2007). The Pebas/Solimões and Nauta formations were palynologically dated from outcrops and wells in the Solimões and Acre basins (Hoorn 1993, 1994a, 1994b, 2006; Hoorn et al. 1996, 2010a, 2010b, 2017; Rebata et al. 2006a, 2006b; Leite et al. 2016; Leandro et al. 2019; Linhares et al. 2019). These units were also recognized from

CONTACT Francisco Javier Parra S fjparran@unal.edu.co S Géosciences Environnement Toulouse (GET), Université de Toulouse, CNRS UMR 5563/UR 234 IRD/ UPS Toulouse/CNES, 14 Avenue Edouard Belin, 31400 Toulouse, France.

^{© 2019} AASP – The Palynological Society

WELL	N	WEST LONGITUD	SOUTH LATITUD	STUI	DIED INTERVAL	. IN FEET	STUDIE	d interval i	N METERS
ARABELA-1X	13	492310.37	9770151.59	610	to	3340	185.92	to	1017.98
MAYNAS-1	7	397165.18	9672338.65	2700	to	8030	822.92	to	2447.42
TUCUNARE-1X	11	352533.89	9670010.16	5000	to	7650	1523.93	to	2331.61
TIGRILLO-30X	16	393094.04	9557053.76	5310	to	10680	1648.48	to	3255.11
NAHUAPA-24X	20	575898	9536854	2210	to	6230	673.58	to	1898.81
LA FRONTERA-1	10	536014.05	9303755.13	1180	to	4420	359.65	to	1347.15

Table 1. Location of the six studied wells: Arabela-1X, Maynas-1, Tucunare-1X, Tigrillo-30X, Nahuapa-24X, and La Frontera-1 in the Marañon Basin. N: number of samples analyzed; UTM (18S) coordinates in meters; depth in feet (1 ft = 0.3 meters).

the Santa Lucia borehole drilled in the southern Marañon Basin (Hermoza 2004) and from three exploration wells (Jibaro 7/1AB-21-181, Huayuri Sur 15/1-AB-15-184D and Capahuari Norte 9/1AB-3-204) drilled in the westernmost part of the Marañon Basin (Hermoza 2004; Hermoza et al. 2005; Wesselingh et al. 2006a). These well sections were dated via mollusks by Wesselingh et al. (2006a) who also correlated them with palynozones (Hoorn 1993, 1994a).

The Neogene palynozones in South America have mainly been established in Colombian, Venezuelan, and Brazilian basins (Van der Hammen 1956; Germeraad et al. 1968; Regali et al. 1974a, 1974b; Lorente 1986; Hoorn 1993; Jaramillo et al. 2011). More specific palynostratigraphic works have been developed in the Solimões and Acre basins (Hoorn 1994a, 1994b; da Silva et al. 2010; Silveira and Souza 2015, 2016; Leite et al. 2016; Leandro et al. 2019; Linhares et al. 2019). Those paleontological studies have helped to establish correlations between Amazonian basins and to reconstruct Neogene biomass evolution (Wesselingh et al. 2006a; Hoorn and Wesselingh 2010; Jaramillo et al. 2010; Boonstra et al. 2015; Antoine et al. 2016; Jaramillo et al. 2017). However, to date, no detailed palynostratigraphic research has been carried out in the Marañon Basin, and the nature, evolution, and age range of the Neogene palynofloras of this basin remain poorly understood.

This study aims to establish a spore/pollen zonation for the Neogene sediments of the retroarc foreland (most subsiding area; Roddaz et al. 2010) of the Marañon Basin based on the identification of qualitative changes in palynomorphs (spores, pollen, and dinoflagellate cysts) through the intervals sampled in six exploration wells (Table 1 and Figure 1).

2. Geological setting

The Marañon Basin covers approximately 320,000 km² (Mathalone and Montoya 1995) and is located between 0°N and 7°30'S and 70 and 78°W in northeastern Peru (Figure 1). It is currently considered a foredeep depozone of the northern Amazonian retroarc foreland basin (Roddaz et al. 2005, 2010). The Huallaga and Santiago basins to the southwest and west, respectively, separate the Marañon Basin from the Subandean zone, and to the northeast the basin is bordered by the Iquitos forebulge (Roddaz et al. 2005, 2010). It continues as the Oriente Basin in Ecuador to the northwest and the Putumayo Basin in Colombia to the north. The Guyanese shield and Solimões Basin border the Marañon Basin to the east. To the south, the basin is bordered by the Ucayali and Acre basins, and to the southeast the Contaya arch separates it from the Ucayali Basin (Roddaz et al. 2005).

The Amazonian retroarc foreland basin system started to form between the late Maastrichtian and early Paleocene, during the first period of Amazonian Andes mountain building (Hurtado et al. 2018; Louterbach et al. 2018). This late Maastrichtian-Paleocene period of Andean tectonic loading was followed by an unloading stage during the Early-Middle Eocene (Roddaz et al. 2010). From the Middle-Late Eocene, the Amazonian retroarc foreland basin was subjected to continuous flexural subsidence driven by the continuous Andean tectonic loading, which promoted high sedimentation rates in the foredeep depozone (Roddaz et al. 2010). The formation and forward propagation of the eastern Amazonian orogenic thrust wedge began in the Oligocene (30-24 Ma) (Eude et al. 2015), causing flexural subsidence and high sedimentation rates in the Marañon foredeep (Roddaz et al. 2010).

The stratigraphy of Amazonian foreland basins has been synthesized by Roddaz et al. (2010). The Neogene sedimentary pile consists of late Oligocene–Miocene Chambira, Early–Late Miocene Pebas, Pliocene Marañon, and Quaternary Corrientes formations. These units are generally poorly dated. The Pebas Formation, with a thickness of approximately 1000 m (Wesselingh et al. 2006a), transitionally overlies the Chambira Formation (Oligocene) and is in underlying concordant contact with the Marañon Formation. The transition is characterized by blue clays, fine-grained lithic sandstones, and lignite layers rich in diverse and well-preserved invertebrate and vertebrate fossils; the base of this formation was dated around 22.5–23.9 Ma (Oligocene–Miocene boundary) (Wesselingh et al. 2006a).

3. Previous studies

Numerous studies have recorded the presence of palynomorph taxa in the Pebas and Solimões formations and other coeval units outcropping in Colombia, Brazil, and Peru (Hoorn 1993, 1994a, 1994b, 2006; Hoorn et al. 1995, 1996, 2010a, 2010b; Räsänen et al. 1995; Gingras et al. 2002a, 2002b; Hoorn and Ramos Feijó 2006; Rebata et al. 2006a, 2006b; Wesselingh 2006; Wesselingh et al. 2006a, 2006b, 2010; Hovikoski et al. 2007b; Latrubesse et al. 2007, 2010; da Silva et al. 2010; Gross et al. 2011; Leite et al. 2017; Leandro et al. 2019; Linhares et al. 2019). These formations generally date from the Early-Late Miocene (Hoorn and Wesselingh 2010; Latrubesse et al. 2010; Roddaz et al. 2010; Boonstra et al. 2015; Hoorn et al. 2017; Jaramillo et al. 2017; Leite et al. 2017). However, it is important to note that no palynological studies exist that deal with the Neogene sedimentary units of the Marañon Basin.

Figure 1. Location of the six studied deep exploration wells (white-black circles). Structural boundaries of the Marañon Basin (after Roddaz et al. 2005).

Neogene deposits of the Marañon Basin, to date, have been dated mainly based on palynozones defined by Hoorn (1993) for the Solimões and Acre basins, the Malacostraca zones defined by Wesselingh et al. (2006a), and the ostracod zones defined by Muñoz-Torres et al. (2006). Hoorn (1993) defined five palynozones for the Solimões Basin: the Verrutricolporites Acme Zone (Early Miocene), the Retitricolporites Acme Zone (Early Miocene), the Psiladiporites-Crototricolpites Concurrent Range Zone (late Early to early Middle Miocene), the Crassoretitriletes Interval Zone (Middle Miocene), and the Grimsdalea Interval Zone (late Middle to early Late Miocene), which correlated with those by Germeraad et al. (1968) and Lorente (1986). In the same basin, da Silva et al. (2010) defined the Asteraceae-Fenestrites Zone and recognized the Psilatricolporites caribbiensis palynozone of Lorente (1986). More recently, these zones in the Solimões Basin were recognized by (Leite et al. 2017; Linhares et al. 2017, 2019; Leandro et al. 2019), who further identified Lorente's (1986) palynozones: the *Crassoretitriletes* Interval Zone (Middle Miocene), the Asteraceae Interval Zone (Late Miocene), the *Psilatricolporites caribbiensis* Interval Subzone (latest Miocene–Pliocene), and the *Echitricolporites–Alnipollenites* Interval Subzone (Late Pliocene).

4. Sample material and procedures

A total of 77 ditch-cutting samples from six exploration wells (Arabela-1X, Maynas-1, Tucunare-1X, Tigrillo-30X, Nahuapa-24X, and La Frontera-1) located in the Marañon Basin were studied for their palynological content (Table 2 and Figure 1). The samples varied from silty shale to shale, claystone, sandy clay, and clayey, very fine sandstone. The palynological samples were prepared according to the

Well	CICYTTP		Deptl	า	Well	CICYTTP		Depth		Well	CICYTTP		Depth	ı
Arabela1X	2005	186	-	195	Tigrillo-30X	2036	1618	-	1628	Nahuapa-24X	2052	674	-	683
	2006	250	-	259		2037	1728	-	1737		2053	701	-	710
	2007	277	-	286		2038	1820	-	1829		2054	738	-	747
	2008	341	-	351		2039	1966	-	1975		2055	783	-	792
	2009	360	-	369		2040	2094	-	2103		2056	856	-	866
	2010	369	-	378		2041	2112	-	2121		2057	948	-	957
	2011	451	-	460		2042	2130	-	2140		2058	1021	-	1030
	2012	497	-	506		2043	2231	-	2240		2059	1085	-	1094
	2013	543	-	552		2044	2322	-	2332		2060	1103	-	1112
	2014	552	-	561		2045	2432	-	2441		2061	1140	-	1149
	2015	689	-	698		2046	2551	-	2560		2062	1195	-	1204
	2016	872	-	881		2047	2652	-	2661		2063	1341	-	1350
	2017	1009	-	1018		2048	2770	-	2780		2064	1405	-	1414
Maynas-1	2018	823	-	838		2049	2917	-	2926		2065	1496	-	1506
	2019	1021	-	1036		2050	3054	-	3063		2066	1588	-	1597
	2020	1341	-	1356		2051	3246	-	3255		2067	1698	-	1707
	2021	1600	-	1615							2068	1743	-	1753
	2022	1859	-	1874							2069	1753	-	1762
	2023	2164	-	2179		CICYTTP: Centro d	le Investiga	aciones			2070	1798	-	1807
	2024	2438	-	2447		Científicas y Tr	ansferencia	a de			2071	1890	-	1899
Tucunare-1X	2025	1524	-	1539		Tecnología a	la Producci	ión		La Frontera-1	2072	360	-	366
	2026	1631	-	1646							2073	469	-	475
	2027	1676	-	1692							2074	567	-	573
	2028	1768	-	1783		Slides collection n	umber in C	ICYTTP:			2075	579	-	585
	2029	1798	-	1813		CICYTTP-2005 to	o CICYTTP-2	2081			2076	671	-	677
	2030	1951	-	1966							2077	823	-	829
	2031	2057	-	2073							2078	945	-	951
	2032	2133	-	2149							2079	975	-	981
	2033	2194	-	2210	Depth	: analyzed interval	s of each w	vell in mete	ers		2080	1250	-	1256
	2034	2240	-	2255							2081	1341	-	1347
	2035	2316	-	2332										

Table 2. Analyzed intervals [depth in feet (1 ft = 0.3 meters)] from Arabela-1X, Maynas-1, Tucunare-1X, Tigrillo-30X, Nahuapa-24X, and La Frontera-1 wells in the Marañon Basin and Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICYTTP-PI) collection number of each analyzed sample.

standard procedure (Wood et al. 1996). The preparation of palynological slides was carried out in the Paleosedes Laboratory in Bogotá, Colombia (http://www.paleosedes.tk). Samples were processed using hydrochloric acid, hydrofluoric acid, and zinc chloride solutions. The slides were analyzed at the Paleosedes Biostratigraphy Laboratory and the Palynostratigraphy and Paleobotany Laboratory of the institute CICYTTP-CONICET-ER-UADER (http://www.cicyttp. org.ar) in Argentina. Slides and residues are housed at the Palynostratigraphy and Paleobotany Laboratory of the Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICYTTP) and cataloged under CICYTTP acronyms; Table 2).

