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Introduction
Climate change is one of the greatest environmental issues fac-
ing mankind in the 21st century.1 The continuing increases of 
surface temperatures worldwide are likely to cause major 
changes in global hydrological and energy cycles.1 Meehl et al2 
concluded that the type, frequency, and intensity of extreme 
events will also change as the earth’s climate changes, and these 
changes could occur even when there are relatively small overall 
mean climate changes. The increase of extreme events has 
manifested as an increase of droughts, heat waves, heavy pre-
cipitation, wind storms, and other events.3,4 These extreme 
events continue to cause significant damage throughout the 
world2,5-7 and are therefore of great concern to communities, 
businesses, and governments.8,9

Tebaldi et al7 concluded that “the greatest threats to humans 
from climate change are regional changes in extreme climate 
events.” The exact definition of an extreme event varies widely 
in the literature. Nonetheless, several studies during the past 
decade have attempted to identify previous extreme events and 
to project future extreme events. These studies have employed 
diverse temperature and precipitation data for identification of 
return periods10-12; calculation of frequency-duration-intensity 
indices13; analysis by multivariate statistics14,15; and develop-
ment of indices based on frequency and variance.16,17 The 
Intergovernmental Panel on Climate Change18 Fourth 
Assessment Report (AR4) focused on 6 types of “extreme 
weather events” in their discussions of observed changes in 
extreme events and projections of future extreme events19,20: (1) 

daily maximum and minimum temperatures (coldest and hot-
test 10% each year); (2) heat waves; (3) heavy precipitation 
events; (4) droughts; (5) intense tropical cyclone activity; and 
(6) incidences of extreme high sea levels.

A temperature anomaly distribution describes the frequency 
of thermic anomalies in units of the local standard devia-
tion.10,21 Tebaldi et  al7 described 5 control indexes related to 
temperature anomalies: (1) total number of frost days, defined 
as the annual total number of days with an absolute minimum 
temperature below 0°C; (2) intra-annual extreme temperature 
range, defined as the difference between the highest and lowest 
temperature of the year; (3) growing season length, defined as 
the duration from the first occurrence of 5 consecutive days 
with mean temperature above 5°C to the last such occurrence 
during the year; (4) heat wave duration index, defined as the 
maximum period during each year in which there were at least 
5 consecutive days that had maximum temperatures at least 
5°C higher than the climatological norm for the same calendar 
days during a reference period; and (5) number of warm nights, 
defined as the number of times during the year when the mini-
mum daily temperature is above the 90th percentile of the cli-
matological distribution for that calendar day.

On a global scale, Hansen et al21 showed that as

the global distribution of seasonal mean temperature anomalies 
shifted toward higher temperatures over time, the range of anoma-
lies also increased. Quantifying and understanding temperature 
anomalies at the regional scale is one of the most important issues 
in current debates about global change.
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However, there are great uncertainties about regional tem-
perature anomalies because climate variability can mask man-
made forced signals, and characterization of the natural 
variability is necessary to evaluate the intensity of the change in 
the forced signal. Many previous studies described trends and 
variability over a wide range of scales, from the global to the 
local.6,10,21-26 The structure of climate series can differ consid-
erably among regions and locations, and exhibit variability at 
different scales in response to changes in direct radiative forc-
ing and because of variations in the internal modes of the cli-
mate system.10,24,26,27

In this article, we propose a graphical device that provides 
an intuitive understanding of air temperature anomalies that 
will facilitate communication with the general public and aid in 
advising policy makers. These graphs represent descriptive 
indices of the temperature anomalies most commonly ana-
lyzed: the frequency, intensity, and inequality (variability) of air 
temperature anomalies. Notably, comparison of 2 different dis-
tributions of anomalies can depend on the chosen dimension 
for analysis. To circumvent this problem, we also developed a 
class of indices to analyze air temperature anomalies. The pro-
posed class of indices has important advantages. First, it can 
identify the relevance of all 3 major dimensions of anomalies in 
the air temperature distribution (frequency, intensity, and vari-
ability). Second, it is decomposable and therefore allows 
researchers to compare air temperature anomalies among sea-
sons, time periods, and geographical areas. Third, its results are 
consistent with the proposed graphical device.

