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Abstract

Aedes mosquitoes are vectors of several emerging diseases and are spreading worldwide. We investigated the 
spatiotemporal dynamics of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) mosquito trap captures 
in Brownsville, TX, using high-resolution land cover, socioeconomic, and meteorological data. We modeled 
mosquito trap counts using a Bayesian hierarchical mixed-effects model with spatially correlated residuals. 
The models indicated an inverse relationship between temperature and mosquito trap counts for both species, 
which may be due to the hot and arid climate of southern Texas. The temporal trend in mosquito populations 
indicated Ae. aegypti populations peaking in the late spring and Ae. albopictus reaching a maximum in winter. 
Our results indicated that seasonal weather variation, vegetation height, human population, and land cover 
determine which of the two Aedes species will predominate.
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In the last two decades, outbreaks of previously rare diseases have 
shifted the focus of U.S. mosquito vector control from Culex mos-
quitoes, the vector of malaria, and West Nile virus, to the genus 
Aedes, which transmits many arboviruses of emerging concern in-
cluding chikungunya, Zika virus, and dengue fever. Global trade, 
especially in used tires, has led to the nearly worldwide dispersal 
of vector mosquitoes including Aedes aegypti (Linnaeus) and Aedes 
albopictus (Skuse) (Sprenger 1987). Human movement patterns, in-
creased urbanization, and changes in climate are predicted to expand 
the fraction of the global population that are at risk from Ae. aegypti 
and Ae. albopictus mosquitoes to 49% by 2050 (Kraemer et  al. 
2019). There had been no locally transmitted cases of dengue fever 
in the United States for more than 50 yr until the early 2000s, when 
cases were detected in Hawaii (Effler et al. 2005), Texas (Centers for 
Disease Control and Prevention [CDC] 2007), and Florida (Centers 
for Disease Control and Prevention [CDC] 2010). Autochthonous 
Zika transmission was not reported in the Western hemisphere 
until 2015 when cases were detected in South America and Central 
America and subsequently in the United States beginning in 2016 
(Pan American Health Organization 2017). Chikungunya spread 
with similar rapidity, with first detection in 2013 in Saint Martin 
leading to nearly 1 million cases in the Western hemisphere in the 

subsequent year and quickly spreading throughout the Americas, in-
cluding autochthonous cases in Florida (Hamer and Chen 2014). 
None of these diseases have an effective vaccine, and prevention ef-
forts focus on control of Aedes mosquitoes.

In the southern United States, the prevalent Aedes species are 
Ae. aegypti and Ae. albopictus. Aedes aegypti have been present 
in the Western hemisphere since the 16th century when they were 
introduced by trans-Atlantic trade (Chadee et  al. 1998), whereas 
Ae. albopictus were first detected in the United States in Texas in 
1985 and probably arrived in used tires from Asia (Sprenger and 
Wuithiranyagool 1986, Hawley et al. 1987). Meteorological factors 
associated with Aedes presence include air temperature between 
approximately 15 and 30°C (Alto and Juliano 2001, Yang et  al. 
2009, Brady et  al. 2013) and recent precipitation, which provides 
the standing water necessary for egg and larval development. Land 
cover factors influence the distribution of adult Aedes mosquitoes. 
Aedes albopictus adults are generally exophilic, preferring to rest 
outdoors on plant cover including trees and shrubs (Delatte et al. 
2010, Samson et  al. 2013), whereas Ae. aegypti are cosmopolitan 
and will rest close to human habitation or even indoors (Perich et al. 
2000, Dzul-Manzanilla et  al. 2016). Socioeconomic influences on 
Aedes mosquito populations are generally related to urbanization, 
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including impervious cover, housing age, income, and urban devel-
opment (Rey et  al. 2006, Landau and van Leeuwen 2012, Sallam 
et al. 2017). The two species are known to compete for resources as 
larvae, with outcome dependent on environmental conditions (Ho 
et al. 1989, Lounibos et al. 2002, Braks et al. 2004).

A systematic review of Ae. aegypti and Ae. albopictus distribu-
tion modeling concluded that a wide range of variables was needed 
to predict the distribution of these species (Sallam et al. 2017). The 
review highlighted heterogeneity in observed effects of commonly 
used predictors that reinforced the need to customize models in 
areas of interest. We worked with the Brownsville Public Health 
Department to model Ae. aegypti and Ae. albopictus populations 
across their downtown area based on sampling from 80 mosquito 
traps across the city in 2017, and a range of ecological, socioeco-
nomic, and meteorological predictors, with the goal of creating a 
risk map that would help target vector control resources.