Two slides per sample (oxidized and non-oxidized) were scanned for palynomorph identification using transmitted light microscopes with a digital camera (Leitz Labor Lux S and Labomed 10 in Colombia; Nikon E200 and Labomed 5 in Argentina). Well-preserved specimens were selected and illustrated in Plate 1 using England Finder[™] coordinates. Palynomorph counting and logging were done by applying straight transects across each slide. Species names and abundance of taxa were recorded on data sheets. Six palynomorph distribution charts were prepared based on each palynomorph identified in the well sections, and the abundances of spores, pollen grains, fungal spores, algae, dinoflagellate cysts, acritarchs, foraminiferal linings, and copepod eggs were tabulated in the Tilia software (Grimm 2015) (Appendices 1-6). The recovered palynomorphs were gathered in seven morphogroups (Table 3) and percentages for the morphogroups in all wells were calculated (Table 4).

Approximately 100–200 specimens were counted per sample. However, some samples with abundances lower than 100 identifications were also included in the qualitative analyses due to their biostratigraphic significance (see Appendices 1–6).

The qualitative vertical arrangement of taxa identified from the wells was used to interpret first downhole occurrence or last appearance datum (LAD) and last downhole occurrence or first appearance datum (FAD) data. Palynostratigraphic studies and online catalogues of species from northern South America (Van der Hammen 1956; Germeraad et al. 1968; Regali et al. 1974a, 1974b; Lorente 1986; Muller et al. 1987; Tryon and Lugardon 1991; Hoorn 1993, 1994a; da Silva et al. 2010; Jaramillo et al. 2011; Raine et al. 2011; Silveira and Souza 2015, 2016; Leite et al. 2017; Williams et al. 2017; Jaramillo and Rueda 2019) were consulted for taxonomic determinations (see the list of species with their authors below) and stratigraphic ranges of the species suitable for biostratigraphy (Table 5). Critical palynomorph taxa were selected according to their stratigraphic value, and the most biostratigraphically significant events are indicated in Figure 2. To validate these findings, the graphic correlation technique of Shaw (1964) was applied to the dataset using GraphCor: Interactive Graphic Correlation software (Hood 1998) to obtain a composite section (Table 6) that was reordered and plotted (Figure 3) according to the stratigraphic succession, thus revealing biostratigraphic units. Details of this method can be consulted in the extensive compilation of Mann and Lane (1995).

Plate 1. Photographs of the main palynomorphs from the studied wells. 1. Laevigatosporites catanejensis CICYTTP-2005 Arabela 1X (610-640ft), EF M12/2; 2. Laevigatosporites granulatus CICYTTP-2014 Arabela 1X (1810–1840ft), EF L32/2-4; 3. Polypodiisporites usmensis CICYTTP-2007 Arabela 1X (910–940ft), EF H25/2; 4. Cvathidites congoensis CICYTTP-2074 Frontera 1 (1860-1880ft), EF N35/2; 5. Foveotriletes ornatus CICYTTP-2068 Nahuapa 24X (5720-5750ft), EF N32/1-2; 6. Osmundacidites ciliatus CICYTTP-2074 Frontera 1 (1860-1880ft), EF R35/1; 7. Retitriletes altimuratus CICYTTP-2061 Nahuapa 24X (3740-3770ft), EF W21/3-4; 8. Cicatricosisporites dorogensis CICYTTP-2017 Arabela 1X (3310-3340ft), EF E3/3-2; 9. Crassoretitriletes vanraadshooveni CICYTTP-2052 Nahuapa 24X (2210-2240ft), EF H43/1; 10. Magnastriatites grandiosus CICYTTP-2057 Nahuapa 24X (3110-3140ft), EF O43/2; 11. Grimsdalea magnaclavata CICYTTP-2053 Nahuapa 24X (2300-2330ft), EF W17/3; 12. Gomphrenipollis minimus CICYTTP-2061 Nahuapa 24X (3740-3770ft), EF T34/2-3; 13. Monoporopollenites annulatus CICYTTP-2058 Maynas 1 (3350-3400ft), EF P44/1; 14. Psilamonocolpites medius CICYTTP- 2046 Tigrillo 30X (8370-8400ft), EF Q11/4; 15. Mauritiidites franciscoi minutus CICYTTP-2014 Arabela 1X (1810-1840ft), EF S38/1; 16. Mauritiidites franciscoi franciscoi CICYTTP-2031 Tucunare 1X (6750-6800ft), EF H42/1; 17. Cyclusphaera scabrata CICYTTP-2020 Maynas 1 (4400-4450ft), EF E10/3; 18. Corsinipollenites psilatus CICYTTP-2014 Arabela 1X (1810-1840ft), EF N12; 19. Echitriporites cricotriporatiformis CICYTTP-2006 Arabela 1X (820-850ft), EF F44/3; 20. Proteacidites triangulatus CICYTTP-2061 Nahuapa 24X (3740-3770ft), EF Z33/1; 21. Retitricolpites simplex CICYTTP-2035 Tucunare 1X (7600–7650ft), EF P43/2; 22. Crassiectoapertites columbianus CICYTTP-2061 Nahuapa 24X (3740–3770ft), EF F38/1; 23. Bombacacidites nacimientoensis CICYTTP-2059 Nahuapa 24X (3560-3590ft), EF J35/1-3; 24. Bombacacidites brevis CICYTTP-2017 Arabela 1X (3310-3340ft), EF R40/3; 25. Malvacipolloides maristellae CICYTTP-2034 Tucunare 1X (7350–7400ft), EF N25/2; 26. Margocolporites vanwijhei CICYTTP-2046 Tigrillo 30X (8370–8400ft), EF M23/ 4; 27. Rhoipites guianensis CICYTTP-2014 Arabela 1X (1810-1840ft), EF H35/1; 28. Siltaria hammenii CICYTTP-2072 Frontera 1 (1180-1200ft), EF X48; 29. Ranunculacidites operculatus CICYTTP-2007 Arabela 1X (910-940ft), EF G23/3; 30. Psilastephanoporites tesseroporus CICYTTP-2077 Frontera 1 (2700-2720 ft), EF W34/3; 31. Perisyncolporites pokornyi CICYTTP-2011 Arabela 1X (1480–1510ft), EF V37/3; 32. Echiperiporites akanthos CICYTTP-2027 Tucunare 1X (5500–5550ft), EF U27/2; left high focus and right lowfocus; 33. Echiperiporites estelae CICYTTP-2016 Arabela 1X (2860-2890ft), EF G23/1. Scale bar is 20 μm for all pictures except for Figures 9 and 10 where it represents 30 $\mu m.$

5. General characterization of the palynofloral assemblages

Seventy-seven samples from the Arabela-1X, Maynas-1, Tucunare-1X, Tigrillo-30X, Nahuapa-24X, and La Frontera-1 wells in the Marañon Basin (Table 2; Figure 1) yielded 6262

identifiable grains, as summarized in Table 3. Quantitative distribution of palynomorphs in the wells (Table 3 and 4; Appendices 1–6) reveals a total of 226 morphotypes, including 80 genera and 150 species of pollen grains, 24 genera and 43 species of spores, nine genera and eight species of dinoflagellate cysts, five genera of algae, four morphotypes, and two

680 👄 F. J. PARRA ET AL.

	-	•			
Morphogroups	Total grains	% of 6262 grains	Morphotypes	Genera	Species
Spores	3232	51.6	44	24	43
Pollen grains	1478	23.6	152	80	150
Fungal spores	167	2.7	4	2	NA
Algae	899	14.4	7	5	NA
Dinoflagellate cysts	243	3.9	13	9	8
Foram linings	110	1.8	5	NA	NA
Copepod eggs	133	2.1	1	NA	NA
Total	6262	100.00	226	120	201

Table 3. Total grains counted per each analyzed well and percentage of each morphogroup from Arabela-1X, Maynas-1, Tucunare-1X, Tigrillo-30X, Nahuapa-24X, and La Frontera-1 wells in the Marañon Basin. NA: not applicable.

Table 4. Total grains counted per morphogroup in each analyzed well and percentage of each morphogroup from Arabela-1X, Maynas-1, Tucunare-1X, Tigrillo-30X, Nahuapa-24X, and La Frontera-1 wells in the Marañon Basin.

Morphogroups	Arabela-1X	Maynas-1	Tucunare-1X	Tigrillo-30X	Nahuapa-24X	La Frontera-1
Spores	46.8	65.3	49.7	64.7	48.5	22.8
Pollen grains	28.5	16.5	28.5	24.6	19.1	25.6
Fungal spores	3.3	0.5	0.3	1.7	3.9	7.1
Algae	13.4	6.0	11.8	5.5	25.7	24.4
Dinoflagellate cysts	6.6	0.9	3.5	1.8	1.0	14.5
Foram linings	1.1	4.4	0.0	1.7	0.4	5.6
Copepod eggs	0.2	6.4	6.1	0.0	1.3	0.0
Total specimens	2120	1176	593	654	1395	324

genera of fungal spores. Foraminiferal linings and copepod eggs (indeterminate copepods) were also identified. Of the identified palynomorphs, 75.1% belonged to pollen and spore groups, 14.3% were algae, and 7.8% included dinoflagellate cysts, acritarchs, foraminiferal linings, and other palynomorph remains. Fungal palynomorphs (2.8%) and abundant organic matter were recovered in all the samples.

Fairly well-preserved pteridophyte–bryophyte spores, angiosperm and gymnosperm pollen grains, phytoplankton (chlorophyceans, acritarchs, and dinoflagellate cysts) and miscellaneous groups (foraminifera, copepods, and fungal remains), characterize the palynoflora obtained from the six wells. The first group was mainly composed of spores such as Azolla, Cicatricosisporites, Crassoretitriletes, Cyathidites, Deltoidospora, Echinatisporis, Foveotriletes, Laevigatosporites, Magnastriatites, Polypodiisporites, Psilatriletes, Striatriletes, and Verrucosisporites–Verrutriletes.

Angiosperm pollen grains were frequent and more diverse, including Bombacacidites, Corsinipollenites, Crassiectoapertites, Echipollenites, Cyclusphaera, Echiperiporites, Echitriporites, Inaperturopollenites, Ladakhipollenites, Malvacipolloides, Mauritiidites, Paleosantalaceaepites, Perfotricolpites, Perisyncolporites, Proxapertites, Proteacidites, Psilamonocolpites, Psilastephanocolporites, Psilatricolporites, Retimonocolpites, Retipollenites, Retistephanoporites, Retitrescolpites, Retitricolpites, Retitricolporites, Scabrapollenites, Siltaria, Spinizonocolpites, and Striatopollis.

Gymnosperm pollen grains were rare and less diverse: Araucariacites, Cyclusphaera, Inaperturopollenites, Podocarpidites, and Striapollenites. Chlorophycean algae such as Botryococcus, Oedogonium, Pediastrum, and Pterospermella were obtained. Other phytoplankton, including acritarchs and dinoflagellate cysts, such as Apteodinium, Batiacasphaera, Bosedinia, aff. Ceratium, Cribroperidinium, Leiosphaeridia, Quadrina, Selenopemphix spp., and Operculodinium and Polysphaeridium groups, were common and always accompanied by foraminiferal linings, copepod eggs, and fungal palynomorphs, such as *Fusiformisporites*, Microthyraceae, and *Tetraploa*. The distribution of the palynomorphs in the abovementioned wells, their relative abundances (range charts), and extended Tilia diagrams are shown in Appendices 1–6, and key markers are illustrated in Plate 1.

