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Abstract 

The invasive Asian longhorned tick, Haemaphysalis longicornis, has rapidly spread across the northeastern 
United States and is associated with pathogens of public health and veterinary concern. Despite its impor-
tance in pathogen dynamics, H. longicornis blood-feeding behavior in nature, specifically the likelihood of 
interrupted feeding, remains poorly documented. Here, we report the recovery of partially engorged, questing 
H. longicornis from active tick surveillance in Pennsylvania. Significantly more engorged H. longicornis 
nymphs (1.54%) and adults (3.07%) were recovered compared to Ixodes scapularis nymphs (0.22%) and adults 
(zero). Mean Scutal Index difference between unengorged and engorged nymph specimens was 0.65 and 
0.42 for I. scapularis and H. longicornis, respectively, suggesting the questing, engorged H. longicornis also 
engorged to a comparatively lesser extent. These data are among the first to document recovery of engorged, 
host-seeking H. longicornis ticks and provide initial evidence for interrupted feeding and repeated successful 
questing events bearing implications for pathogen transmission and warranting consideration in vector dy-
namics models.
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The invasive Asian longhorned tick, Haemaphysalis longicornis 
Neumann (Acari: Ixodidae), has rapidly spread to 17, primarily 
northeastern, states since initial documentation of its establishment 
in the United States in 2017 (Rainey et al. 2018). In both its endemic 
and invaded ranges, H. longicornis can acquire and carry pathogens 
of human importance, including the agents causing Lyme disease 
and spotted fever group rickettsiosis (Qin et al. 2019, Zhao et al. 
2020, Price et al. 2021a). Their broad host range coupled with hab-
itat overlap and high prevalence of co-feeding with native vector 
tick species could facilitate pathogen acquisition and spillover, as re-
cently described for arboviruses (Price et al. 2021b, Tufts et al. 2021, 
White et al. 2021, Cumbie et al. 2022). However, important factors 
in pathogen transmission risk, including blood-feeding behavior and 
engorgement dynamics, remain poorly documented in natural field 
conditions (Piesman 1993, Tahir et al. 2020). Therefore, our objec-
tive was to compare engorgement status of questing H. longicornis 
and other ticks recovered from active, statewide surveillance in 
Pennsylvania (PA).

Methods

Pennsylvania Department of Environmental Protection conducts ac-
tive tick surveillance targeting adult and nymphal Ixodes scapularis 
Say (Acari: Ixodidae) intermittently in all 67 counties from October 
through April (1 October 2020 to 8 April 2021) and weekly from May 
through August (1 May 2021 to 31 August 2021). Nontarget tick spe-
cies, especially H. longicornis, are often collected as surveillance periods 
overlap with peak adult and nymphal activity (Supp Table 1 [online 
only]; Tufts et al. 2019, Piedmonte et al. 2021). Our sampling sites (n= 
484) are largely public areas in deciduous forests and were selected for 
presence of suitable I. scapularis and reportedly suitable H. longicornis 
tick habitat (Tufts et al. 2019, Thompson et al. 2021). Field procedures 
followed Price et al. (2021b). Briefly, at each site questing ticks were 
collected by dragging a 1 m2 white felt cloth over vegetation and leaf 
litter for ≥100 m. The dragging method is broadly utilized for active sur-
veillance of I. scapularis and preferred for collection of H. longicornis 
(Sherpa et al. 2021). Cloths were examined every 10 m and recovered 
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ticks transferred into vials containing 80% ethanol; ticks were shipped 
to a central laboratory, identified to species using a Nikon SMZ-800N 
stereomicroscope and morphological keys (Keirans and Litwak 1989, 
Egizi et al. 2019), and classified by life stage, sex, and degree of engorge-
ment (unengorged, partial, full).