Methods

Study Area
Brownsville, TX, is a city in the United States located at the southern-
most tip near the Rio Grande river, at the coordinates 25°55′49″N 
97°29′4″W. It has a population of approximately 183,299 people 
and a median annual household income of $35,636 (U.S. Census 
Bureau 2018). Brownsville is located near the nexus of two Köppen 

climate regions: humid subtropical (Cfa) to the east and hot semiarid 
(BSh) to the west and south (Peel et al. 2007). Mean annual rain-
fall is 697 mm, with a maximum in September and a dry season in 
November through April. Monthly mean high temperatures range 
from a high of 34.7°C in August to a low of 10.9°C in February, 
with a long hot summer and a short mild winter. Weather patterns 
are dominated by airflow from the Gulf of Mexico to the east, with 
intermittent weather patterns bringing dry and hot tropical air from 
Mexico to the southwest (Crescenti 1997).

Mosquito Trapping and Identification
We obtained mosquito trap data from the Brownsville Public 
Health Department from 80 locations in the metropolitan area from 
January to December 2017 (n  =  5,367 observations). BG-Sentinel 
traps (Biogents AG, Regensburg, Bavaria, Germany) were deployed 
throughout the study area (Fig. 1). Because of land ownership con-
cerns and personnel constraints, traps were not placed randomly 
or sampled equally throughout the year (Supp Figs. 1 and 2 [on-
line only]). We discarded trap sites with fewer than 30 observations 
(Supp Fig. 3 [online only]), leaving 51 trap sites and a total of 5,079 
observations for analysis. The mean number of observations at the 
remaining trap sites was 100. The mean distance between trap sites 
was approximately 5.9 km (SD 3.4 km). Trap contents were shipped 
to the Texas Department of State Health Services, Zoonosis Control 
Branch in Austin, TX, for identification. Taxonomists identified the 

Fig. 1. Locations of BT-Sentinel mosquito traps in Brownsville, TX. Trap locations are shown as circles. The shaded area represents the City of Brownsville priority 
boundary for vector control efforts.
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mosquito trap contents to the species level using the Darsie and 
Ward’s (2005) taxonomic keys and reported the count of each mos-
quito species present. Mosquitoes that had morphological damage 
to key characters were not counted if identification to the species 
level was in doubt. The number of Ae. aegypti and Ae. albopictus 
individuals counted in each sample (mosquito trap count) were the 
dependent variables for our models.

Independent Variable Collection
We obtained land cover, meteorological data, vegetation height, 
housing age and value, and population data from several sources 
(Table 1) and summarized these in 0.1-km-radius circular buf-
fers around the trap sites using Arc ModelBuilder and the Spatial 
Analyst toolbox in ArcGIS 10.6. The radius was chosen as represen-
tative of the observed dispersal range of Ae. aegypti mosquitoes in 
comparable climate zones (Muir and Kay 1998, Harrington et al. 
2001). Variables were centered and scaled by subtracting the mean 
and dividing by the standard deviation. On this scale, a value of 
zero represents the mean, and the units are standard deviations 
from the mean.

Our choice of independent variables was guided by the availa-
bility of data to cover the entirety of the study area and a survey of 
the literature to establish mechanistic links with mosquito populations. 
Precipitation and temperature have well-established links with mos-
quito populations (Alto and Juliano 2001), and we also considered 
humidity and shortwave irradiance. Humidity can affect the relative 
abundance of competing mosquito species, as their eggs have differing 
tolerance to desiccation (Juliano et al. 2002), and variations in temper-
ature and humidity have been shown to affect the reproductive cycle 
of Ae. aegypti (Costa et al. 2010, Chaves et al. 2012). Shortwave irra-
diance is a correlate of sunlight exposure and photosynthetically ac-
tive radiation (Britton and Dodd 1976), and the diurnal surface water 

temperature stability of small water bodies, where mosquito larvae are 
found, is strongly affected by radiant energy input (Jacobs et al. 1998). 
Mosquito larval development times correlate more strongly with water 
temperature than with air temperature (Asare et al. 2016). We obtained 
air temperature, humidity, and shortwave irradiance data as mean daily 
values, whereas precipitation was a daily total.