6. Definition of palynozones

Fifty-two biostratigraphic marker species were recognized in the six boreholes (Table 5). Some occurred in all the wells, whereas others did not (Appendices 1-6), but all have a wide geographic distribution and well-known stratigraphic ranges given as FADs and LADs in millions of years ago for each taxon and/or based on stratigraphic ranges that have been used in biostratigraphic definitions in northern South America (Lorente 1986; Muller et al. 1987; Hoorn 1993; da Silva et al. 2010; Jaramillo et al. 2011) and elsewhere (Bujak and Williams 1985; Macphail 1999; Williams et al. 2017). Therefore, they are useful for dating the studied successions in this basin and for proposing regional correlations. Six palynozones named from the oldest to the youngest, namely Mar-A to Mar-F ('Mar' is the abbreviation for 'Marañon') are proposed considering the vertical distribution of the taxa (Figures 2-4; Appendices 1-6) based on the analysis of gualitative biostratigraphic events. A quantitative deterministic method of graphic correlation (Shaw 1964) in order to test this scheme was run in GraphCor: Interactive Correlation Software Hood (1998). Maximum stratigraphic ranges of species from previously known appearances and disappearances in each well (Table 6) allowed the construction of a biostratigraphic ordination in a composite section (Figure 3) according to last appearances of species. This method corroborates the proposed zonation based on a qualitative analysis, also evidenced by stratigraphically constrained cluster analysis (CONISS) in the Tilia software (Grimm, 2015) for each well

Table 5. Marker age of palynomorphs are included; depth in meters). (1) da 5 Raine et al. (2011) and (9) Williams et a	recovered in the Arabé Silva-Caminha et al. (20 al. (2017).	ela-1X, <i>1</i> 10), (2)	Maynas-1, Tucunare-1X, Tigrillo-30 González-Guzmán (1968), (3) Hoc	X, Nahuapa-24X, a orn (1993), (4) Jara	nd La Frontera-1 millo et al. (2011 <u>)</u>	boreholes in the in (5) Eisawi and Schi	the Maranon Basin, ank (2008), (6) Cole	in alphabetical order (1992); (7) De Verteu	(occurrence levels il et al. (1992), (8)
MARKER SPECIES	FAD		LAD	ARABELA-1X	MAYNAS-1	TUCUNARE-1X	TIGRILLO-30X	NAHUAPA-24X	LA FRONTERA-1
Acaciapollenites myriosporites (1)(8) Apteodinium australiense (9)	Neogene Earlv Eocene		Neogene Midle Miocene/ Serravalian						1341-1347 1250-1256
Bombacacidites araracuarensis(3)	Early Miocene	I	early Middle Miocene			1524-1539			
Bombacacialites gonzalezii (4) Romhacacidites nacimientoensis (4)	51.49 56 85	1 1	19./ 13.05		2164-2179		1618-2103	674-1094	
Bosedinia infragranulata (6)	Late Oligocene	I	Miocene				1		579-585
Cicatricosisporites dorogensis (4)	48.61	I	23.03	1009-1018	2621-2630	2316-2332	3356-3365	2054-2060	
Cistacearumpollenites rotundiporus(1)	Neogene	I	Neogene						360-366
Corsinipollenites oculusnoctis (1)	Early Miocene	I	Middle Miocene		1859-2447	1798-2149			671-677
Corsinipollenites collaris (1)	Miocene	I	Early Plioc					1798-1807	
Corsinipollenites psilatus (4)	:	I	17.33	451-460	1341-1356	1676-1692		674-2054	
Crototricolpites annemariae (4)	52.49	I	13						975-981
Crassoretitriletes vanraadshooveni (4)	14.18	I	3.4 7 - 4 - Di					6/4-683	360-366
Ctenolopniniaites suigeneris (1)	Miocene	I		1001	T11C 1CO1		1/10	0051-0411	5/9-9/5
(c) (c) congoensis (c)	Late Miocene	I	Pliocene	180-1009	1021-244/	1524-2332	8101-6628	6/4-1/53	5/6-/06
Lyciuspinaera scabrata (4) Echitrinorites cricotrinoratiformis (1)	8 91 16 8	1 1	10.92 3 0.4	300-881 250-259	1341-1330				
Echinoponices cricotripolatinorinis (4) Echinoritocritoc loobatus (1)	Miccon	I	Entry Pline	607-007				701 710	
Echiperipolites ropriatus (1) Eoveotricolnorites lenticuloides (1)	Nancerie								570-585
Gomphrenipolitic minimus (1)	Mincene		Farly Plinc					1140-1149	
Grimsdalea maanaclavata(4)	16.09	I	34					701-792	
I adakhipollenites simplex(4)	59.92	I	12.87	250-506	1021-1356			1/1 0/1	
Ladakhipollenites? caribbiensis (1)	Late Miocene	I	Pliocene						567-573
Laevigatosporites catanegensis (4)	42.53	I	4.32	186-195					
Lanagiopolllis crassa (4)	51.3	I	4.7						567-573
Magnaperiporites spinosus(4)	31.96	I	12.98	552-561					
Malvacipolloides maristellae (4)	17.71	I	0.39	186-506	1021-1356	1524-2332	2130-2240	1021-1350	823-981
Mauritiidites crassibaculatus(4)		I	11.85		823-2164		1758-2917		
Multiporopollenites apauciporatus(4)		I	23		2438-2447				
Nijssenosporites fossulatus(4)	19.05	I	1.03						579-585
Osmundacidites ciliatus (5)	Late Miocene	I	Pliocene						567-573
Palaeosantalaceaepites cingulatus (4)	12.08	I	3.72					674-683	567-573
Psilastephanoporites tesseroporus (4)	13.9	I	5.48	250-259					
Quadrina? condita (7)	Middle Miocene	I	Late Miocene						579-585
Retimonocolpites maximus (3)	Miocene	I	Miocene						469-475
Ketipollenites crotonicolumellatus(4)	13.94	I	3.50				1820-1829		
Retistephanoporites angelicus (2)	56	I	16				1966-1975		
Retitricolporites wijmstrae (3)	23	I	16	360-1018	1021-1615		19/5-3255		
Ketitricolporites cacerolensis (4)			10.20			1031-1040			
Retitriletes altimuratus (1)	Miocene	I	Early Pliocene					674-1149	
Ketitriporites dubiosus (4)	51.4/		14.2/	2//-780					
	C0./1	I	Noccos						226 026
Siltaria nammenii (1) Siltaria rantairahalancis (1)	Miccene	I	Neogene						30U-300
(ו) כוכווששטטטוווטכ טווטווכ	ואווחרבווב	ı	ואוטרפוופ						C 14-204

			R	٩N	GE CHART		olloides maristellae	llenites myriosporites	umpollenites rotundiporus	ammeni	ollenites caribbiensis	ea magnaclavata	titriletes vanraadshooveni	honidites suigeneris	nites crotonicolumellatus	ntaisabelensis	hanoporites tesseroporus	cidites araracuarensis	tes crassibaculatus	ss congoensis	Ilenites oculusnoctis	cidites nacimientoensis	ites dubiosus	anoporites angelicus	vites "cacerolensis"	oorites wijmstrae	sisporites dorogensis
TIME (Ma)	ERA	PERIOD			AGE	MARAÑON SUB-BASIN this study	Malvacip	Acaciapo	Cistacear	Siltaria hi	Ladakhip	Grimsdal	Crassore	Ctenolop	Retipollei	Siltaria sé	Psilastep	Bombaca	Mauritiidi	Cyathidite	Corsinipc	Bombaca	Retitripor	Retisteph	Retitricol	Retitricol	Cicatricos
2.5— 3— 3.5—			ENE	LATE	PIACENZIAN	2.5 3.6		Τ																			
4			PLIOCE	EARLY	ZANCLEAN	Mar-F																					
5.5 — 6 — 6.5 —					MESSINIAN			T								Τ	Τ										
7 — 7.5 — 8.5 — 9.5 — 10 — 10.5 — 11 — 11 5 —	- - - - - - -			LATE	TORTONIAN	<i>Mar-E</i> 11.62																					
12- 12.5- 13- 13.5-	ENOZOIC	NEOGENE	ENE	DLE	SERRAVALLIAN	Mar-D 14 2																					
14.5 14.5 15 15.5 16			MIOCI	MIC	LANGHIAN	Mar-C 16.1				Π									T	T							
16.5 — 17 — 17.5 —						Mar-B 17.7		Τ		Π									Τ								
18- 18.5- 19- 19.5- 20- 20.5- 21- 21.5-	-			EARLY	BURDIGALIAN	Mar-A																					
22- 22.5- 23-						23.03				\square										\perp							
		PG	OL	IG	CHATTIAN														+	+		╟╟	┝╋	┝╋	┝╋		

Figure 2. Range chart of taxa as used in this work, indicating the boundaries of the palynozones Mar-A to Mar-F.

(Appendices 1–6). The upper two zones are preliminarily characterized until further studies with more materials are carried out. The presence of well-known diagnostic species (FADs and LADs; Figures 2–4; Tables 5 and 6) supported the ages of the palynozones. In addition, seven timelines and a west–east and north–south correlation among the six wells were drawn (Figure 5), and a correlation of our palynozonation with other palynozones from northern South America (Figure 6) is also addressed below.

6.1. Mar-A Corsinipollenites oculusnoctis Interval Zone

Reference section. Arabela-1X interval 2890–1660 ft (881–506 m).

Distribution. This zone was recognized in all the wells: Arabela-1X interval 2890–1660 ft (881–506 m), Tigrillo-30X interval 10,680–7620 ft (3255–2323 m), Nahuapa-24X interval 4610–3230 ft (1405–985 m), Maynas-1 interval 8030–5250 ft (2438–1600 m), Tucunare-1X interval 7650–7400 ft (2332–2255.5 m) and La Frontera-1 interval 4420–4100 ft (1347–1250 m) (see Appendices 1–6 for details and Figures 2–6 for summary and correlation).

Description. We define the Mar-A *Corsinipollenites oculusnoctis* palynozone as occurring from the LAD of *Cicatricosisporites dorogensis* to the FAD of *Malvacipolloides maristellae* or, alternatively, it is from the FAD of Corsinipollenites oculusnoctis, the FAD of Retitricolporites wijmstrae, and/or the FAD of Acaciapollenites myriosporites to the FAD of Malvacipolloides maristellae as occurring respectively in the Maynas-1, Tigrillo-30X, and La Frontera-1 wells, to the FAD of *Malvacipolloides maristellae*.

Age. Aquitanian to Early Burdigalian (23.03–17.71 Ma).

Characteristics. The presence of Paleogene taxa whose extinction occurred in the Neogene, such as *Bombacacidites nacimientoensis*, *Corsinipollenites psilatus*, *Magnastriatites grandiosus*, *Mauritiidites franciscoi* var. *franciscoi*, *Mauritiidites franciscoi* var. *minutus*, *Retitricolpites simplex*, and *Spirosyncolpites spiralis*, among others, is notable. This zone is characterized by the inception of other species, such as

Table 6. Maximum	1 stratigraphic	ranges of	species	among	the studied	wells,	constructed	in a	a composite	section	from	previously	known	appearances	and
disappearances of s	species in each	well obtai	ined by r	means of	f graphic cor	relatio	n.								

	Composite	section for taxa	a from sections	in studied wells			
Acaciapollenites	myriosporites	-1018	-194	Mauritiidites	franciscoi franciscoi	-693	-282
Apteodinium	australiense	-888	-888	Mauritiidites	franciscoi minutus	-795	-165
Araliaceae	pollenitis	-364	-364	Monoporopollenites	annulatus	-603	-191
Arecipites	perfectus	-194	-165	Monocolpopollenites	ovatus	-451	-451
Bombacacidites	araracuarensis	-190	-190	Osmundacidites	ciliatus	-191	-191
Bombacacidites	brevis	-1013	-1013	Paleosantalaceaepites	cingulatus	-191	-191
Bombacacidites	gonzalezi	-1013	-834	, Perfotricolpites	digitatus	-709	-254
Bombacacidites	nacimientoensis	-1013	-186	Perisyncolporites	pokornyi	-834	-194
Bombacacidites	psilatus	-1013	-1013	Polvadopollenites	mariae	-644	-245
Bosedinia	infraaranulata	-194	-194	Polypodiisporites	specious	-693	-282
Retitricolpites	"cacerolensis"	-308	-236	Polypodiisporites	usmensis	-834	-217
Cicatricosisporites	doroaensis	-1018	-1018	Polypodiisporites	verrucatus	-442	-364
Colombipollis	tropicalis	-547	-547	Proteacidites	trianaulatus	-442	-442
Corsininollenites	collaris	-835	-835	Proxapertites	minutus	-364	-364
Corsinipollenites	oculusnoctis	-945	-219	Proxapertites	operculatus	-547	-547
Corsinipollenites	nsilatus	-556	-254	Proxapertites	psilatus	-364	-364
Crassiectoapertites	columbianus	-442	-442	Proxapertites	verrucatus	-364	-364
Crassoretitriletes	vanraadshooveni	-268	-195	Psilamonocolnites	medius	-644	-191
Ctenolonhonidites	suineneris	-612	-194	Psilastenhanocolnorites	fissilis	-834	-834
Cvathidites	conacensis	-795	-190	Psilastenhanonorites	tesseroporus	-259	-165
Cyathidites	minor	_194	-191	Psilatricolnites	nanilioniformis	-364	_364
Cyclusphaera	scabrata	-876	-364	Psilatricolporites	crassoevinatus	_364	_364
Deltoidospora	adriennis	_364	_101	Psilatricolporites	operculatus minutus	-364	_364
Echinatisporis	muelleri	219	219	Quadrina?	condita	194	_104
Echinerinorites	akanthos	945	_254	Ranunculacidites	operculatus	282	222
Echiperiporites	actalaa	- 945 876	-254	Patimonocolnitas	maximus	-202	-202
Echiperiporites	lophatus	-870	217	Patimonocolpites	ratifossulatus	- 105	-105
Echistenhanonorites	"appulatus"	103	103	Patipollopitas	crotonicolumellatus	- 945	286
Echitrinorites	cricotriporatiformis	-195	- 195	Patistanhanonoritas	angelicus	-293	-200
Echiliponies	lanticulaidas	-254	-254	Patistanhanonoritas	crassiannulatus	-202	-505
Foveotrilator	"orpatus"	- 194	- 191	Patitrascolpitas	irrogularic	-034	-230
Foveotriletes	omatus	-795	- 190	Retitrescolpites	megulalis	-080	-294
Comphroninallic	proximopsilatus	-245	-245	Retitiescolpites	niagnus	-547	-304
Gomphrenipoliis	mmmus	-442	-442	Retitives colpites	Saturum	-905	-905
Grimsaaiea	magnaciavata	-350	-217	Retifiescolpites?		-259	-194
Inaperturopolienites	psilatus	-304	-304	Relitricolpites	corpiconstrictus	-304	-304
Inaperturopolienties	sonnoensis	-304	-304	Reinfricorpries	simplex	-080	- 193
Ladaknipollenites	simplex	-506	-250	Relitricorportes	wijnstrae	-1009	-303
Laaaknipollenites?	caribbiensis	-254	- 191	Retitriletes	altimuratus	-442	-442
Laevigatosporites	annulatus	-497	-497	Retitriporites	aubiosus	-501	-282
Laevigatosporites	catanegensis	- 190	- 190	Rhoipites	guianensis	-556	-256
Laevigatosporites	"gemmatus"	-603	-603	Rhoipites	nispidus	-547	-191
Laevigatosporites	granulatus	-963	-236	Selenopemphix	nephroides	-346	-346
Laevigatosporites	ovatus	-194	-194	Selenopemphix	quanta	-194	-194
Magnaperiporites	spinosus	-556	-556	Siltaria	santaisabelensis	-165	-165
Magnastriatites	grandiosus	-835	-245	Spirosyncolpites	spiralis	-709	-364
Malvacipolloides	maristellae	-497	-409	Striatriletes	saccolomoides	-875	-447
Margocolporites	vanwijhei	-644	-556	Tetracolporopollenites	maculosus	-501	-346
Mauritiidites	crassibaculatus	-834	-245				