Our class of indices per se allows to track the joint evolution 
of the 3 dimensions of anomalies (frequency, intensity, and 
inequality) across time. It is attractive to analyze the evolution 
of each dimension separately, and indices in the literature usu-
ally focus in the frequency or/and intensity of anomalies, 
neglecting inequality. Our graphical device and our index also 
account for inequality in anomalies, a crucial feature in the cli-
mate change analysis given that we can get the same average 
intensity of a temperature anomaly having a quite homogene-
ous distribution of anomalies or with a very unequal distribu-
tion of anomalies. These 2 situations need to be treated 
differently and they can only be discerned with a proper meas-
ure that accounts for inequalities in anomalies.

Moreover, we can find situations in which the separate anal-
ysis of each dimensions is not conclusive and we need to aggre-
gate the information of the 3 dimensions to have a complete 
picture of the situation. Our class of indices provides a consist-
ent way to aggregate information on frequency, intensity, and 
inequality in anomalies. Furthermore, a graph in which the 3 
dimensions are displayed is an appealing tool to communicate 
the results, allowing a better understanding of the change in 
the climate and a greater awareness of the population.

We illustrate the usefulness of the proposed class of 
measures of temperature anomalies by providing a detailed 
comparison of temperature anomalies in the province of 
Málaga (southern Spain) and decomposing the analysis by 

5-year periods from 2000 to 2017. Our preliminary results 
show that our method is particularly useful in providing 
numerical and graphic results of temperature anomalies that 
have generally increased in frequency, although not in inten-
sity, over time.

The second section of this study presents a graphical device 
that represents the 3 dimensions of air temperature anomalies 
indices. The third section introduces a class of indices that 
quantifies differences between profiles of air temperatures and 
describes their properties. The fourth section provides an 
empirical illustration, which shows the usefulness of our 
method for the numerical and graphic comparison of the fre-
quency, severity, and variability of temperature anomalies. The 
last section provides a conclusion.

Graphical Tool for Analysis of Temperature 
Anomalies
The term temperature anomaly refers to a departure from a ref-
erence value or long-term average. A changing climate may 
lead to changes in the frequency, intensity, spatial extent, dura-
tion, and timing of temperature anomalies and may also lead to 
unprecedented anomalies. Because dynamical models project 
increases in the frequency, intensity, and duration of tempera-
ture anomalies during at least the next century,28-30 it is impor-
tant to provide definitions for temperature anomalies that are 
clear and commonly accepted.

The Expert Team on Climate Change Detection and 
Indices (ETCCDI) defined a core set of descriptive indices of 
temperature extremes that provide a uniform perspective of 
observed changes of climate extremes. These indices describe 
specific characteristics of extremes, some of them regarding 
temperature. Some indices require calculation of the number of 
days in a year that exceeded a specific threshold.

The 2 dimensions usually analyzed in the study of tempera-
ture anomalies are the proportion of days with a temperature 
anomaly (AP) and the average intensity of a temperature 
anomaly (AI). We define these terms formally for maximum air 
temperatures, but they could also be defined for minimum air 
temperatures. Let Tmax n∈ ++  be a vector of maximum daily 
temperatures and λ ∈ ++n  be the daily threshold, let 
ΓΓi i iTmax= −λ  be the temperature gap of the i  th day, let Q be 
the set of days in which Tmaxi  exceeds the threshold λi, let 
q q Tmax= ( , )λ  be the number of days with maximum temper-
ature anomaly, and let n be the total number of days analyzed.