Land cover is widely used to predict mosquito abundance and di-
sease risk in urban ecosystems, and the availability of a 1-m resolution 
data set for Brownsville, TX, led us to include it in our independent 
variable set as fine-scale land cover data are particularly effective in 
urban mosquito modeling (Landau and van Leeuwen 2012). Because 
our study area is largely urban, we obtained housing age and value 
data from the Cameron County, Texas cadastral data set. Older 
housing and low socioeconomic status (SES) have been associated 
with Aedes mosquito populations (Dowling et al. 2013, Sallam et al. 
2017) and mosquito-borne disease risk (Ruiz et al. 2004). The link 
between SES and mosquito populations is not well understood and 
studies have had contradictory results, with recent research indicating 
higher mosquito populations in high-SES areas (Becker et al. 2014). 
These differences may result from differing sources of standing water 
for mosquito oviposition, with disused containers predominating in 
low-SES communities and managed containers such as landscaping 
features predominating in high-SES communities. Although overall 
prevalence of standing water was higher in high-SES communities, a 
greater number of mosquito larvae were found in disused containers 
in low-SES communities. We included vegetation height derived from 
LiDAR for areas of land cover that were classified as predominantly 
plants (Trees, Grass, and Shrub classifications in our data set) be-
cause Aedes mosquitoes have been shown to prefer shaded areas with 
overhanging vegetation for oviposition. Tree or shrub cover stabilizes 
larval habitat temperatures and provides a source of organic detritus 
for larval feeding (Barrera et al. 2006a,b).

Table 1. Independent variables considered for inclusion in mosquito models

Variable Units Source

Water cover Proportion of buffer area EnviroAtlas MULCa

Impervious cover Proportion of buffer area EnviroAtlas MULC
Soil cover Proportion of buffer area EnviroAtlas MULC
Tree cover Proportion of buffer area EnviroAtlas MULC
Shrub cover Proportion of buffer area EnviroAtlas MULC
Grass cover Proportion of buffer area EnviroAtlas MULC
Vegetation height Mean height in meters IBWC nDSMb

Population density Mean persons per kilometer EnviroAtlasc

Housing value Mean dollar value Cameron County, TX Land Parcel Datad

Proportion houses built before 1939 Proportion of residential homes Cameron County, TX Land Parcel Data
Proportion houses built before 1949 Proportion of residential homes Cameron County, TX Land Parcel Data
Proportion houses built before 1959 Proportion of residential homes Cameron County, TX Land Parcel Data
Proportion houses built before 1969 Proportion of residential homes Cameron County, TX Land Parcel Data
Proportion houses built before 1979 Proportion of residential homes Cameron County, TX Land Parcel Data
Proportion houses built before 1989 Proportion of residential homes Cameron County, TX Land Parcel Data
Proportion houses built before 1999 Proportion of residential homes Cameron County, TX Land Parcel Data
Proportion houses built before 2009 Proportion of residential homes Cameron County, TX Land Parcel Data
Proportion houses built 2010 and newer Proportion of residential homes Cameron County, TX Land Parcel Data
Temperature Degree Celsius Daymete

Precipitation Millimeters Daymet
Shortwave irradiance Watts per square meter Daymet
Humidity Pascals of water partial vapor pressure Daymet

aMeter-scale urban land cover, https://www.epa.gov/enviroatlas, resolution 1 m.
bInternational Boundary and Water Commission normalized digital surface model, https://tnris.org/data-catalog/entry/ibwc-2011-70cm/, resolution 1 m.
cUS Environmental Protection Agency EnviroAtlas, https://www.epa.gov/enviroatlas, resolution 1 km.
dProvided by Cameron County, TX.
eDaily surface weather and climatological summaries, https://daymet.ornl.gov, resolution 1 km.
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Data Analysis
We selected independent variables for model development with 
Bayesian feature selection, using the package spikeSlabGAM in R 
3.5.1 (Schiepl et al. 2012, R Core Team 2018). The method involves 
fitting many Bayesian additive models using Markov chain Monte 
Carlo, then ranking independent variables on their posterior prob-
ability for inclusion in the best-fitting model. An in-depth expla-
nation of spike-and-slab variable selection can be found in George 
and McCulloch (1997). For each mosquito species, a separate 
regression was run with all 22 potential variables, with rankings 
based on their posterior inclusion probability in the final model. 
From the variables with the highest posterior inclusion probabil-
ities, we chose the six with the largest estimated scaled effect sizes. 
We limited variables for model parsimony and interpretability. We 
tested weather variables with 0 lag, 1-wk lag time (hereafter re-
ferred to as Lag 1), and 2-wk lag time (Lag 2), representing the 
daily value for the day of the observation, 7 d previously, and 14 
d previously, respectively, but only considered the lag time with 
the largest effect size. We used correlation plots (Supp Fig. 4 [on-
line only]) for the six variables chosen for each species to examine 
intervariable relationships.