Apteodinium australiense, Leiosphaeridia, and Polysphaeridium groups (dinoflagellate cysts); the end of the acme of dinoflagellate cysts (Late Oligocene/Burdigalian); underlying Malvacipolloides maristellae (FAD); the first appearance of Acaciapollenites myriosporites, Corsinipollenites collaris, Corsinipollenites oculusnoctis, Corsinipollenites psilatus, Ctenolophonidites suigeneris, Multiporopollenites aff. pauciporatus/M. pauciporatus, Cyathidites congoensis, Retitricolporites wijmstrae, and Selenopemphix nephroides (dinoflagellate cysts); and the LAD of Bombacacidites gonzalezii. They frequently occur along with Clavainaperturites aff. clavatus, Laevigatosporites **Polypodiisporites** specious, spp., Polypodiisporites spp., and Psilamonocolpites spp., and seldom with Magnaperiporites spinosus (see Appendices 1-6 for details and Figures 2-6 for summary and correlations).

Comparison. The co-occurrence of several taxa (see Tables 5–6 and Figures 2–4) supports the correlation (summarized in Figure 6) of this zone with the palynostratigraphy of

Downloaded From: https://bioone.org/journals/Palynology on 17 Sep 2024 Terms of Use: https://bioone.org/terms-of-use Venezuela (Lorente 1986), northern South America (Muller et al. 1987), and the Solimões Basin in Western Amazonia (Hoorn 1993). It is coeval with the T-12 *Horniella lunarensis* Zone from Llanos in Colombia (Jaramillo et al. 2011), the zonal boundaries of which are coeval with the Mar-A Zone. However, the T-12 taxon *Horniella lunarensis* is not present in the Mar-A *Corsinipollenites oculusnoctis* Zone (Figures 2–4)

6.2. Mar-B Malvacipolloides maristellae Interval Zone

Reference section. Arabela-1X 1660-1210 ft (506-369 m).

Distribution. This zone was recognized in the intermediate section of the six wells analyzed: Arabela-1X interval 1660–1180 ft (506–360 m), Maynas-1 interval 4450–3350 ft (1356–1021 m), Tucunare-1X interval 7400–5350 ft (2255.5–1631 m), Tigrillo 30X interval 7350–6450 ft (2240–1966 m), Nahuapa-24X interval 4430–2600 ft (1350–792 m), and La Frontera-1 interval

Figure 3. Maximum stratigraphic ranges of species ordered by last appearance datum (LAD) among the studied wells, constructed in a composite section from previously known appearances and disappearances of species in each well obtained by means of graphic correlation.

Figure 4. First palynological zonation for the Marañon Basin (this work) and correlation (time-lines). See Appendices 1–6 and Table 5 for details, and see Figures 2–3 and 5–6 for timeline correlation and correlation with other South American palynozones.

Figure 5. First palynological zonation for the Marañon Basin (this work), and south-west and north-east correlation and timelines between boreholes of the six exploration wells Arabela-1X, Maynas-1, Tucunare-1X, Tigrillo-30X, Nahuapa-24X, and La Frontera-1 in the Marañon Basin.

3220–3120 ft (981–951 m) (see Appendices 1–6 for details and Figures 2–6 for summary and correlation).

angelicus or Cyclusphaera scabrata to the FAD of Grimsdalea magnaclavata in the upper zone.

Description. We propose the Mar-B *Malvacipolloides maristellae* Zone as corresponding to the interval from the FAD of *Malvacipolloides maristellae* to the LAD of *Retitricolporites wijmstrae* and/or from the LADs of *Retistephanoporites*

Age. Burdigalian (17.71–16.1 Ma).

Characteristics. This zone is characterized by the first appearance and continuous presence upward of *Malvacipolloides*

TIME (Ma)	ERA	PERIOD	FPOCH	5	SITE AUTHOR AGE		VENEZUELA Lorente, 1986	NORTHERN SOUTH AMERICA Muller <i>et al.,1987</i>	AMAZONIA Hoorn, 1993	SOLIMÕES Silva-Caminha <i>et al.,</i> 2010	COLOMBIA (Llanos) Jaramillo <i>et al</i> ., 2011	MARAÑON SUB-BASIN This work	FORMATIONS
2.5 — 3 — 3.5 — 4 — 4.5 —			PLIOCENE	EARLY LATE	PIACENZIAN ZANCLEAN	ites.	Echitricolporites Alnipollenites Psilatricolporites	Echitricolporites mcneillyi		Psilatricolporites	T-18 B. baculatus	3.6 <i>Mar-F</i>	MARAÑON
5.5 — 6 — 6.5 — 7 —				_	MESSINIAN	Fenestr	Stephanocolpites			caribbiensis	T-17 C. annulatus	5.48	
7.5 8 8.5 9 9.5 10				LATE	TORTONIAN		Asteraceae	Echitricolporites spinosus		Asteraceae: Fenestrites	T-16 F spinosus	Mar-E	
10.5 — 11 — 11.5 — 12 —		ш					Grimsdalea magnaclavata		G. magnaclavata			11.62	
12.5 — 13 — 13.5 — 14 —	CENOZOIC	NEOGEN	CENE	DDLE	SERRAVALLIAN		Crassoretitriletes	C.	Crassoretitriletes		T-15 C. vanraadashooveni	Mar-D	
14.5 — 15 — 15.5 — 16 —			MIO	Z	LANGHIAN		Psiladiporites	vanradadshooven	Psiladiporites		T-14 G. magnaclavata	Mar-C 16.1	PEDAS
16.5 17 17.5 18									Crototricolpites Retricolporites		T-13 E. maristellae	Mar-B 1/./	
18.5 19 19.5 20				EARLY	DONDIONEIMI		Verrutricolporites	E. maristellae P. minimus				Mar-A	
20.5 21 21.5 22 22.5					AQUITANIAN	0	Verrutricolporites/ Cicatricosisporites	V. rotundiporus E. barbeitoensis	Verrutricolporites		T-12 H. lunarensis	23.03	
25		PG	OL	IG	CHATTIAN								CHAMBIRA

Figure 6. First palynological zonation for the Marañon Basin (this work) and its suggested correlation with other South American palynozones and the geological column.

maristellae, often accompanied by Retistephanoporites angelicus, Corsinipollenites psilatus, and Retitricolporites wijmstrae; the rare occurrence of Bombacacidites nacimientoensis, Crototricolpites cf. Ctenolophonidites annemariae, suigeneris, Gomphrenipollis minima, and Retitriletes altimuratus; and the continued presence of Cyathidites congoensis. Furthermore, Clavainaperturites aff. clavatus, Laevigatosporites spp., Magnastriatites grandiosus, Mauritiidites franciscoi var. franciscoi, Mauritiidites franciscoi var. minutus, Perisyncolporites pokornyii, Polypodiisporites specious, Polypodiisporites spp., Polypodiisporites usmensis, Psilamonocolpites spp., Retipollenites spp., and Retitricolporites sp. are commonly present in moderate abundances. Acritarchs and dinoflagellate cysts, such as Batiacasphaera sp., Leiosphaeridia, Selenopemphix spp., and Operculodinium group, also occur. A peak abundance of *Pterospermella* spp. (prasinophycean algae) is noticeable (see Appendices 1-6 for details and Figures 2-6 for summary and correlations).

Comparison. The co-occurrence of taxa (see Tables 5–6 and Figures 2–4 for details) supports the correlation of this zone with others in South America (summarized in Figure 5; Lorente 1986; Muller et al. 1987; Hoorn 1993; Jaramillo et al. 2011). The record of the Early Miocene *Malvacipolloides maristellae* (Muller et al. 1987) in the six wells (Figures 3 and 5) reinforces the age assigned to this zone. The zonal limits of the T-13 *Malvacipolloides maristellae* Zone from Llanos in Colombia (Jaramillo et al. 2011) were identified in one of the six wells, the Nahuapa-24X (Figure 3), supporting their correlation (Figures 4 and 5).

6.3. Mar-C Mauritiidites crassibaculatus Assemblage Zone

Reference sections. Arabela-1 interval 1180–910 ft (360–277 m) and Nahuapa-24X interval 2600–2240 ft (792–683 m).

Distribution. This zone was recognized in three wells, namely Arabela-1 interval 1180–910 (360–277 m), Tigrillo-30X interval 6450–6000 ft (1966–1829 m), and Nahuapa-24X interval 2600–2240 (792–683 m). Only the lower limit of this zone was recognized in the Maynas-1 and Tucunare-1X wells, and only the upper limit was recognized in the La Frontera-1 well (see Appendices 1–6 for details and Figures 2–6 for summary and correlations).

Description. The Mar-C *Mauritiidites crassibaculatus* Zone is defined as the interval with *Mauritiidites crassibaculatus* from the LAD of *Retitricolporites wijmstrae* (top of the lower zone) and/or the FADs of *Grimsdalea magnaclavata* to the LADs of *Retitriporites dubiosus* or FAD of *Crassoretitriletes vanraadshooveni* in the upper zone. Alternatively, the upper boundary may be defined by the FAD of *Psilastephanoporites tesseroporus* and/or that of *Retipollenites crotonicolumellatus* (in the upper zone), which should be used when *Retitriporites dubiosus* and *Crassoretitriletes vanraadshooveni* are absent.

Age. Latest Burdigalian to Late Langhian (16.1–14.2/13.9 Ma).

Characteristics. This zone is characterized by the continuous presence of *Ladakhipollenites simplex*, *Mauritiidites crassibaculatus*, *Bombacacidites nacimientoensis*, *Retitricolpites simplex* and *Cyathidites congoensis* along with the frequent occurrence of *Laevigatosporites* spp., *Magnastriatites grandiosus*,

Mauritiidites franciscoi var. franciscoi, Polypodiisporites spp., Polypodiisporites usmensis, Psilamonocolpites spp., and Retistephanoporites crassiannulatus. It also contains Leiosphaeridia spp., Selenopemphix spp., Selenopemphix nephroides, and other indeterminate dinoflagellate cysts (see Appendices 1–6 for details and Figures 2–6 for summary and correlations).

Comparison. The co-occurrence of taxa (see Tables 5–6 and Figures 2–4 for details) supports the correlation of this zone with others in South America (summarized in Figure 5; Lorente 1986; Muller et al. 1987; Hoorn 1993; Jaramillo et al. 2011). This zone, in the six wells, is coeval with the T-14 *Grimsdalea magnaclavata* Zone (Figure 5) from Llanos in Colombia (Jaramillo et al. 2011). The T-14 Zone was defined as extending from the FAD of *G. magnaclavata* to the FAD of *Crassoretitriletes vanraadshooveni*. These zonal boundaries identified in Nahuapa-24X (Figure 4) reinforce the age given to our zone and their correlation (Figures 4–6).

6.4. Mar-D Crassoretitriletes vanraadshooveni Assemblage Zone

Reference section. Arabela-1 interval 850-610 ft (259–186 m) and La Frontera-1 interval 2720–2220 ft (829–677 m).