Thus, the proportion of days with a Tmax anomaly (the 
incidence of maximum temperature anomalies, AP ) is

AP
q
n

= ,  (1)

and the mean maximum temperature gap per anomalous day 
(anomaly intensity, AI ) is

AI
q i Q

i=
∈
∑

1
Γ .  (2)
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We are also interested in the variability of anomalies. More 
variability means that anomalies are more “spread out,” or 
equivalently that anomalies are further away from the average 
anomaly, showing more extreme events. One way of measuring 
variability is through the variance of the maximum tempera-
ture gaps ( )Var :

Var
q qi

i Q
i

i Q
iΓ Γ Γ( ) = ( ) −













∈ ∈
∑ ∑

1 12
2

.  (3)

The next step is the graphical representation of these 3 
aspects of temperature anomalies. This graph, which is based 
on temperature departure from the threshold (temperature 
gaps, ΓΓi ), depicts the visual distribution of temperature 
anomalies in an easily understood manner. We name this 
curve the Three I’s of Anomalies (TIA) curve, which is analo-
gous to Three I’s of Poverty [TIP] curve in poverty analysis31,32, 
because it simultaneously summarizes 3 major aspects of tem-
perature anomalies: incidence, intensity, and inequality 
(variability).

The TIA curve (Figure 1) is obtained by ranking tempera-
ture gaps, ΓΓi i iTmax i Q= − ∀ ∈λ , in descending order (greatest 
gaps first), cumulating the temperature gaps per day with tem-
perature anomaly and plotting them on a 2-dimensional graph, 
where we represent in the horizontal axis the cumulative pro-
portion of days ranked in descending order of temperature gaps 
and in the vertical axis the running sum of ΓΓi . So, values of the 
curve are thus defined in the interval [0, AP].

The TIA curve is denoted by TIA (p, Γ) where 0 1≤ ≤p  
and p  represents the cumulative proportion of anomalous days 
ranked in descending order of temperature gaps. Thus, the 
curve plots p against the sum of the first p  percent ΓΓ-values 
divided by the total number of days with anomalies, q, after 
ranking from larger to smaller temperature gaps. Then, TIA (0, Γ) 

 = 0 and TIA (k / n, Γ) = 1
1

/ ( )q Tmax
i

k

i i
=
∑ −λ  for integer values 

k < q, in which q is the size of the set Q, and intermediate 

points TIA (p, Γ) are determined by linear interpolation. 
Therefore, TIA (p = k / n, Γ) is a positive, increasing and con-
cave function of p, and the slope at each point of the curve is 
the mean temperature gap of the k days with greater tempera-
ture gaps.

The shape of a TIA curve provides important information 
about the nature of the temperature anomalies. In particular, 
the incidence of anomalies (proportion of days with a tem-
perature anomaly, AP) is indicated by the value of p on the 
horizontal axis where the TIA curve reaches its maximum. 
The mean temperature gap of days with an anomaly is repre-
sented by the maximum of the TIA curve, and is a measure 
of the intensity of temperature anomalies. The variability in 
temperature anomalies is indicated by the curve’s concavity. 
Thus, if all days with a temperature anomaly experienced the 
same temperature gap, the TIA curve would be a straight line 
with slope equal to the mean temperature gap. When tem-
perature gaps are more unequal, the TIA curve increases in 
concavity.

As an illustration, consider the following 2 simulated tem-
perature gap profiles over an observation period of 100 days 
(n = 100). The gaps in Tmax are

ΓΓ

ΓΓ

a

b

= { }
=

2 1 9 1 7 1 5 1 4 1 3 1 0 7 0 6 0 5 0 4 0 2 0 1, . , . , . , . , . , , . , . , . , . , . , . and
11 0 9 0 7 0 6 0 5 0 4 0 3 0 2, . , . , . , . , . , . , . .{ }

Note that the first series has 13 days with anomalies and the 
second series has 8 days with anomalies. Figure 2 shows the 2 
resulting TIA curves.