We chose hierarchical mixed-effects modeling as our analysis 
method because it is robust to unbalanced longitudinal data (Laird 
and Ware 1982). We modeled mosquito trap counts using hierar-
chical mixed-effects Bayesian models, with the package R-INLA 
(Rue et al. 2009). This approach to computing approximate spatially 
correlated effects for geospatial data enables analysis of large spa-
tial data sets without requiring a powerful computer (Lindgren et al. 
2011). We fit a Poisson generalized linear model to each Aedes spe-
cies data set with no spatial effect and calculated the overdispersion 
statistic based on Pearson residuals. We then fit zero-inflated Poisson 
models to each data set, to determine whether a zero-inflated model 
would result in better fit based on the large number of zero mosquito 
count observations in the data (Ae. aegypti n = 898, Ae. albopictus 
n = 4,265). We then fit a negative binomial model to each data set 
to correct for overdispersion. Of these three options, the model with 
the lowest deviance information criterion (DIC) value, an indicator 
of model fit, was chosen. For both species, the best model was the 
negative binomial. We added a spatially correlated random effect 
to the model to account for relationships among proximate obser-
vations. For pairs of variables that were correlated (|Spearman’s 
ρ|>0.5), we fit a model with one variable dropped, then the other, 
and with an interaction term.

In a Bayesian model, prior beliefs about the variables and param-
eters must be specified. We addressed prior selection by using the 
penalized-complexity (PC) priors suggested by Fuglstad et al. (2018), 
which generate weakly informative priors. For the prior on spatial 
correlation, we decided that it was reasonable to specify that based 
on the dispersal range of Aedes mosquitoes, it was unlikely that ob-
servations farther apart than half the width of the study area (10 
km) would be correlated and that the spatial effect would likely 
be relatively small compared with the effects of the independent 
variables (p[spatial correlation range < 10 km] = 0.95, p[spatial ef-
fect standard deviation > 0.5] = 0.05). We used default PC priors 
for the independent variables, a zero-inflation parameter, and an 
overdispersion parameter.

We evaluated model fit by conducting a simulation study, sam-
pling 1,000 simulated parameter sets from the posteriors of the 
model then calculating 1,000 sets of simulated mosquito counts. 
We plotted a histogram of the simulated results with 95% predic-
tion intervals against the observed mosquito counts. We considered 

a model that captures the observed counts within the 95% predic-
tion interval a good predictive fit. We conducted residual analysis by 
computing the scaled residuals for each of the 1,000 simulations and 
comparing them to the residuals of the observed data.

We plotted the spatially correlated effect of the model across the 
Brownsville metropolitan area to evaluate hotspots of mosquito ac-
tivity and visualize the spatial relationships among mosquito obser-
vations. Because predictions of the spatial effect are not made at 
every point within the study area, we used R-INLA’s built-in projec-
tion function to interpolate the model results across the metropol-
itan area for visualization.

We used the best models to make weekly mosquito count predic-
tions throughout 2017 for the Brownsville metropolitan area using 
1 km2 gridded weekly weather data from Daymet (Thornton et al. 
2016). Risk maps were produced for the study area extent at the res-
olution of the meteorological variables from Daymet (1 km2).

Results

Dependent Variable Description
Aedes aegypti and Ae. albopictus trap counts (Fig. 2A and B), sug-
gested a Poisson distribution. The most frequent response was zero, 
for either species in a trap; 17.7% of the traps had zero Ae. aegypti 
and 84.0% of the traps had zero Ae. albopictus. Aedes aegypti 
counts peaked in mid-July, with a secondary mode in the first week 
of March (Fig. 2C); trap counts were generally higher in the second 
half of the year. Aedes albopictus counts were generally higher be-
fore March and after August, with fewer in the spring and summer 
(Fig. 2D).