Distribution. This zone was recognized in the six wells analyzed: Arabela-1 interval 850–610 ft (259–186 m), Maynas-1 interval 2750–2700 (838–823 m), Tucunare-1X interval 5000–5050 (1524–1539 m), Tigrillo-30X interval 6000–5310 (1829–1618 m), Nahuapa-24X interval 2240–2210 ft (683–674 m), and La Frontera-1 interval 2720–2220 (829–677 m) (see Appendices 1–6 for details and Figures 2–6 for summary and correlations).

Description. The Mar-D *Crassoretitriletes vanraadshooveni* Zone is defined as the interval from the LADs of *Retitriporites dubiosus* (top of lower zone) and the FADs of the *Crassoretitriletes vanraadshooveni*, *Psilastephanoporites tesseroporus*, or *Retipollenites crotonicolumellatus* (which should be used when *Crassoretitriletes vanraadshooveni* and *Retitriporites dubiosus* are absent) to the LAD of *Corsinipollenites oculusnoctis* and/or the LAD of *Cyathidites congoensis*, and/or that of *Bombacacidites araracuensis*.

Age. Late Serravallian (14.2–11.62 Ma).

of Characteristics. This zone comprises the FADs Crassoretitriletes vanraadshooveni, Paleosantalaceaepites cingulatus, Psilastephanoporites tesseroporus, and Retipollenites crotonicolumellatus and the last records of Bombacacidites araracuarensis, Bombacacidites nacimientoensis, Corsinipollenites oculusnoctis, Crototricolpites cf. annemariae, Ladakhipollenites simplex, Mauritiidites crassibaculatus, and Cyathidites congoensis. Also occurring in this zone are Ctenolophinidites suigeneris, Deltoidospora adriennis, Echitriporites cricotriporatiformis, Laevigatosporites spp., Laevigatosporites catanejensis, Magnastriatites grandiosus, Mauritiidites franciscoi var. franciscoi, Polypodiisporites spp., Polypodiisporites usmensis, Psilamonocolpites spp., and Retitricolpites simplex. Leiosphaeridia sp., prasinophyceans (algae), and indeterminate dinoflagellate cysts occur frequently (see Appendices 1–6 for details and Figures 2–6 for summary and correlations).

Comparison. The characteristic co-occurrence of taxa (see Tables 5-6 and Figures 2-4 for details) supports the correlation of this zone with other zones in South America (summarized in Figure 5; Lorente 1986; Muller et al. 1987; Hoorn 1993: Jaramillo et al. 2011). This zone is coeval with the T-15 Crassoretitriletes vanraadshooveni Zone and the lower part of the T-16 Zone from Llanos in Colombia (Jaramillo et al. 2011). where the LAD of Mauritiidites crassibaculatus (as in the Maynas-1 well) occurs. The upper boundary of our zone occurs in La Frontera-1 before the first record of Ladakhipollenites caribbiensis that is known from the Late Miocene (da Silva et al. 2010). The lower limit of the Mar-D Zone in the Nahuapa-24X well coincides with that of the T-15 Zone (Figure 6) of Jaramillo et al. (2011). Our zone comprises the FAD of Retipollenites crotonicolumellatus, which also occurs in the T-15 Zone, the FADs of both Paleosantalaceaepites cingulatus and Psilastephanoporites tesseroporus, and the LAD of Mauritiidites crassibaculatus, which also occurs in the T-16 Zone of Jaramillo et al. (2011). Therefore, these presences also emphasize the age given to our zone and their correlation (Figures 2-6).

6.5. Mar-E Psilastephanoporites tesseroporus Interval Zone

Reference section. La Frontera-1 interval 2220–1540 (677–469 m).

Distribution. This zone was present only in the La Frontera-1 well, interval 2220–1540 ft (677–469 m). Note that in the other wells, samples were not analyzed above the top of the Mar-D zone (see Appendices 1–6 for details and Figures 2–6 for summary and correlations). Nevertheless, GraphCor confirmed this zone as defined here.

Description. We propose the Mar-E *Psilastephanoporites tesseroporus* Interval Zone as occurring from the LAD of *Corsinipollenites oculusnoctis* and/or that of *Cyathidites congoensis* (top of the lower zone) to the LAD of *Psilastephanoporites tesseroporus* and/or the LAD of *Siltaria santaisabelensis*.

Age. Early Tortonian to Late Messinian (11.62–5.48 Ma).

Characteristics. This zone includes the inception and presence of pollen grains of Ctenolophonidites suigeneris, **Foveotricolporites** lenticuloides, Lanagiopollis crassa, Paleosantalaceaepites cingulatus, Nijssenosporites fossulatus, and Retimonocolpites maximus and the LADs of Deltoidospora Acaciapollenites myriosporites, adriennis, Ladakhipollenites caribbiensis, Psilastephanoporites tesseroporus, and Siltaria santaisabelensis. Other taxa such as Osmundacidites ciliatus and dinoflagellate cysts Bosedinia infragranulata, Quadrina? condita and Selenopemphix quanta along with Echiperiporites estelae, Magnastriatites grandiosus, and Rhoipites hispidus are common.

Comparison. This zone is coeval with the *Echitricolporites spinosus* Zone from northern South America (Muller et al. 1987) and can be compared with the upper part of the T-16 *Fenestrites spinosus* Zone of Jaramillo et al. (2011), where the LAD of *Ladakhipollenites? caribbiensis* occurs, and to the lower part of the T-17 *Cyatheacidites annulatus* Zone of Jaramillo et al. (2011), where the LAD of *Psilastephanoporites tesseroporus* occurs (upper boundary of our Mar-E zone) (Figures 2–6).

6.6. Mar-F Ctenolophonidites suigeneris Zone

Reference section. La Frontera-1 interval 1560–1180 ft (475–360 m).

Distribution. This local zone was only identified in the La Frontera-1 well, interval 1540–1180 ft (469–360 m). Note that in the other wells, samples were not analyzed above the top of the Mar-D zone (see Appendices 1–6 for details and Figures 2–6 for summary and correlations).

Description. We propose the Mar-F *Ctenolophonidites suigeneris* Zone for the interval from the LAD of *Psilastephanoporites tesseroporus* (5.48 Ma) to the LADs of *Ctenolophonidites suigeneris* (3.6 Ma) and/or *Cistacearumpollenites rotundiporus* (LAD Pliocene). Note that samples above 1180 ft (360 m) were not analyzed.

Age. Latest Messinian to Zanclean (5.48–3.6 Ma).

Characteristics. This zone comprises the inception or frequent presence of *Deltoidospora* spp., *Echiperiporites akanthos*, *Echiperiporites estelae*, *Laevigatosporites ovatus*, *Lanagiopollis* cf. *crassa*, *Magnastriatites grandiosus*, *Mauritiidites franciscoi* var. *minutus*, *Monoporopollenites annulatus*, *Polypodiisporites usmensis*, *Retimonocolpites maximus*, and *Retitriletes* sp. *Fusiformisporites* is common among the fungal spores. The last records of *Siltaria hammenii* (Neogene), *Cistacearumpollenites rotundiporus* (LAD Pliocene), and *Crassoretitriletes vanraadshooveni* (3.4 Ma) occur in this zone. Noticeable is the absence of *Echitricolporites mcneillyi*.

Comparison. This zone is coeval with the *Psilatricolporites caribbiensis* Subzone from Venezuela (Lorente 1986), due to the absence of *Echitricolporites mcneillyi*, and can be compared with the lower part of the *Echitricolporites mcneillyi* Zone of northern South America (Muller et al. 1987), where the LAD of *Psilastephanoporites tesseroporus* occurs (upper boundary of our Mar-E zone). The upper part of T-17 and the lower part of T-18 (Jaramillo et al. 2011) are also correlated (Figures 2–6).

7. Correlation with other Western Amazonian basins and discussion

The vertical succession of species in the six wells investigated from the Marañon Basin (see Appendices 1–6 for details) allowed us to propose the first palynozonation in a chronostratigraphic context (Figure 5). The presence of selected species in some or all of the boreholes and their stratigraphic ranges (FAD and LAD ages; Figures 2-3 and Tables 5-6) were used to date our zones and establish correlations with relatively coeval palynozones in South America (Figure 6). Some diachronisms exist between the ages of published palynozones from northern South America and ours. For instance, the Early Miocene to earliest Middle Miocene in characterized the Venezuela was by successive Verrutricolporites and Psiladiporites-Echitricolporites pollen zones (Lorente 1986). These zones are equivalent to the Verrutricolporites rotundiporus-Echidiporites barbeitoensis and Echitricolporites maristellae–Psiladiporites minimus zones defined by Muller et al. (1987). The Verrutricolporites Interval Zone and the Verrutricolporites rotundiporus-Echidiporites barbeitoensis Zone are defined as extending from the first records of Verrutricolporites rotundiporus to the first occurrence of Psiladiporites minimus or Echitricolporites maristellae.

Hence, the Verrutricolporites (Lorente 1986) and the Verrutricolporites rotundiporus–Echidiporites barbeitoensis (Muller et al. 1987) zones can be correlated with our Mar-A Corsinipollenites oculusnoctis Interval Zone. In addition, the Psiladiporites-Echitricolporites Interval Zone (Lorente 1986) and the Echitricolporites maristellae-Psiladiporites minimus Zone (Muller et al. 1987) are defined by the first occurrence of Psiladiporites minimus or Echitricolporites maristellae at the base, and the first occurrence of Crassoretitriletes vanraadshooveni at the top. These markers also correlate with our Mar-B Malvacipolloides (Echitricolporites) maristellae and Mar-C Mauritiidites crassibaculatus zones. Hence, our Mar-A, Mar-B, and Mar-C zones are within the Early Miocene to earliest Middle Miocene pollen zones of Lorente (1986) and Muller et al. (1987). Our Mar-A, Mar-B, and Mar-C zones are also coeval with the T-12 Horniella lunarensis, T-13 Echitricolporites maristellae, and T-14 Grimsdalea magnaclavata zones, respectively, of Jaramillo et al. (2011).

The late Early Miocene in Venezuela and in Western Amazonia was characterized by Lorente (1986) and Hoorn (1993), respectively, by the *Crassoretitriletes* Interval Zone. This zone is defined from the first records of *Crassoretitriletes vanraadshooveni* and *Trichotomocolpites* sp. to the first occurrence of *Grimsdalea magnaclavata* in the latest Middle Miocene (Lorente 1986; Hoorn 1993). The top of this zone was defined by Muller et al. (1987) based on the first record of *Echitricolporites spinosus* in the earliest Tortonian. The FAD of *Grimsdalea magnaclavata sensu* Jaramillo et al. (2011) is the oldest at ca. 16.1 Ma, meaning that this FAD would occur before that of *Crassoretitriletes vanraadshooveni*.

We have identified in Arabela-1X, Tigrillo-30X, Nahuapa-24X, and La Frontera-1 wells an interval similar to the *Crassoretitriletes* Interval Zone, by the presence of three biostratigraphic markers, *Crassoretitriletes vanraadshooveni*, *Psilastephanoporites tesseroporus*, and *Retipollenites crotonicolumellatus* (Tables 5–6) co-occurring at the base, which belong to the bases of both the T-15 *Crassoretitriletes vanraadshooveni* palynozone (Jaramillo et al. 2011) and the *Crassoretitriletes* palynozone (Lorente 1986). GraphCor indicated the FAD of *Retipollenites crotonicolumellatus* was slightly below the FADs of *Crassoretitriletes vanraadshooveni* and *Psilastephanoporites tesseroporus*. However, this might be explained by the quality of sampling. The top is identified by *Corsinipollenites oculusnoctis*, *Cyathidites congoensis* and *Mauritiidites crassibaculatus* at ca. 11.62 Ma (Serravallian/ Tortonian limit), as shown in the *Crassoretitriletes vanraad-shooveni* Interval Zone of Muller et al. (1987). Therefore, the base of our Mar-D *Crassoretitriletes vanraadshooveni* Zone is coeval with the bases of the *Crassoretitriletes vanraadshoo-veni* zones of Hoorn (1993), Lorente (1986), and Jaramillo et al. (2011), whereas the top is coeval with the top of the *Crassoretitriletes vanraadshooveni* Zone is also coeval with the *Crassoretitriletes vanraadshooveni* Zone is also coeval with the *Crassoretitriletes* Interval Zone of Lorente (1986), recognized by Leite et al. (2017) in the Solimões Basin (Brazil).

The late Miocene from northern South America is characterized by the *Echitricolporites spinosus* Zone (Muller et al. 1987), so our Mar-E zone is coeval and can be also compared with the upper part of the T-16 *Fenestrites spinosus* Zone of Jaramillo et al. (2011), where the LAD of *Ladakhipollenites? caribbiensis* occurs. It is also correlated to the lower part of the T-17 *Cyatheacidites annulatus* Zone of Jaramillo et al. (2011), in which the LAD of *Psilastephanoporites tesseroporus* occurs (upper boundary of our Mar-E zone: 5.48 Ma). Although sediments referable to Mar-E and Mar-F zones were studied only in the Fontera-1 well, GraphCor displays the events limiting these zones. Furthermore, due to the abovementioned correlations this interval has a preliminary zonal character which can be improved with additional biostratigraphic studies above the upper section of the studied wells.