Series a has an incidence of 0.13, intensity of 1.02, and coef-
ficient of variation (standard deviation divided by the mean) of 
0.39; series b  has an incidence of 0.08, intensity of 0.58, and 
coefficient of variation of 0.07. The figure clearly shows that 
the anomalies in profile a are more intense and have greater 
incidence and variability (indicated by greater concavity). This 
method allows establishment of an ordering of temperature 
gap profiles by nonintersecting TIA curves. Moreover, exami-
nation of these curves allows researchers to identify the 

TIA 

AP 10

AI

Incidence (length) 

Intensity 

(height) 

Inequality or variability 
(curvature) 

TIA(p,Γ) 

Figure 1. Three I’s of Anomalies (TIA) curve of the 3 dimensions of 

temperature anomalies (incidence, intensity, and inequality).
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Figure 2. Three I’s of Anomalies (TIA) curves for series a and b.
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distribution of temperature gaps and to evaluate the relevance 
of large temperature gaps relative to medium-sized or small 
gaps. It is also possible to use these curves to compare tempera-
ture anomalies among different time periods, geographic 
regions, and any other subgroup (as shown below). This proce-
dure also allows a definition of the concept of “dominance” in a 
temperature anomaly.

Definition of dominance in temperature anomaly

Given 2 relative temperature gap profiles, ΓΓa and ΓΓb , ΓΓa domi-
nates ΓΓb in the sense of temperature anomalies, ΓΓ ΓΓa

A
b> , if 

ΓΓ ΓΓa b≠  and TIA (p, Γa) ⩾ TIA (p, Γb) for any p∈[ , ]0 1 , and 
TIA (p, Γa) > TIA (p, Γb) for at least one p∈[ , ]0 1 .

Furthermore, the TIA curve maintains its properties if trun-
cated at low levels of anomaly for robustness (eg, excluding a 
gap of 0.5°C or less from analysis because of the presumably 
insignificant impact on well-being). The truncation point can 
be chosen arbitrarily. (We could have performed the same 
graph considering Q the set of days that belong to a heat wave, 
ie, the set of days in which Tmaxi  exceeds the threshold λi  for 
at least a certain number consecutive days. This way, AP  is the 
proportion of days that suffer a heat wave, and AI  the intensity 
of the heat waves, ie, the mean temperature gaps per days in a 
heat wave. The choice of consecutive days with anomalies can 
be chosen arbitrarily to adapt to the definition of heat wave).

The dominance criterion is a very useful tool when comparing 
TIA curves that do not cross. However, consider simulated profile c, 
ΓΓc = 2.6 2.4 2.3 1.8 0.9 0.8 0.7 0.5,0.4 0.2 0.2 0.1 0.1 0.1, , , , , , , , , , , ,{{ }.

In this case, the incidence is 0.14, the intensity is 0.94, and 
the coefficient of variation is 0.81. On comparison with profile 
a, it is not immediately clear which profile is more anomalous 
(Figure 3). In this case, we must decide which dimension (inci-
dence, intensity, or variability) is more important, or if we 
should only look at one of them.

Therefore, when TIA curves cross, or if it is necessary to 
quantify the differences between 2 profiles, then indices must 
be used to measure temperature anomalies.

Class of Air Temperature Anomaly Indices
This section describes a normative framework for the empirical 
study of temperature anomalies and is an adaptation of the 
family of poverty indices proposed by Foster et  al (1984)33. 
This method provides aggregate indicators that are explicit in 
incorporating the necessary judgments about how to aggregate 
temperatures anomalies. The temperature anomaly index is 
based on air temperature gap, determined by the difference 
between the air temperature and the threshold.

Consider a maximum temperature anomaly measure, Aα , 
for α ≥ 0 defined by,

A
n i Q

iα
α=

∈
∑

1
ΓΓ .  (4)

The measure of a temperature anomaly is a weighted sum of 
the daily temperature gap, ΓΓ i , in which the weight is the extent 
to which the temperature exceeded the threshold. Consequently, 
this measure gives more weight to greater temperature gaps 
and, as shown below, considers variability in the distribution of 
temperature gaps for α >1.