Independent Variable Selection
The Bayesian spike-and-slab selection yielded the following inde-
pendent variables for Ae. aegypti: tree cover, water cover, propor-
tion houses built before 1979, shortwave irradiance, humidity, and 
lag 1 temperature. For Ae. albopictus, the variables were impervious 
cover, grass cover, proportion houses built before 1969, population 
density, lag 2 humidity, and lag 1 temperature.

The correlation plots for each species’ set of independent variables 
showed that temperature was positively associated with humidity 
(Spearman’s ρ  =  0.61). Among nonweather variables, impervious 
cover was negatively associated with grass cover (ρ = −0.67). Because 
we were interested in the ecological questions associated with these 
variables, we left them in the model and adjusted our interpretation 
to consider the possible effects of multicollinearity. We fit models 
with each pair of correlated variables removed and with interaction 
terms included (Supp Tables 1–12 [online only]). For both mosquito 
species, the interaction terms were significant, changed the interpre-
tation of the model, and improved DIC.

Model Selection
Comparison of Poisson, zero-inflated Poisson, and negative bino-
mial models for each mosquito species by DIC (Table 2) showed 
the negative binomial model to be the best fit for both species. The 
overdispersion statistic was greater than one for the negative bino-
mial models, indicating that the expected variance was greater than 
the mean and that the negative binomial model was appropriate 
(Ae. aegypti overdispersion statistic 1.27 [95% CI  =  1.22–1.33], 
Ae. albopictus overdispersion statistic 4.18 [95% CI = 3.71–4.72]). 
Adding a spatially correlated random effect improved both models 
according to DIC.
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Fig. 2. Number of Aedes aegypti and Aedes albopictus trapped by frequency of count observed (A and B) and by ordinal week (C and D). Aedes aegypti counts 
had a maximum of 135 mosquitoes and a zero-excluded median of 4. Aedes albopictus counts were lower than Ae. aegypti counts, with a maximum count of 
27 mosquitoes per trap and a zero-excluded median of 1.

Table 2. Goodness-of-fit measures for model types by species

Species

Aedes aegypti Aedes albopictus

Model DIC Model DIC

Poisson 61,671.44 Poisson 9,256.79
Zero-inflated Poisson 55,585.97 Zero-inflated Poisson 7,814.99
Negative binomial 30,375.47 Negative binomial 6,891.11
Negative binomial  

+ spatial effect
29,053.57 Negative binomial  

+ spatial effect
6,306.60

DIC (deviance information criterion).

Model Results and Validation
The negative binomial models with spatially correlated random ef-
fects (Table 3) showed statistically important (a Bayesian statistical 
statement referring to independent variables with a 95% credible in-
terval around the coefficient that does not encompass zero) relation-
ships between several of the independent variables and the mosquito 

count response. For Ae. aegypti, we found important positive re-
lationships between mosquito count and tree cover (log incidence 
rate ratio 0.34; 95% CI = 0.15–0.53), humidity (0.46; 0.41–0.51), 
and shortwave irradiance (0.52; 0.46–0.57), and important negative 
relationships for lag 1 temperature (−0.21; −0.26 to −0.16) and the 
interaction between humidity and lag 1 temperature (−0.08; −0.12 
to −0.04). Water cover and the proportion of houses built before 
1979 were not found to be important. For Ae. albopictus, we found 
an important positive relationship between mosquito count and lag 
2 humidity (log incidence rate ratio 0.55; 95% CI  =  0.44–0.65), 
and important negative relationships with impervious cover (−0.41; 
−0.80 to −0.02), grass cover (−0.25; −0.65 to −0.18), population 
density (−0.80; −1.16 to −0.44), and lag 1 temperature (−0.50; −0.59 
to −0.41). The proportion of houses built before 1969 was not im-
portant. The spatial effects had a short correlation range, 0.9 km 
(95% CI = 0.5–1.5) for Ae. aegypti and 1.0 km (95% CI = 0.6–1.7) 
for Ae. albopictus (Supp Fig. 6 [online only]). This indicates that 
mosquito count observations are related to one another at relatively 
short distances (<2 km) and that observations from trap sites farther 
away were probably uncorrelated.
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Fig. 3. Simulation study results of 1,000 simulated data sets from 1,000 posterior samples for Aedes aegypti (A) and Aedes albopictus (B). An observed count, 
shown as a thin line, within the 95% prediction interval, shown as a thick band, is an indicator of good model prediction.