Noticeably darkened abdomen and swollen opisthosoma 
served as criteria for distinguishing engorgement in all tick species 
(Nathanson 1970, Starck et al. 2018). Other diverged morphological 
features (e.g., narrowed subdivisions between festoons) were helpful 
for differentiating engorged H. longicornis. All engorged ticks as 
well as unengorged, field-collected reference specimens (n = 10/spp./
life stage) were then measured for total body length and scutum 
length, the ratio of which functions as an engorgement (Scutal) index 
indicative of feeding duration (Yeh et al. 1995), using NIS-Elements 
software (Nikon Instruments Inc., Melville, NY; Supp Fig. 1 [online 
only]). Unfed I. scapularis obtained from a laboratory colony at the 
Oklahoma State University Tick Rearing Facility and H. longicornis 
obtained from a colony, established from a parthenogenic strain, at 
the Centers for Disease Control and Prevention were also measured 
to compare against unengorged, field-collected reference specimens. 
To confirm the presence of presumptive blood, a subset (n = 8) 
of engorged and unengorged nymphs were bisected on sterile mi-
croscope slides and swabbed with cotton applicators which were 
subjected to a phenolphthalein (Kastle–Meyer) test following the 
manufacturer’s instructions (Ward’s Science, Rochester, NY; Cox 
1991).

The Z-score test was used to compare proportions of recovered, 
engorged populations. Relationships among measured Scutal Index 
factors were analyzed using Pearson’s correlation. Scutal Index 
differences between engorged and reference specimens and life stage 
were analyzed using analysis of variance (ANOVA) and Hedges’ 
g was used to measure corrected effect size for small sample sizes 
(Hedges 1981). Statistical analyses were performed using R v. 3.6.0 
(R Core Team 2019) and the packages car (Fox and Weisberg 2019), 
effects (Fox 2003), plyr (Wickham 2011), and lsmeans (Lenth 2016).

Results

During the surveillance period, a total of 2,267 unique sampling 
events were conducted yielding 6,922 I. scapularis (3,244 nymphs 
and 3,678 females) and 1,588 H. longicornis (1,425 nymphs 
and 163 females). Of these, 7 (0.22%) I. scapularis nymphs, 22 
(1.54%) H. longicornis nymphs, and 5 (3.07%) H. longicornis 
females were engorged; no engorged I. scapularis females were 
detected. Significantly more partially engorged H. longicornis 
nymphs were recovered compared to I. scapularis nymphs (Z = 
−5.32; P < 0.001).

Other, nontarget ticks collected during surveillance were not 
engorged (Amblyomma americanum Linnaeus (Acari: Ixodidae) 
[n = 120], Amblyomma maculatum Koch (Acari: Ixodidae) [n 

= 60], Dermacentor albipictus Packard (Acari: Ixodidae) [n = 
11], Dermacentor variabilis Say (Acari: Ixodidae) [n = 1,629], 
Haemaphysalis leporispalustris Packard (Acari: Ixodidae) [n = 1], 
Ixodes dentatus Marx (Acari: Ixodidae) [n = 2]).

For I. scapularis nymphs, body length (F = 0.71; df = 1, 18; 
P = 0.412) and scutum length (F = 4.24; df = 1, 18; P = 0.054) 
were not significantly different between microscopically deter-
mined unengorged field-collected specimens and unfed colony 
specimens. Similarly, Scutal Indices for unengorged, field-collected 
H. longicornis nymphs (x = 2.98 ± 0.059 (Standard Error (SE))) and 
adults (x= 2.58 ± 0.054) were comparable to unfed colony nymphs 
(x= 2.82 ± 0.016) and adults (x= 2.56 ± 0.023). Given the similar 
measures between unfed field and colony ticks, we chose to con-
tinue engorgement comparisons using field-collected specimens to 
examine more relevant within-population variation.

Expectedly, Scutal Index measures (mean body and scutum 
lengths, Table 1) were highly correlated for both unengorged (r = 
0.873; P = 0.001) and engorged (r = 0.870; P = 0.011) I. scapularis 
and unengorged (r = 0.988; P < 0.001) and engorged (r = 0.851; P < 
0.001) H. longicornis.

The two-way ANOVA indicated that H. longicornis Scutal Index 
varied significantly by life stage (F = 14.03; df = 1, 44; P < 0.001) and 
engorgement (F = 4.12; df = 1, 44; P = 0.048). Similarly, the one-way 
ANOVA indicated that I. scapularis Scutal Index varied significantly 
by engorgement (F = 253.0; df = 1, 15; P < 0.001).