For α = 0, the measure A0 is the incidence of a maximum 
temperature anomaly, AP:

A Tmax
q
n

AP0 , .λ( ) = =

For α =1, we can determine A1 (the renormalization of the 
mean maximum temperature gaps):

A Tmax
n

AP
q

AP AI
i Q

i
i Q

i1
1 1, .λ( ) = = =

∈ ∈
∑ ∑ΓΓ ΓΓ

A1 thus combines 2 dimensions of the anomalies—incidence 
and intensity. In other words, A1 allows a ranking of the distri-
butions of anomalies based only on these 2 dimensions.

For α = 2 ,
A Tmax

n i Q
i2
21, .λ( ) =

∈
∑ΓΓ

Using expression (3) for the variance of the maximum tem-
perature gaps allows determination of A2:

A Tmax APVar AP
q

AP Var AI

i
i Q

i

i

2

2

2

1,λ( ) = ( ) +












= ( ) +( )


∈
∑ΓΓ ΓΓ

ΓΓ 
 .

A2  thus combines all 3 dimensions of the anomalies—inci-
dence, intensity, and variability.

The parameter α  can be considered a measure of aversion to 
higher anomalies, in that a larger α  gives more emphasis to the 
greater anomalies. As α  becomes very large, Aα  tends to only 
consider the day with the greatest anomaly. The same reasoning 
can be used to develop an index of anomalies in minimum tem-
peratures, anomalies for cooler air temperatures instead of 
warmer ones, or anomalies in other variables (eg, daily rain).

The class of indices proposed, Aα , has the following 
properties:

0
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Figure 3. Three I’s of Anomalies (TIA) curves for profiles a and c.
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1.  Focus. Aα  is unaffected by Tmax  values that do not 
exceed the threshold. This is apparent from the expres-
sion of the index that only accounts for anomalies.

2.  Continuity. Aα  is a continuous function. This means that 
small changes in an anomaly do not lead to large changes 
in the index.

3.  Anonymity. This means that the index does not favor any 
particular anomaly in a particular day.

4.  Replication invariance. This allows for comparisons 
between distributions with different sizes.

5.  Monotonicity. This refers that an increase in the tempera-
ture of an anomalous day yields a higher index value. 
Therefore, ceteris paribus, a higher Tmax leads to a greater 
anomaly index. This property is satisfied for α ≥1.

6.  Effect of greater anomalies. The allocation of an additional 
increase of temperature in an anomalous day increases 
the index more if it occurs on a day that has a greater 
initial anomaly.

7.  Decomposition in subgroups. This property allows decom-
position of the overall temperature anomaly index into 
subgroups (geographical areas, years, seasons, etc). This 
feature is particularly useful for identification of sub-
groups that have experienced more anomalies than oth-
ers, so that policy makers can develop more focused 
interventions. This property can also be used to deter-
mine the contribution of each subgroup to the overall 
temperature anomaly index. Our measure of temperature 
anomaly has reasonable normative properties.

An Empirical Illustration: The Incidence and 
Intensity of Anomalies in Málaga, Spain
The Intergovernmental Panel on Climate Change (IPCC)18 
concluded that an overall increase in the number of warm days 
and nights on a global scale will likely occur and that anthro-
pogenic influences will likely lead to an increase of extreme 
daily temperatures on a global scale. In particular, climate 
change has led to increased average air temperature, a change 
of the natural air temperature limits, and more frequent high 
air temperature anomalies.34

The report released by the IPCC in 2018,35 Special Report 
on Global Warming of 1.5 degrees shows the impacts that 
global warming would have if exceeding pre-industrial levels 
by 1.5 degrees. The report warns that reducing carbon emis-
sions will not be enough to stabilize world temperatures by 
1.5 degrees; it will also require direct capture of CO2 from the 
atmosphere.