Some authors have suggested that there is no record of Pliocene deposits in the Solimões Basin (Latrubesse et al. 2007, 2010). However, recent palynostratigraphic studies (da Silva et al. 2010; Silveira and Souza 2015, 2016; Leite et al. 2017) have documented Pliocene sedimentation in some areas of the Solimões Basin. These palynological studies are based on the presence of the Psilatricolporites caribbiensis Interval Subzone (Late Miocene to Early Pliocene: 5.6-3.7 Ma; Lorente 1986) and the Alnipollenites verus Interval Subzone (Late Pliocene to Holocene: 3.7 to present; Lorente 1986) found in the studied Solimões wells. Similarly, our study showed that Neogene sedimentation in the Marañon Basin continued during the Pliocene, where at least 360 ft (103 m) of the Marañon formation sediments were deposited (see La Frontera-1 well, Appendix 6 and Figures 4-6). We propose that the Mar-F Ctenolophonidites suigeneris Zone (Late Miocene to Early Pliocene, 5.48-3.6 Ma) comprises the youngest deposits dated here. However, since we did not analyze sediments above 1180 ft (356 m), we cannot exclude the possibility of the younger sediments belonging to the Alnipollenites verus Interval Subzone sensu Lorente (1986) or any coeval zone at depths over 1180ft (356m), and/or any coeval zone at depths over those of the last intervals from the other wells studied herein for the Marañon Basin.

8. Conclusions

This study of the Neogene biostratigraphic record obtained from six industrial wells in the Marañon Basin allowed us to

define six palynozones (Mar-A to Mar-F); five of them (Mar-A to Mar-E) were validated by GraphCor. They range from the Aquitanian (Early Miocene) to the Messinian–Zanclean (latest Miocene to earliest Pliocene):

- The Mar-A *Corsinipollenites oculusnoctis* Interval Zone (Aquitanian to early Burdigalian: 23.03–17.71 Ma) is defined as extending from the first occurrence of *Retitricolporites wijmstrae*, occurring immediately over the *Cicatricosisporites dorogensis* marker species (latest Oligocene), to the first appearance of *Malvacipolloides maristellae*.
- The Mar-B *Malvacipolloides maristellae* Interval Zone (Burdigalian: 17.71–16.1 Ma) is recognized from the first appearance of *Malvacipolloides maristellae* to the last record of *Retitricolporites wijmstrae*.
- The Mar-C *Mauritiidites crassibaculatus* Assemblage Zone (latest Burdigalian to Late Langhian: 16.1–14.2/13.9 Ma) is defined as occurring from the last record of *Retitricolporites wijmstrae* (top of the lower zone) or the first appearance of *Grimsdalea magnaclavata* (e.g. the Nahuapa-24X well) to the first occurrence of *Crassoretitriletes vanraadshooveni* or *Psilastephanoporites tesseroporus*.
- The Mar-D Crassoretitriletes vanraadshooveni Assemblage Zone (Late Serravallian: 14.2–11.62 Ma) is defined by the first occurrence of Crassoretitriletes vanraadshooveni and or that of Psilastephanoporites tesseroporus at its base and by the last record of Cyathidites congoensis and Mauritiidites crassibaculatus or Corsinipollenites oculusnoctis at its top (e.g. La Frontera-1 well).
- The Mar-E *Psilastephanoporites tesseroporus* local Interval Zone (Early Tortonian to Late Messinian: 11.62–5.48 Ma) represents the time interval with *Psilastephanoporites tesseroporus* from the last occurrence of *Corsinipollenites oculusnoctis* and/or *Cyathidites congoensis* to the last occurrence of *Psilastephanoporites tesseroporus*. It is dominated by *Psilastephanoporites tesseroporus* and *Siltaria santaisabelensis*.
- The Mar-F Ctenolophonidites suigeneris local Zone (latest Messinian to Zanclean: 5.48–3.6 Ma) is defined at its base by the last appearance of *Psilastephanoporites tesseroporus* and at its top by the last occurrence of *Ctenolophonidites* suigeneris. Cistacearumpollenites rotundiporus and Siltaria hammenii dominate this zone.

The biostratigraphic scheme proposed for the Marañon Basin is based on the presence of species in common with Miocene palynozones of northern South America (Colombia, Venezuela, and western Brazil), and a correlation between them is also established. Our study corroborates recent studies regarding the palynostratigraphy of the Miocene Solimões and Acre basins, and documents that Pliocene sedimentation occurred in Peru (western Amazonia). Future study of the interval above the analyzed wells may provide information to characterize the Pliocene palynofloras of the Marañon Basin. A comparison with Amazonia and elsewhere in northern South American basins will achieve new insights for the less well-known evolution of floras during the Pliocene.

Acknowledgements

This work was supported by the French Research Institute for Development (IRD) under Grant BTDR and by PALEOSEDES E.U. (Colombia) under Grant STU04-2016, as well as by collaboration and partnership with the Toulouse III Paul Sabatier University (France), National University (Colombia), and CICYTTP-CONICET (Argentina) under CONICET PIP 0812. The first author is a PhD candidate and IRD scholarship holder and received Graphic Correlation software training from Dr Jaramillo at STRI, Panama. We thank Perupetro for allowing us to study the ditch-cutting samples and their permission to publish this article. Special thanks are given to Dr C. Jaramillo and another, anonymous reviewer, for their suggestions that allowed us to substantially improve the manuscript.

Disclosure statement

In accordance with Taylor & Francis policy and our ethical obligation as researchers, all the authors state that there is no conflict of interest.

Data availability statement

The data that support the findings of this study are openly available in NeotomaDB at:

Maynas-1 https://apps.neotomadb.org/Explorer/?datasetid=40652 Tucunare-1X https://apps.neotomadb.org/Explorer/?datasetid=40785 Arabela-1X https://apps.neotomadb.org/Explorer/?datasetid=40947 Frontera-1 https://apps.neotomadb.org/Explorer/?datasetid=40956 Nahuapa-24X https://apps.neotomadb.org/explorer/?datasetid=40965 Tigrillo-30X https://apps.neotomadb.org/explorer/?datasetid=40995

Notes on contributors

Francisco Parra has obtained a MSc Degree in Geology of Natural Resources at the University of Toulouse, France. He is currently a PhD student in co-tutorship at the University of Toulouse and the National University of Colombia, funded by the IRD. His experience mainly spans sedimentology and stratigraphy combining laboratory and field work with a focus in post-Paleozoic micropaleontology

(foraminifers, ostracods, spores, pollen, dinoflagellates, and charophytes), biostratigraphy, paleogeography, paleoenvironmental analysis in Colombian and Peruvian Amazonia.

Rosa E. Navarrete is a PhD geologist, micropaleontologist and biostratigrapher, mainly focused on marine and terrestrial environments, tectonic – erosion, paleogeography and paleoclimate. She is much experienced in multidisciplinary biogeochronology (foraminifers, ostracods, calcareous nannofossils, mollusks, and palynostratigraphy) of the post-Paleozoic interval in Americas, with emphasis on

South American sedimentary basins. She is Chairwoman and research senior of biostratigraphy consulting Colombian company Paleosedes E.U. assessing Oil & Gas industry over 25 years.

Mercredes di Pasquo Ph.D. 1999. Univ. Buenos Aires, Argentina. 2002: CONICET permanent researcher. 2010: Senior researcher, responsible Paly-Lab, CICYTTP. 2009-2020: President ALPP. 2009: Fulbright Research Fellow - Univ. Idaho. 2013-14: Researcher of "Ciencias sem Fronteiras" -CNPq in Brazil. Researches on palynofloras of Silurian/ Permian Arg/ Bolivia/Peru/Brazil, Dev-Carb Montana, Cret.

Antarctica, Holoc. Entre Rios. Supervisor PhD students from America. Phanerozoic Oil industry consultant.

Martin Roddaz is an Associate Professor of geology in the University of Toulouse, France. His main scientific interests include the understanding on controls on sediment production, transport and deposition in the Andes-Amazon system at both short and geological timescales. He has participated in or led several field expeditions in the Amazon basin (Peru, Bolivia) since 2001. He is WP2 Leader of

CLIMAMAZON project (Joint Brazilian–European facility for climate and geodynamic research on the Amazon River Basin sediments, http://www.clim-amazon.eu/).

Ysabel Calderón is a geologist working at PERUPETRO, Private Law State Company of the Energy and Mines Peruvian Sector. Since joining PERUPETRO in 2000, she evaluated new plays and promoted areas in different basins of Peru (Offshore and Onshore basins). Also, she is a PhD student at Géosciences-Environnement Toulouse in Paul Sabatier University, France, funded by the Institut de

Recherche pour le Développement. She obtained a Master degree in Geology from the same university. Her research has been focused on structural architecture, sedimentary evolution and hydrocarbon potential in a wedge-top foredeep zone in the northern Peruvian subandean basins.

Patrice Baby is a geologist. He is Research Director at the Institute for Research and Development. He has a PhD in Earth sciences from the University of Toulouse, France. His works focus mainly on Andean, Subandean, and Amazonian geodynamics. In the last 20 years, he has cooperated with academic and industrial institutions in Bolivia, Peru, and Ecuador. In the last decade, he has also beenwor-

kingwith biologists and paleontologists on the tectonic control of the diversification of biota in Western Amazonia. In particular, he has launched the multidisciplinary research group primarily coinciding with the coauthors of this review, and led several geological-paleontological expeditions in Amazonia.

ORCID

F.J. Parra (b) http://orcid.org/0000-0003-0801-9446 R.E. Navarrete (b) http://orcid.org/0000-0003-0131-352X M.M. di Pasquo (b) http://orcid.org/0000-0003-3068-0089 M. Roddaz (b) http://orcid.org/0000-0001-8562-8582 Y. Calderón (b) http://orcid.org/0000-0003-1060-4425

P. Baby (b) http://orcid.org/0000-0001-6142-5174

References

- Antoine P-O, Abello MA, Adnet S, Altamirano Sierra AJ, Baby P, Billet G, Boivin M, Calderón Y, Candela A, Chabain J. 2016. A 60-Million-year Cenozoic history of western Amazonian ecosystems in Contamana, eastern Peru. Gondwana Research. 31:30–59.
- Baby P, Calderón Y, Louterbach M, Espurt N, Brusset S, Roddaz M, Brichau S, Eude A, Calves G, Quispe A, Ramirez L, Bandach A, Bolanos R. 2018. The peruvian sub-Andean Foreland Basin System: Structural overview, geochronologic constraints, and unexplored plays. In: Zamora G, McClay KR, Ramos VA, editors. Petroleum Basins and Hydrocarbon Potential of the Andes of Peru and Bolivia, v. Memoir 117, AAPG, p. 91–120.
- Boonstra M, Ramos MI, Lammertsma EI, Antoine P-O, Hoorn C. 2015. Marine connections of Amazonia: evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology. 417:176–194.
- Bujak JP, Williams GL. 1985. Mesozoic and Cenozoic dinoflagellates. Plankton stratigraphy. Cambridge: Cambridge University Press; p. 847–965.