Mean Scutal Index difference between unengorged and engorged 
nymph specimens was 0.65 and 0.42 for I. scapularis and H. 
longicornis, respectively (Table 1); standardized mean differences 
between unengorged and engorged I. scapularis (Hedges’ g = 7.84) 
was considerably greater than differences between unengorged and 
engorged H. longicornis (Hedges’ g = 0.79).

The phenolphthalein test produced a colorimetric reaction from 
only engorged specimens indicating a presumptive positive result for 
blood.

Discussion

Since the establishment of H. longicornis in the United States, a 
growing body of research has examined their associated pathogens 
and vector competence (e.g., Breuner et al. 2020, Stanley et al. 2020, 
Tufts et al. 2021); however, fundamental determinants of their vecto-
rial capacity (e.g., feeding habits and engorgement dynamics) remain 
relatively unknown. Here, we documented the recovery of partially 
engorged, questing H. longicornis ticks from active surveillance 
suggesting indirect evidence of interrupted feeding.

Given the slow process of blood digestion in ticks, the Scutal 
Index estimates are unlikely to have been appreciably affected by 
assimilatory processes (e.g., hemolysis, pinocytotic activity) (Akov 
1982, Koh et al. 1991). Additionally, while residual host blood 
proteins may persist after tick feeding and molting, opisthosomal 

Table 1. Mean (SE) scutal length, body length, Scutal Index for unengorged and engorged Ixodes scapularis and Haemaphysalis longicornis 
recovered during active surveillance in PA from 1 October 2020 to 31 August 2021

Species Life stage Engorgement level n Scutal length (mm) Body Length (mm) Scutal Index 

H. longicornis Adult Unengorged 10 0.94 (0.030) 2.42 (0.057) 2.58 (0.054)
Engorged 5 0.98 (0.023) 2.56 (0.080) 2.62 (0.116)

Nymph Unengorged 10 0.45 (0.009) 1.32 (0.020) 2.98 (0.059)
Engorged 22 0.46 (0.013) 1.56 (0.061) 3.40 (0.132)

I. scapularis Nymph Unengorged 10 0.71 (0.014) 1.08 (0.023) 1.53 (0.016)
Engorged 7 0.70 (0.016) 1.52 (0.055) 2.18 (0.043)
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features indicatory of engorgement are likely indistinguishable 
(Wickramasekara et al. 2008). Therefore, engorgement measures 
herein are presumed representative of feeding events within stadia. 
Our results indicate that H. longicornis is significantly more likely 
to quest (within stadia) after taking a bloodmeal than I. scapularis 
and that those questing H. longicornis may have engorged to a lesser 
extent than I. scapularis.

Our I. scapularis findings support anecdotal observations from 
other Ixodes active surveillance efforts, suggesting rare occurrence of 
interrupted feedings or questing while engorged (van Duijvendijk et 
al. 2016). In contrast, a significantly greater abundance of engorged 
H. longicornis appear to quest, and engorgement measures suggests 
dislodgement from hosts prior to repletion. For instance, the mean 
Scutal Index difference between unengorged and engorged nymph 
specimens was 0.65 and 0.42 for I. scapularis and H. longicornis, 
respectively. This slight difference between H. longicornis specimens 
is suggestive of a smaller or disrupted bloodmeal. The difference in 
mean Scutal Index between unengorged and engorged female H. 
longicornis was particularly slight compared to the difference noted 
in nymphs. Copulation has been found to induce integument expan-
sion in H. longicornis (Okura et al. 1996). Tick cuticle acidification 
specifically promotes this extensibility, and acidophilic epidermal 
cells, more sizeable and active in copulated female H. longicornis, are 
responsible for acidifying the cuticle (Okura et al. 1997, Kaufman et 
al. 2010). Copulatory stimuli would expectedly be absent in U.S. 
parthenogenetic populations (Egizi et al. 2020); and therefore, lim-
ited adult engorgement differences may also be a function of popu-
lation dynamics. The broad variation recovered within mean Scutal 
Index for H. longicornis nymphs indicates that while they can feed 
to repletion, they appear to quest again after varied durations of 
host attachment (Falco et al. 1996). Recovery on drags nevertheless 
supports the limited work demonstrating reattachment competence 
of dislodged, partially engorged Haemaphysalis (Varma et al. 1960).