This index, therefore, is a tool that lets us to address the 3 
main dimensions of thermal anomalies, those related to their 
frequency, intensity, and variability. Furthermore, it is compara-
ble, making it possible to determine trends between seasons, 
time periods, and geographic areas.

It is also a tool within the framework of Sustainable 
Development Goals 13,36 since it introduces climate change as 
a primary issue in the policies, strategies and plans of countries, 

companies, and civil society, improving the response to the 
problems it generates and promoting education and awareness 
of the entire population in relation to the phenomenon.

The application of climate models to Spain offers us various 
projections, coinciding that the increase in maximum tempera-
tures will have direct implications for our health, with more 
intense and longer heat waves, reaching over 2 weeks duration.37

We used daily air temperature data of 18 observatories from 
the Spanish meteorological agency (AEMET) to analyze max-
imum air temperature anomalies in the province of Málaga, in 
southern Spain. These data cover a variety of geographical set-
tings (coastal, mountain, and inland regions). The air tempera-
ture data at these observatories are highly reliable for the period 
1971 to 2017. Mediterranean basin ecosystems are specific cli-
mate zones that have significant interannual variability in pre-
cipitation and air temperature. Alpert et al38 previously analyzed 
observational data from several areas of the Mediterranean 
basin using data from the 20th century and reported an increase 
in extreme events.

We analyzed the anomalies in daily maximum and mini-
mum air temperatures from 2001 to 2017 and used data from 
1971 to 2000 as the reference period for computation of Tmax 
and Tmin thresholds during the first year (2001). We then 
updated the reference period for subsequent years. The period 
of 2001 to 2017 had 105 167 daily values from 18 observato-
ries; the period 1971 to 2000 had 186 404 daily values from the 
same 18 observatories.

We used a method described by Barcena-Martin et  al 
(2019)10 to define the daily thresholds Tmax and Tmin and to 
identify temperature anomalies. Below, we describe the method 
for computation of Tmax; Tmin thresholds can be computed 
similarly. These authors proposed calculation of a running 
average of the Tmax of a specific day with 2 adjacent days for 
all 30 previous calendar dates. The upper daily threshold air 
temperature for each day is the 95th percentile of the corre-
sponding Tmax series.

Formally, Tmaxi t,  is the Tmax of the i Julian day of year t , 
and Tmaxi t,  is the Tmax series of the Julian day i  and the 2 
adjacent days (Tmaxi t−1,  Tmaxi t+1, ) during the previous 30 years. 
Therefore,

%
K

Tmax
Tmax Tmax Tmax j

t t tit
i j i j i j

= = − − −






− +, , ,, ,
, , ,

1 1

30 29 1 



.

We set the threshold λi  at the 95th percentile of Tmaxit . 
The Tmax threshold in this definition depends on Julian day. 
This procedure filters out the effects of seasonality (obviating 
the need to correct values measured directly at an observatory) 
and year (which detrends the threshold and updates it to cur-
rent conditions). Because the threshold is defined by the 30 
previous calendar dates, there is not necessarily a fixed number 
of anomalies, because anomalies outside the period are used to 
compute the threshold.

These thresholds allow simple monitoring of trends in the 
frequency, intensity, and variability of anomalies. These 
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anomalies, even if not particularly extreme, could stress human 
populations or the environment.

Summing up, the daily percentile thresholds are determined 
empirically from the observed Tmax or Tmin series on the 30 
previous calendar dates. This procedure ensures that tempera-
ture anomalies (ie, crossings of percentile thresholds) can occur 
with equal probability throughout the year. Thus, temperature 
gaps (Tmax  or Tmin exceeding the percentile thresholds) are 
expressions of anomalies relative to the local climate. These 
values may provide useful (albeit indirect) information impor-
tant to environmental impact studies and adaptation.

Figure 4 presents the 3 dimensions of anomalies (TIA 
curves) in Tmax and Tmin data. We decomposed the index into 
subgroups (described above) for 5-year periods.