The simulation histograms indicated that the models predicted 
the distribution of mosquito counts in the sample adequately, with 
95% prediction intervals encompassing the observed counts (Fig. 3A 
and B). For Ae. albopictus, the observed number of zeroes in the 
data set is near the top of the 95% predictive interval, which indi-
cates that our model is likely to underpredict the number of zeroes. 
Residual studies to test overprediction or underprediction revealed 
no patterns in the scaled residuals for Ae. aegypti, but the scaled re-
siduals for Ae. albopictus indicated model underprediction.

The model predictions showed that peak Ae. aegypti counts were 
expected from 22 to 28 May (Fig. 4A) and that peak Ae. albopictus 
counts were expected from 4 to 10 December, although predicted 
counts were low throughout the year (Fig. 4B). The number of 

predicted Ae. aegypti was nearly three orders of magnitude greater 
than Ae. albopictus predictions at all time points. A prediction map 
was created for each species’ peak abundance week (Fig. 5). The 
northern part of the city above latitude 25.96 had greater Ae. aegypti 
counts, whereas the central part of the city near latitude 25.94 con-
tained the greater Ae. albopictus counts.

Discussion

Our analysis of the data from the Aedes mosquito vector surveil-
lance program in Brownsville, TX, indicated that predictors associ-
ated with Aedes aegypti were largely different from those associated 
with Ae. albopictus, although both species had similar responses to 

Table 3. Summary of best-fitting model coefficients and parameters by species

Species

Aedes aegypti Aedes albopictus

Model selected

Negative binomial Negative binomial

Variable Coefficient (IRR) Variable Coefficient (IRR)

Mean 95% CI Mean 95% CI

Intercept 1.59 1.33 to 1.83 Intercept −1.50 −1.97 to −1.04
Trees 0.34 0.15 to 0.53 Impervious −0.41 −0.80 to −0.02
Water −0.01 −0.15 to 0.12 Grass −0.25 −0.65 to −0.18
Built before 1979 0.09 −0.04 to 0.22 Built before 1969 0.00 −0.18 to −0.18
Humiditya 0.46 0.41 to 0.51 Population density −0.80 −1.16 to −0.44
Shortwave irradiancea 0.52 0.46 to 0.57 Lag 2 humiditya 0.55 0.44 to 0.65
Lag 1 temperaturea −0.21 −0.26 to −0.16 Lag 1 temperaturea −0.50 −0.59 to −0.41
Lag 1 temperature × humidity −0.08 −0.12 to −0.04 Impervious × grass 0.42 0.11 to 0.75
   Lag 1 temperature × lag 2 humidity −0.13 −0.23 to −0.04

Parameter Parameter

Overdispersion 0.92 0.72 to 0.97 Overdispersion 2.27 2.00 to 2.63
Spatial range 0.9 km 0.5 to 1.5 km Spatial range 1.0 km 0.6 to 1.7 km

Statistically important relationships are in bold text. IRR (log incidence rate ratio); CI (credible interval).
aDaily mean value.
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meteorological variables. The number of Ae. aegypti predicted was 
greater than the number of Ae. albopictus at all time points, which 
is consistent with the observed surveillance data. Because of year-
round warm temperatures, southern Texas is an area of elevated 
suitability for Ae. aegypti, which may explain this trend (Monaghan 
et al. 2016). A meta-analysis of 351 laboratory survivorship studies 
found that temperature affects interspecific competition between the 

two species and that although it had lower longevity at all temper-
atures tested, Ae. aegypti can tolerate a wider range of temperatures 
(Brady et al. 2013). We found that Ae. albopictus counts were rela-
tively greater in the cooler months of the year. Similarly, in a study 
comparing container occupancy by the two species in Florida, high 
temperatures led to greater mortality in Ae. albopictus eggs whereas 
Ae. aegypti survivorship was unaffected (Juliano et al. 2002). The 

Fig. 4. Predicted numbers of mosquitoes trapped by week for Aedes aegypti (A) and Aedes albopictus (B). The dotted line represents a loess curve fitted to the 
data to aid in visualization of the trend in mosquitoes trapped over time. Predicted Ae. aegypti counts peaked in late May. Predicted Ae. albopictus counts were 
low throughout the year but reached their greatest value in early December.