- Calderón Y, Baby P, Hurtado C, Brusset S. 2017a. Thrust tectonics in the Andean retro-foreland basin of northern Peru: Permian inheritances and petroleum implications. Marine and Petroleum Geology. 82: 238–250. doi:10.1016/j.marpetgeo.2017.02.009
- Calderón Y, Vela Y, Hurtado C, Bolaños R, Baby P, Eude A, Roddaz M, Brusset S, Calvès G. 2017b. Petroleum systems restoration of the Huallaga— Marañon Andean retroforeland basin, Peru. In: AbuAli MA, Moretti I, Nordgård Bolås HM, editors. Petroleum systems analysis—case studies. AAPG; p. 95–116. Elsevier. doi:10.1016/j.marpetgeo.2017.02.009
- Cole JM. 1992. Freshwater dinoflagellate cysts and acritarchs from Neogene and Oligocene sediments of the South China Sea and adjacent areas, in: Head, M.J., Wrenn, J.H. (Eds.), Neogene and Quaternary dinoflagellate cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, pp. 181–196.
- da Silva-Caminha SAF, Jaramillo CA, Absy ML. 2010. Neogene palynology of the Solimões basin, Brazilian Amazonia. Palaeontographica Abteilung B. 284(1–3):13–79.
- de Verteuil L, Norris G, Head MJ, Wrenn JH. 1992. Miocene protoperidiniacean dinoflagellate cysts from the Maryland and Virginia coastal plain. In: Head MJ, Wrenn JH, editors. Neogene and Quaternary dinoflagellate cysts and acritarchs. Dallas: American Association of Stratigraphic Palynologists Foundation; p. 391–430.
- Eisawi A, Schrank E. 2008. Upper Cretaceous to Neogene Palynology of the Melut Basin, Southeast Sudan. Palynology. 32(1):101–129.
- Eude A, Roddaz M, Brichau S, Brusset S, Calderón Y, Baby P, Soula JC. 2015. Controls on timing of exhumation and deformation in the northern Peruvian eastern Andean wedge as inferred from low-temperature thermochronology and balanced cross section. Tectonics. 34(4):715–730.
- Germeraad JH, Hopping CA, Muller J. 1968. Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology. 6(3–4):189–348.
- Gingras MK, Rasanen ME, Pemberton SG, Romero LP. 2002a. Ichnology and sedimentology reveal depositional characteristics of bay-margin parasequences in the Miocene Amazonian foreland basin. Journal of Sedimentary Research. 72(6):871–883.
- Gingras MK, Räsänen ME, Ranzi A. 2002b. The significance of bioturbated inclined heterolithic stratification in the southern part of the Miocene Solimões Formation, Rio Acre, Amazonia Brazil. Palaios. 17(6):591–601.
- González-Guzmán, AE. 1968. A palynological study on the upper los cuervos and mirador formations (Lower and Middle Eocene; Tibú area, Colombia), ed. E. J. Brill. Leiden: Hugo de Vries Laboratory. 68.
- Grimm EC. 2005. TILIA and TILIAGRAPH software. Springfield (IL): Illinois State Museum. https://www.tiliait.com/download/
- Gross M, Piller WE, Ramos MI, Douglas da Silva Paz J. 2011. Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation, Brazil). Journal of South American Earth Sciences. 32(2):169–181.
- Hermoza W. 2004. Dynamique tectono-sedimentaire et restauration sequentielle du retro-bassin d'avant-pays des Andes Centrals [Unpublished Ph.D. thesis]. Toulouse: Université Paul Sabatier; p. 296.
- Hermoza W, Baby P, Brusset S, Roddaz M, Bolaños R. 2005. Eocene to present-day latitudinal variations in the retroforeland basin system of the Peruvian Andes.: 6th International Symposium on Andean Geodynamics (ISAG 2005). Extended Abstracts, p. 368–371
- Hermoza W, Brusset S, Baby P, Gil W, Roddaz M, Guerrero N, Bolaños R. 2005. The Huallaga foreland basin evolution: thrust propagation in deltaic environment, in the northern Peruvian Andes. Journal of South American Earth Sciences. 19(1):21–34.
- Hood KC. 1998. GraphCor Interactive Graphic Correlation Software. Version 3.0. Houston.
- Hoorn C. 1993. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology. 105(3–4):267–309.
- Hoorn C. 1994a. An environmental reconstruction of the palaeo-Amazon river system (middle–late Miocene Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology. 112(3–4):187–238.
- Hoorn C. 1994b. Fluvial palaeoenvironments in the intracratonic Amazonas basin (early Miocene-early middle Miocene, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology. 109(1):1–54.

- Hoorn C. 2006. Mangrove forests and marine incursions in Neogene Amazonia (lower Apaporis river, Colombia). Palaios. 21(2):197–209.
- Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI, Flantua SGA, Dantas EL, Dino R, do Carmo DA, Chemale FJ. 2017. The Amazon at sea: Onset and stages of the Amazon river from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change. 153:51–65.
- Hoorn C, Guerrero J, Sarmiento GA, Lorente MA. 1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology. 23(3):237.
- Hoorn C, Paxton CGM, Crampton WGR, Burgess P, Marshall LG, Lundberg JG, Räsänen ME, Linna AM. 1996. Miocene deposits in the Amazonian foreland basin. Science. 273(5271):122–120.
- Hoorn C, Wesselingh FP. 2010. Amazonia, landscape and species evolution: a look into the past. Chichister: Wiley-Blackwell Publishing Ltd.
- Hoorn C, Wesselingh FP, Hovikoski J, Guerrero J. 2010a. The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In: Amazonia, landscape and species evolution: a look into the past. Chichester: Wiley-Blackwell Publishing Ltd; p. 123–142.
- Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartin I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, et al. 2010b. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science. 330(6006):927–931.
- Hovikoski J, Gingras M, Rasanen M, Rebata LA, Guerrero J, Ranzi A, Melo J, Romero L, del Prado HN, Jaimes F. 2007. The nature of Miocene Amazonian epicontinental embayment: high-frequency shifts of the low-gradient coastline. Geological Society of America Bulletin. 119(11–12):1506–1520.
- Hovikoski J, Räsänen M, Gingras M, Lopéz S, Romero L, Ranzi A, Melo J. 2007. Palaeogeographical implications of the Miocene Quendeque Formation (Bolivia) and tidally-influenced strata in southwestern Amazonia. Palaeogeography, Palaeoclimatology, Palaeoecology. 243(1–2):23–41.
- Hurtado C, Roddaz M, Santos RV, Baby P, Antoine P-O, Dantas EL. 2018. Cretaceous-early Paleocene drainage shift of Amazonian rivers driven by equatorial Atlantic ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Research. 63:152–168.
- Jaramillo CA, Rueda M. 2019. A morphological electronic database of Cretaceous-Tertiary and extant pollen and spores from northern South America. http://biogeodb.stri.si.edu/jaramillosdb/web/morphological/.
- Jaramillo CA, Hoorn C, da Silva SAF, Leite F, Herrera F, Quiroz L, Dino R, Antonioli L. 2010. The origin of the modern Amazon rainforest: implications of the palynological and palaeobotanical record. In: Hoorn C, Wesselingh FP, editors. Amazonia, landscape and species evolution: a look into the past. Chichister: Wiley-Blackwell Publishing Ltd; p. 317–334.
- Jaramillo C, Romero I, D'Apolito C, Bayona G, Duarte E, Louwye S, Escobar J, Luque J, Carrillo-Briceño JD, Zapata V, et al. 2017. Miocene flooding events of western Amazonia. Science Advances. 3(5):e1601693.
- Jaramillo CA, Rueda M, Torres V. 2011. A palynological zonation for the Cenozoic of the Llanos and Llanos foothills of Colombia. Palynology. 35(1):46–84.
- Latrubesse EM, Cozzuol M, da Silva SAF, Rigsby CA, Absy ML, Jaramillo CA. 2010. The late Miocene paleogeography of the Amazon basin and the evolution of the Amazon river system. Earth-Science Reviews. 99(3–4):99–124.
- Latrubesse EM, da Silva SAF, Cozzuol M, Absy ML. 2007. Late Miocene continental sedimentation in southwestern Amazonia and its regional significance: biotic and geological evidence. Journal of South American Earth Sciences. 23(1):61–80.
- Leandro LM, Vieira CEL, Santos A, Fauth G. 2019. Palynostratigraphy of two Neogene boreholes from the northwestern portion of the Solimões basin, Brazil. Journal of South American Earth Sciences. 89:211–218.
- Leite FPR, Paz J, do Carmo DA, Silva-Caminha SA. 2017. The effects of the inception of Amazonian transcontinental drainage during the Neogene on the landscape and vegetation of the Solimões basin, Brazil. Palynology. 41(3):412–422.
- Linhares AP, Ramos Feijó MI. 2011. Evidence for marine influx during the Miocene in southwestern Amazonia, Brazil. Geología Colombiana. 36(1):91–103

- Linhares AP, Ramos MIF, Gaia VCS, Friaes YS. 2019. Integrated biozonation based on palynology and ostracods from the Neogene of Solimões Basin, Brazil. Journal of South American Earth Sciences. 91: 57. doi:10.1016/j.jsames.2019.01.015.
- Linhares AP, de Souza Gaia VC, Ramos MI. 2017. The significance of marine microfossils for paleoenvironmental reconstruction of the Solimões Formation (Miocene), western Amazonia, Brazil. Journal of South American Earth Sciences. 79:57–66.
- Lorente MA. 1986. Palynology and palynofacies of the Upper Tertiary in Venezuela. Berlin and Stuttgart: Lubrecht & Cramer Ltd
- Louterbach M, Roddaz M, Antoine P-O, Marivaux L, Adnet S, Bailleul J, Dantas E, Santos RV, Chemale F, Baby P, et al. 2018. Provenance record of late Maastrichtian–late Paleocene Andean mountain building in the Amazonian retroarc foreland basin (Madre de Dios basin, Peru). Terra Nova. 30(1):17–23.
- Macphail MK. 1999. Palynostratigraphy of the Murray basin, inland southeastern Australia. Palynology. 23(1):197–240.
- Mann KO, Lane HR. 1995. Graphic correlation: a powerful stratigraphic technique comes of age. SEPM Special Publication 53, Tulsa, p. 262.
- Marocco R, Bolanos R, Paz M, Tarazona A. 1995. Informe preliminar sobre el estudio de la sedimentación neógena del nororiente del Perú en base al análisis de los pozos Tangarana 18-4x, Jibaro 1, Valencia 25x, Chapuli 20-1x, Maranon 10-1x, Cuinico norte 6-46x, Nahuaca 3x, Tapiche 36-2x, la Frontera 46-3x. [preliminary report about the study of Neogene sedimentation, northeast Peru on the basis of the analysis of wells Tangarana 18-4x, Jibaro 1, Valencia 25x, Chapuli 20-1x, Maranon 10-1x, Cuinico norte 6-46x, Nahuaca 3x, Tapiche 36-2x, la Frontera 46-3x]. Lima: ORSTOM, PETROPERU.
- Mathalone JMP, Montoya MR. 1995. Petroleum geology of the sub-Andean basins of Peru. In: Tankard AJ, Suárez-Soruco R, Welsink HJ, editors. Petroleum basins of South America. Houston (MA): AAPG; p. 423–444.
- Monsch KA. 1998. Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeography, Palaeoclimatology, Palaeoecology. 143(1–3):31–50.
- Muller J, Di Giacomo E, Van Erve AW. 1987. A palynological zonation for the Cretaceous, Tertiary Quaternary of northern South America. Dallas (TX): American Association of Stratigraphic Palynologists. Contribution Series 19; p. 1–77.
- Muñoz-Torres FA, Whatley RC, Van Harten D. 2006. Miocene ostracod (crustacea) biostratigraphy of the upper Amazon basin and evolution of the genus *Cyprideis*. Journal of South American Earth Sciences. 21(1–2):75–86.
- Raine JI, Mildenhall DC, Kennedy EM. 2011. New Zealand fossil spores and pollen: an illustrated online catalogue. 4th ed. Lower Hutt: GNS Science. http://data.gns.cri.nz/sporepollen/index.htm.
- Ramos MI. 2006. Ostracods from the Neogene Solimões Formation (Amazonas, Brazil). Journal of South American Earth Sciences. 21(1–2): 87–95.
- Räsänen ME, Linna AM, Santos JCR, Negri FR. 1995. Late Miocene tidal deposits in the Amazonian foreland basin. Science (New York, N.Y.). 269(5222):386–390.
- Rebata LA, Gingras MK, Räsänen ME, Barberi M. 2006a. Tidal-channel deposits on a delta plain from the upper Miocene Nauta Formation, Marañon foreland sub-basin, Peru. Sedimentology. 53:971–1013.
- Rebata LA, Räsänen ME, Gingras MK, Vieira V, Barberi M, Irion G. 2006b. Sedimentology and ichnology of tide-influenced late Miocene successions in western Amazonia: the gradational transition between the Pebas and Nauta Formations. Journal of South American Earth Sciences. 21(1–2):96–119.
- Regali MSP, Uesugui N, Santos AS. 1974a. Palinologia dos sedimentos Meso-Cenozóicos do Brasil (i). [Palynology of Meso-Cenozoic sediments of Brazil (i).]. Boletim Técnico da Petrobras. 17(3):177–191.
- Regali MSP, Uesugui N, Santos AS. 1974b. Palinologia dos sedimentos Meso-Cenozóicos do Brasil (ii). [Palynology of Meso-Cenozoic sediments of Brazil (ii).]. Boletim Técnico da Petrobras. 17(4):263–301.
- Roddaz M, Baby P, Brusset S, Hermoza W, Darrozes JM. 2005. Forebulge dynamics and environmental control in western Amazonia: the case study of the arch of Iquitos (Peru). Tectonophysics. 399(1–4):87–108.

Roddaz M, Hermoza W, Mora A, Baby P, Parra M, Christophoul F, Brusset S, Espurt N. 2010. Cenozoic sedimentary evolution of the Amazonian foreland basin system. In: Hoorn H, Wesselingh FP, editors. Amazonia, landscape and species evolution: a look into the past. Chichister: Wiley-Blackwell Publishing Ltd; p. 61–88.