TIA curves for later time periods end further to the right 
(Figure 4), except for Tmin 2008-2012, indicating an increas-
ing incidence of abnormalities at Tmax and Tmin. Furthermore, 
the intensity of Tmax (maximum height of the TIA curve) 
decreased slightly for the subsequent time periods (except the 
final period, in which the intensity reached its maximum); 
Tmin intensity also decreased for later time periods (except for 
the last period in which the intensity was slightly higher than 
the previous period). These results, as demonstrated by 
Barcena-Martin et al10, lead to the conclusion that temperature 
anomalies have generally become more frequent with time 
(although the intensity was less during the most recent period), 
except in the last period.

When ranking periods by the incidence, intensity, and 
variability of anomalies, rank depends on the dimension. 
Therefore, we can complement the TIA curves with informa-
tion on indexes that combine the 3 aspects of these anomalies. 
We first analyzed Tmax and Tmin anomalies for the entire 
period (Table 1).

These results indicate that the incidence of anomalies (ie, 
the proportion of anomalies, A0) of Tmax was slightly lower 
than that of Tmin, which is also consistent with what was 
stated by Tomczyk et al (2017).39

However, when 2 dimensions (A1) or the 3 dimensions of 
anomalies (incidence, intensity and variability, A2) are com-
bined, Tmax is more anomalous than Tmin, a circumstance that 
in our case may be due to the latitudinal factor. Division of the 
entire period into 5-year periods allows analysis of changes of 
anomalies in Tmax and Tmin over time (Table 2).

The decomposition into 5-year period shows, as in the TIA 
curves, that the proportion of Tmax and Tmin anomalies has 
increased over time, with an especially notable increase during 
the last period (2013-2017), which was also already reported by 
Chen et al (2017)40 for China over a long period. Analysis of 
index A1 and A2, which combine dimensions of anomalies, 
affirms that Tmax had greater anomalies over time and Tmin 
had a more irregular increase of anomalies over time.

The information in Table 2 is clearly complemented by the 
information in Figure 4 because the TIA curves show impor-
tant information that is not evident in the indices. The con-
cavity of a TIA curve shows how temperature gaps are 
distributed. Our analysis allows us to compare the importance 
of large, medium, and small temperature gaps. For example, 
Tmax during the period from 2001 to 2002 has a strong ini-
tial increase (indicating large temperature differences); Tmax 

Figure 4. Three I’s of Anomalies (TIA) curves for Tmax and Tmin for 5-year periods.

Table 1. Indexes for Tmax and Tmin anomalies from 2001 to 2017.

A0 A1 A2

Tmax 0.065 0.1241 0.3882

Tmin 0.070 0.1067 0.2781
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for the periods 2003 to 2007 and 2008 to 2012 had similar 
(but somewhat smaller) temperature gaps, as indicated by the 
initial overlap of these 2 curves. We consider this to be one of 
the greatest contributions of the TIA curves. In contrast, 
there were no large temperature gaps at Tmax for the period 
2013 to 2017, but many medium-sized temperature gaps are 
sufficient to show the maximum incidence of the period. Our 
analysis of the TIAs for Tmin led to similar conclusions.

We also performed a geographic analysis for the province of 
Málaga for all 3 dimensions of anomalies (combined in the A2 
index) to show areas where the combination of incidence, 
intensity, and variability of anomalies was higher (Figures 5-8). 
Figures 5 and 6 show the values of the A2 index for Tmax and 
Tmin during the entire period (2001-2017). Note that 

the geographical distribution of anomalies in Tmax does not 
necessarily show greater Tmax values; instead, it shows Tmax 
values greater than expected given the distribution of daily 
Tmax during the past 30 years (Figure 5). A similar interpreta-
tion applies to the geographical distribution of anomalies in 
Tmin (Figure 6).