Fig. 5. Predicted values for mosquito trap counts across the Brownsville metropolitan area during the week of highest expected incidence in 2017, with 95% 
predictive intervals. For Aedes aegypti, the highest trap counts were predicted on the week of 22–28 May, whereas for Ae. albopictus, the highest counts were 
predicted from 4 to 10 December.
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main effect of temperature, which in these models represents the ef-
fect of temperature when humidity is at its average, was negatively 
associated with both Ae. aegypti and Ae. albopictus counts, with a 
higher magnitude for Ae. albopictus. Brownsville experiences tem-
peratures exceeding 30°C for more than half of the year, and these 
high temperatures have been found to favor Ae. aegypti in interspe-
cific competition, with a stronger effect in urban areas (Farjana et al. 
2012). Our model included temperature lagged at 1  wk for both 
Ae. aegypti and Ae. albopictus and humidity lagged at 2 wk for Ae. 
albopictus, which reflects the time needed for changes in larval and 
pupal survival to reflect in adult mosquito counts. Perturbations in 
temperature and rainfall can have long-lasting effects on adult mos-
quito populations in Aedes mosquitoes, with lag times reported up 
to 10 wk in some cases for Ae. aegypti (Chaves et al. 2014).

For both species, the main effect of humidity was positively as-
sociated with trap counts, which was expected as Aedes mosqui-
toes are susceptible to desiccation at low humidity (Hylton 1967). 
Brownsville experiences periodic episodes of dry air blowing from 
arid regions to the west, which result in lowered humidity and 
may limit mosquito populations by causing dehydration at all life 
stages and evaporating sources of fresh water for eggs and larvae. 
The magnitude of the effect was similar for both species, despite 
reports that Ae. albopictus eggs are more susceptible to desiccation 
than Ae. aegypti (Juliano et al. 2002). In both species, the interaction 
between humidity and temperature was negative, indicating that at 
higher temperature the effect of humidity decreases, and vice versa. 
The importance of humidity seen in both species may help explain 
the lower baseline abundance of Ae. albopictus in Brownsville de-
spite the proximity of the city to the initial Ae. albopictus introduc-
tion site in the United States. Shortwave irradiance was associated 
with increased Ae. aegypti counts. Aedes aegypti larvae are nega-
tively affected by large diurnal temperature swings and have higher 
adult reproductive output when water temperature remains stable 
(Carrington et  al. 2013). Our results suggest that in hot areas of 
the southern United States with seasonal patterns of humidity, Ae. 
aegypti enjoys a competitive advantage over Ae. albopictus due to its 
greater hardiness to high temperature and desiccation.

Aedes aegypti abundance was positively associated with trees, 
probably due to increased larval productivity in shaded water bodies. 
Tree cover provides shade for shallow water bodies that function as 
Ae. aegypti larval habitat, protecting larvae from the harmful effects 
of direct sunlight and helping to keep temperatures stable (Barrera 
et al. 2006b). Fallen leaves also provide a source of organic detritus 
for larvae to feed on (Barrera et al. 2006a). Aedes albopictus counts 
were inversely related to indicators of human habitation, including 
impervious cover, grass cover, and human population density. The 
interaction between impervious cover and grass was positive and im-
portant, which indicates that the negative association of the presence 
of one land cover type with Ae. albopictus abundance was reduced 
by the presence of the other. There is a negative correlation between 
impervious cover and grass (Supp Fig. 5 [online only]) because the 
two land cover types are zero-sum: paving land reduces the amount 
of vegetative cover. The positive interaction term then represents the 
reduction in grass cover when impervious cover increases, and vice 
versa, and areas with both grass and impervious cover experience a 
smaller mediating effect on Ae. albopictus counts than areas with 
each land cover type alone. The associations between vegetation type 
and observed Ae. albopictus and Ae. aegypti abundance may be the 
result of organic detritus preferences: a study of larval interspecific 
competition between the two species in the presence of four detritus 
types (oak leaves, pine needles, grass, or insect carcasses) found that 

grass was the only substrate that did not result in a competitive ad-
vantage for Ae. albopictus larvae (Murrell and Juliano 2014).