Salas-Gismondi R, Antoine P-O, Baby P, Brusset S, Benammi M, Espurt N, De Franceschi D, Pujos F, Tejada-Lara JV, Urbina M. 2007. Middle Miocene crocodiles from the Fitzcarrald arch. Amazonian Peru. Cuadernos Del Museo Geominero. 8:355–360.

Shaw AB. 1964. Time in stratigraphy. New York (NY): McGraw Hill; p. 365.

- Silveira R, Souza P. 2015. Palinologia (grãos de pólen de angiospermas) das formações Solimões e Içá (bacia do Solimões), nas regiões de Coari e Alto Solimões, Amazonas. [Palynology (pollen grains of angiosperms) of the Solimões and Içá formations (Solimões basin), in the regions of Coari and Alto Solimões, Amazonas]. Revista Brasileira de Paleontologia. 18(3):455–474.
- Silveira R, Souza P. 2016. Palinologia (esporos de fungos e pteridófitas, grãos de pólen de gimnopermas, cistos de algas e escolecodonte) das formações Solimões e Içá (Neogeno e Pleistoceno, bacia do Solimões), Amazonas, Brasil. [Palynology (spores of fungi and ferns, grains gymnosperms pollen, algal cysts and scolecodonts) of the Solimões and Içá formations (Neogene and Pleistocene, the Solimões basin), Amazonas, Brazil.]. Pesquisas em Geociências. 43(1):17–39.
- Tryon AF, Lugardon B. 1991. Spores of the pteridophyta: surface, wall structure, and diversity based on electron microscope studies. New York (NY): Springer Science & Business Media.
- Van der Hammen T. 1956. Description of some genera and species of fossil pollen and spores. Boletín Geológico. Servicio Geológico Colombiano, Bogota. 4(2–3):111–117.
- Wesselingh FP. 2006. Miocene long-lived lake Pebas as a stage of mollusc radiations, with implications for landscape evolution in western Amazonia. Scripta Geologica. 133:1–17.
- Wesselingh FP, Guerrero J, Räsänen ME, Romero Pittman L, Vonhof HB. 2006a. Landscape evolution and depositional processes in the Miocene Amazonian Pebas lake/wetland system: evidence from exploratory boreholes in northeastern Peru. Scripta Geologica. 133:323–361.
- Wesselingh FP, Hoorn C, Guerrero J, Räsänen ME, Romero Pittman L, Salo JS. 2006b. The stratigraphy and regional structure of Miocene deposits in western Amazonia (Peru, Colombia and Brazil), with implications for late Neogene landscape evolution. Scripta Geologica. 133: 291–322.
- Wesselingh FP, Hoorn C, Kroonenberg SB, Antonelli A, Lundberg JG, Vonhof HB, Hooghiemstra H. 2010. On the origin of Amazonian landscapes and biodiversity: a synthesis. In: Hoorn C, Wesselingh FP, editors. Amazonia, landscape and species evolution: a look into the past. Chichister: Wiley-Blackwell Publishing Ltd; p. 419–431.
- Wesselingh FP, Ramos MI. 2010. Amazonian aquatic invertebrate faunas (mollusca, ostracoda) and their development over the past 30 million years. In: Hoorn C, Wesselingh FP, editors. Amazonia, landscape and species evolution: a look into the past. Oxford (UK): Wiley-Blackwell Publishing Ltd; p. 302–316.
- Whatley RC, Muñoz-Torres FA, Van Harten D. 1998. The ostracoda of an isolated Neogene saline lake in the western Amazon basin. What about Ostracoda. 20:231–245.
- Williams GL, Fensome RA, MacRae RA. 2017. Dinoflaj3. American Association of Stratigraphic Palynologists, data series no. 2. http:// dinoflaj.smu.ca/dinoflaj3/index.php/Main_Page.
- Wood GD, Gabriel AM, Lawson JC. 1996. Palynological techniques processing and microscopy. In: Jansonius J, McGregor DC, editors. Palynology: Principles and applications. Dallas (TX): American Association of Stratigraphic Palynologists Foundation; Volume 1, p. 29–50.

List of species with author citations *Spores*

Cicatricosisporites dorogensis Potonié & Gelletich, 1933 Crassoretitriletes vanraadshooveni Germeraad, Hopping & Müller, 1968 Cyathidites congoensis Sah, 1967 Cyathidites minor Couper, 1953

Deltoidospora adriennis (Potonié & Gelletich, 1933) Frederiksen, 1983 Echinatisporis muelleri (Regali, Uesugui & Santos, 1974) Silva-Caminha, Jaramillo & Absy, 2010 Foveotriletes ornatus Regali, Uesugui & Santos, 1974 Laevigatosporites catanegensis Muller, Di Giacomo & Van Erve, 1987 Laevigatosporites granulatus Jaramillo, Pardo, Rueda, Torres, Harrington, & Mora, 2007 Laevigatosporites ovatus Wilson & Webster, 1946 Magnastriatites grandiosus (Kedves & Sole de Porta, 1963) Dueñas, 1980 Nijssenosporites fossulatus Lorente, 1986 Osmundacidites ciliatus Sah, 1967 Polypodiisporites specious Sah, 1967 Polypodiisporites usmensis (Van der Hammen, 1956) Khan & Martin, 1972 Retitriletes altimuratus Silva-Caminha, Jaramillo & Absy, 2010 Striatriletes saccolomoides Jaramillo, Rueda & Torres, 2011 Verrutriletes virueloides Jaramillo, Pardo, Rueda, Torres,

Harrington & Mora, 2007

Pollen grains

Acaciapollenites myriosporites (Cookson, 1954) Mildenhall, 1972 Araliaceoipollenites Jussieu, 1789 Arecipites perfectus Silva-Caminha, Jaramillo & Absy, 2010 Bombacacidites soleaformis Muller, Di Giacomo & Van Erve, 1987 Bombacacidites annae (Van der Hammen, 1954) Leidelmeyer, 1966 Bombacacidites araracuarensis Hoorn, 1994 Bombacacidites brevis (Dueñas, 1980) Muller, Di Giacomo & Van Erve, 1987 Bombacacidites gonzalezi Jaramillo & Dilcher, 2001 Bombacacidites nacimientoensis (Anderson, 1960) Elsik, 1968 Bombacacidites psilatus Jaramillo & Dilcher, 2001 Catostemma type Bentham, 1843 Cistacearumpollenites rotundiporus Silva-Caminha, Jaramillo & Absy, 2010 Clavainaperturites clavatus Van der Hammen & Wymstra, 1964 Colombipollis tropicalis Sarmiento, 1992 Corsinipollenites psilatus Jaramillo & Dilcher, 2001 Corsinipollenites collaris Silva-Caminha, Jaramillo & Absy, 2010 Corsinipollenites oculusnoctis (Thiergart, 1940) Nakoman, 1965 Corsinipollenites psilatus Jaramillo & Dilcher, 2001 Crassiectoapertites columbianus (Dueñas, 1980) emend. Lorente, 1986 Crototricolpites annemariae Leidelmeyer, 1966 Ctenolophonidites suigeneris Silva-Caminha, Jaramillo & Absy, 2010 Cyclusphaera scabrata Jaramillo & Dilcher, 2001 Echiperiporites estelae Germeraad, Hopping & Müller, 1968 Echiperiporites jutaiensis Silva-Caminha, Jaramillo & Absy, 2010 Echiperiporites akanthos Van der Hammen & Wijmstra, 1964 Echiperiporites estelae Germeraad, Hopping & Müller, 1968 Echiperiporites lophatus Silva-Caminha, Jaramillo & Absy, 2010 Echitriporites trianguliformis van Hoeken-Klinkenberg, 1964 Echitriporites cricotriporatiformis Jaramillo, Rueda & Torres, 2011 Foveotricolporites lenticuloides Silva-Caminha, Jaramillo & Absy, 2010 Gomphrenipollis minimus Silva-Caminha, Jaramillo & Absy, 2010 Grimsdalea magnaclavata Germeraad, Hopping & Müller, 1968 Hedyosmum type Swartz, 1788 Ladakhipollenites simplex (González-Guzmán, 1967) Jaramillo & Dilcher, 2001 Ladakhipollenites? caribbiensis (Muller, Di Giacomo & Van Erve, 1987) Silva-Caminha, Jaramillo & Absy, 2010

Lanagiopollis crassa (Van der Hammen & Wymstra, 1964) Frederiksen, 1988 Magnaperiporites spinosus González-Guzmán, 1967

Malvacipolloides (Echitricolporites) maristellae (Muller, Di Giacomo & Van Erve, 1987) Silva-Caminha, Jaramillo & Absy, 2010

Margocolporites vanwijhei Germeraad, Hopping & Muller 1968 Mauritiidites crassibaculatus Van Hoeken-Klinkenberg, 1964 Mauritiidites franciscoi franciscoi (Van der Hammen, 1956)

van Hoeken-Klinkenberg, 1964

Mauritiidites franciscoi minutus Van der Hammen & Garcia, 1966

Monocolpopollenites ovatus Jaramillo & Dilcher, 2001 Monoporopollenites annulatus (Van der Hammer, 1954) Jaramillo & Dilcher, 2001 Multiporopollenites pauciporatus Jaramillo & Dilcher, 2001 Paleosantalaceaepites cingulatus Jaramillo, Rueda & Torres, 2011 Perfotricolpites digitatus González-Guzmán, 1967 Perisyncolporites pokornyi Germeraad, Hooping & Müller, 1968 Polyadopollenites mariae Dueñas, 1980 Proteacidites triangulatus Lorente, 1986 Proxapertites tertiaria Van der Hammen & Garcia, 1966 Proxapertites minutus Dueñas, 1980 Proxapertites operculatus (Van der Hammen, 1954) Van der Hammen, 1956 Proxapertites psilatus Sarmiento, 1992 Proxapertites verrucatus Sarmiento, 1992 Psilamonocolpites medius (Van der Hammen, 1954) Van der Hammen & Garcia, 1966 Psilastephanocolporites fissilis Leidelmeyer, 1966 Psilastephanoporites tesseroporus Regali, Uesugui & Santos, 1974 Psilatricolpites papilioniformis Regali, Uesugui & Santos, 1974 Psilatricolporites garzoni Hoorn, 1993 Psilatricolporites operculatus Van der Hammen & Wiimstra, 1964 Psilatricolporites crassoexinatus Hoorn, 1993 Psilatricolportires operculatus minutus González-Guzmán, 1967 Ranunculacidites operculatus (van der Hammen & Wijmstra, 1964) Jaramillo & Dilcher, 2001 Retibrevitricolporites vavarensis (Hoorn, 1993) Silva-Caminha, Jaramillo & Absy, 2010 Retimonocolpites maximus Hoorn, 1993 Retimonocolpites retifossulatus Lorente, 1986 Retipollenites crotonicolumellatus Jaramillo, Rueda & Torres, 2011 Retistephanocolporites fossulatus Jaramillo & Dilcher, 2001 Retistephanoporites angelicus González-Guzmán, 1967 Retistephanoporites crassiannulatus Lorente, 1986 Retitrescolpites irregularis (Van der Hammen & Wymstra, 1964) Jaramillo & Dilcher, 2001 Retitrescolpites magnus (González-Guzmán, 1967) Jaramillo & Dilcher, 2001 Retitrescolpites saturum (González-Guzmán, 1967) Jaramillo & Dilcher, 2001 Retitricolpites simplex González-Guzmán, 1967 Retitricolpites colpiconstrictus Hoorn, 1994 Retitricolpites simplex González-Guzmán, 1967 Retitricolporites wijmstrae Hoorn, 1994 Retitriporites dubiosus González-Guzmán, 1967 Rhoipites guianensis (Van der Hammen & Wymstra, 1964) Jaramillo & Dilcher, 2001 Rhoipites hispidus (Van der Hammen & Wymstra, 1964) Jaramillo & Dilcher, 2001 Siltaria hammenii Silva-Caminha, Jaramillo & Absy, 2010 Siltaria santaisabelensis (Hoorn, 1994) Silva-Caminha, Jaramillo & Absv. 2010 Spirosyncolpites spiralis González-Guzmán, 1967 Tetracolporopollenites maculosus (Regali, Uesugui & Santos, 1974) Jaramillo & Dilcher, 2001

Microplankton

Chomotriletes minor Pocock, 1970

Apteodinium australiense Williams, 1978

Selenopemphix quanta (Bradford, 1975) Matsuoka, 1985

Bosedinia infragranulata He, 1984

Operculodinium group Wall, 1967

- Polysphaeridium group Davey & Williams, 1966b
- Selenopemphix nephroides Benedek, 1972
- Retitrescolpites? irregularis (Van der Hammen & Wymstra, 1964) Jaramillo & Dilcher, 2001

Quadrina? condita de Verteuil & Norris, 1992

Appendix 1. Arabela

Appendix 2. Maynas

Appendix 3. Tacunare

Appendix 4. Tigrillio

Appendix 5. Nahuapa

Appendix 6. Frontera