While it is difficult to speculate on the reason(s) why engorged 
ticks were recovered questing, 11 of 27 engorged H. longicornis 
were collected from the same park in Bucks County between Apr 
and Jun 2021, suggesting a potential spatial or environmental com-
ponent. Perhaps a less preferred local host community composition 
could impede ticks feeding to repletion, as observed in laboratory-
based studies (Ronai et al. 2020). Variable tick aggregation among 
local host species could also yield differential attachment/ engorge-
ment success (Lydecker et al. 2019). A recent study of H. longicornis 
vertebrate host associations found other native ticks (I. scapularis) 
feeding in close proximity, suggesting they use the host landscape 
similarly and thus should not be disproportionately affected by host 
grooming (Tufts et al. 2021). However, anecdotal observations indi-
cate that H. longicornis are relatively more sensitive to disturbance 
(Sherpa et al. 2021), and potentially more susceptible to dislodg-
ment. Alternatively, particularly elevated H. longicornis infestation 
intensities and/ or diverse salivary components between I. scapularis 
and H. longicornis may elicit unique host immunomodulatory activ-
ities that contribute to differing blood-feeding success (Brossard and 
Wikel 2004, Kotsyfakis et al. 2007, Nuttall 2019, Tufts et al. 2021).

While the recovery of host-seeking, engorged H. longicornis 
offers ecological insights through questing and blood-feeding 
patterns and behaviors, these results may also have epidemiological 
significance. For instance, Bucks County, where most (17/27) of the 
partially engorged H. longicornis were recovered, is the same county 
where Borrelia burgdorferi sensu stricto Johnson, Schmid, Hyde, 
Steigerwalt & Brenner (Spirochaetales: Spirochaetaceae) DNA was 
detected in field-collected H. longicornis ticks (Price et al. 2021a). 
Even brief, interrupted blood feeding has been found sufficient for 

infection acquisition (Richter et al. 2012, Faulde et al. 2014). If par-
tially engorged H. longicornis are infected from previous (within 
stadia) incomplete bloodmeal(s) and recurrently seek additional 
bloodmeals, this could decouple transstadial persistence conditions 
from vectorial capacity, especially for pathogens maintained in 
horizontal transmission cycles, e.g., B. burgdorferi (Eisen 2020). 
Additionally, partially fed ticks have been associated with acceler-
ated pathogen transmission (Shih and Spielman 1993) and reports of 
H. longicornis biting humans are increasing (Bickerton and Toledo 
2020, Lv et al. 2021). Collectively, these findings highlight the need 
for further tick and pathogen surveillance and characterization of 
H. longicornis engorgement to determine the extent to which par-
tial feeding may moderate transstadial maintenance preconditions 
in vector competency studies (e.g., Breuner et al. 2020, Levin et al. 
2021), increase vectorial capacity, and support tick-borne pathogen 
transmission (Davies 1990, Wang et al. 1999).

Overall, these data are among the first to document questing 
behavior of blooded H. longicornis ticks and provide initial field 
evidence for interrupted feeding and repeated bloodmeal quests 
(Tahir et al. 2020). Moreover, given the proportionately high re-
covery of engorged H. longicornis, apparent reattachment capability, 
and pathogen presence in other field-collected specimens during 
preceding surveillances, implications for pathogen transmission 
exists and warrant consideration in existing vector biology models 
and infection risk studies. Continued monitoring and documenta-
tion of this unique biological phenomenon is important, especially 
as populations continue to spread and establish. Future work aims 
to accrue molecular support for interrupted feeding in H. longicornis 
through host bloodmeal(s) identification (Tahir et al. 2020).
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Supplementary Fig. 1. Images of unengorged (left) and engorged 
(right) Haemaphysalis longicornis nymphs recovered from active 
surveillance in Pennsylvania examined under 10x magnification and 
measured for total body length and scutal length to estimate en-
gorgement (Scutal) index.

Supplementary Table 1. Total Haemaphysalis longicornis ticks 
recovered by life stage across surveillance period. Note, weather and 
climatic conditions precluded active surveillance operations in Feb 
2021.
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