The spatial correlation range was 0.9 km for Ae. aegypti and 
1.0 km for Ae. albopictus, indicating that observations farther apart 
than those distances were uncorrelated. This short range supports 
previous findings that the dispersal of adult Ae. aegypti (Harrington 
et al. 2001) and Ae. albopictus (Medeiros et al. 2017) is below 1 km. 
Aedes adults of these species rarely travel more than 1 km from their 
hatching site before oviposition and death, highlighting the impor-
tance of local conditions in determining mosquito populations.

We evaluated the predictive reliability of our models by con-
ducting simulation studies, then comparing the residuals to the ob-
served mosquito population data. Residual analysis revealed that 
the predictions for Ae. albopictus were not as reliable as those for 
Ae. aegypti, with the model generally underpredicting Ae. albopictus 
counts. Although the observed number of zero observations was 
within the 95% prediction interval in the Ae. albopictus model, 
the observation was at the extreme high end of predictions, which 
indicates that the model predicted insufficient zeroes. The use of a 
zero-inflated model, a standard approach for such situations, did 
not improve the model fit. Because 84.0% of the observations for 
Ae. albopictus were zero, compared with 17.7% for Ae. aegypti, we 
believe that the relative rarity of Ae. albopictus in the study area 
contributed to poorer model fit due to a relative lack of data. We 
did not use a subset of the Ae. albopictus data with fewer zeroes 
to train the model because we conducted simultaneous trapping for 
both Ae. aegypti and Ae. albopictus, and eliminating negative ob-
servations of Ae. albopictus would have entailed discarding positive 
Ae. aegypti results. Although the mean number of Ae. albopictus 
observed per week was 46 (SD 41), the model predicted less than 
five mosquitoes trapped per week at all time points. By comparison, 
the mean number of Ae. aegypti observed per week was 753 (SD 
505). Although the model overpredicts the number of Ae. aegypti, 
the discrepancy is much lower in relative magnitude than that for 
Ae. albopictus. The predicted population peak for Ae. albopictus in 
the winter matches the observed data, but the peak for Ae. aegypti 
is predicted several weeks before the peak in the observed data. The 
peak in Ae. aegypti predictions coincides with the peak in shortwave 
irradiance across the Brownsville area (Supp Fig. 10 [online only]), 
whereas the peak in observed abundance coincides with temperature 
(Supp Fig. 7 [online only]). This may indicate the presence of an un-
measured variable affecting Ae. aegypti abundance that is correlated 
with both temperature and shortwave irradiance, such as plant bio-
mass (Marcelis 1993, 1994).

Aedes aegypti and Ae. albopictus are species of concern for 
spreading vector-borne disease in southern Texas, and our research 
highlights differences in their habitat preferences. In hot, semiarid 
climates, temperature may have a negative effect on mosquito abun-
dance, in contrast to the general association of increased temper-
atures with increased mosquito activity. We found that Ae. aegypti 
was more abundant throughout the year, and especially in areas with 
lawns, impervious cover, and high human population density. Our 
observations and the predicted mosquito count maps indicate that 
the two mosquito species populations peak at different times of the 
year and suggest that vector control efforts in Brownsville should 
focus on the prevention of Ae. aegypti because this species is far more 
numerous than Ae. albopictus even when the latter is at its yearly 
peak population. Our prediction maps indicate the parts of the city 
that should be targeted for control efforts prior to peak times.

Potential sources of bias in our data set include nonrandom trap 
placement due to land ownership and access requirements, nonrandom 
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temporal sampling, and bias due to traps being deployed at different 
times of the day due to personnel limitations. In future studies, it will 
be important to record the time of day that deployment and sampling 
take place and include these as potential control variables. The lack of 
information about existing vector control efforts, including larvicide 
treatment and adulticide spraying, placed an important limitation on 
our study. Additionally, winter refugia and cryptic habitats play an im-
portant role in determining the abundance of Aedes mosquitoes, even 
in areas with mild winters that do not commonly reach freezing tem-
peratures (Tsunoda et al. 2014). Although the inclusion of a spatial 
random effect can compensate for unmeasured variables such as pes-
ticide treatment or cryptic habitats, the short range of the spatial ef-
fect probably did not compensate for this. Further research with more 
complete mosquito treatment data will improve disease control and 
prevention in areas where climate or socioeconomic conditions may 
influence mosquito population dynamics.

Supplementary Data

Supplementary data are available at Journal of Medical Entomology online.
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