The province of Malaga, due to its geographical character-
istics, located at the western Mediterranean Sea and in the 
southernmost part of Spain, south of the Baetic mountain 
ranges, is suffering various effects closely related to the new 
climatic pattern. Its proximity to the Atlantic Ocean through 
the Strait of Gibraltar gives it a certain trait of oceanity, in such 
a way that it marks an incidence of the longitudinal pluviomet-
ric gradient, tending toward aridity as moving to the east. But 

Table 2. Indexes for Tmax and Tmin anomalies by 5-year periods.

TIME A0 A1 A2

Tmax 2001-2002 0.042 0.0799 0.2323

2003-2007 0.059 0.1157 0.3579

2008-2012 0.063 0.1162 0.3607

2013-2017 0.081 0.1570 0.5047

Tmin 2001-2002 0.057 0.0956 0.2882

2003-2007 0.067 0.1049 0.2733

2008-2012 0.065 0.0968 0.2470

2013-2017 0.082 0.1227 0.3104

Figure 5. Geographical distribution, using Kriging of the A2 Index for Tmax anomalies, in Málaga province for the entire study period (2001-2017).
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its longitudinal arrangement is joined by the presence of an 
intricate orography, with a whole series of mountain ranges 
that rush from north to south toward the Mediterranean, but 
which also protect it from the dreaded north winds.

All this endows it with a singular climatic dynamic, and 
especially significant in the last decades. Proximity to the 
ocean has been translated into a double pluviometric pat-
tern, with a divergent trend toward higher humidity in the 

Figure 6. Geographical distribution, using Kriging of the A2 Index for Tmin anomalies, in Málaga province for the entire study period (2001-2017).

Figure 7. Geographical distribution, using Kriging of the A2 Index, for the difference of Tmax from 2013 to 2017 relative to 2003 to 2007.
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western zone and toward greater aridity from the center to 
the east.41 This modification of the pluviometric pattern has 
resulted, on the one hand, in a greater succession of droughts 
and dry spells, attending to this pattern along the pluvio-
metric gradient42,43 and, on the other hand, in a higher fre-
quency of torrentiality, generating serious territorial 
consequences.44,45

These modifications in the climatic pattern have also 
affected the thermal dynamics of the area, manifested in a 
greater succession of heat waves,10 and thus having as a refer-
ence the period 1970-2000, has been verified both the prolif-
eration of heat waves in all the years from 2001 to 2016, some 
even reaching a significant number (20 in 2015), and the cir-
cumstance of not only having heat waves during the summer 
periods, as, in fact, months with more heat waves were May and 
October.

The results, after the application of the proposed index, 
show that the greatest anomalies in Tmax (Figure 5) are found 
mainly in the mountainous areas (northwest), and the interior 
region has fewer anomalies. In contrast, the Tmin anomalies 
(Figure 6) mostly have a latitudinal pattern, with an increase 
from the coast to the more inland regions.

That is, they are the areas with the greatest temperature 
anomalies: inland for Tmin and mountainous areas for Tmax 
(Figures 5 and 6). Coastal regions, especially in the west, have 
apparently had less extreme maximum and minimum tempera-
ture anomalies.

The territorial representation of the percentage change for 
Tmax and Tmin between 2003 and 2017 shows that the region 
furthest from the coast had the greatest changes in Tmax over 

time (Figure 7). Furthermore, considering Figures 5 and 7 
together shows that the northwest region had the least pro-
nounced anomalies (A2) (Figure 5) and the largest increase in 
anomalies over time.

The Tmin analysis (Figure 8) indicates a mostly uniform 
pattern throughout Malaga, although the incidence of anoma-
lies was lower in the mountainous areas (east, west, and some 
inland areas).

In short, the changes in the climatic pattern, also manifested 
by a greater succession of heat waves, follow an uneven spatial 
pattern. And thus, the greatest anomalies, the most frequent, 
intense and variable, are found in the interior areas, while in the 
coastal areas, the effect of the sea’s thermal smoothing attenu-
ates them. This is especially evident in the maximum tempera-
tures, which follow a clear pattern of continentality, while the 
minimum temperatures tend to be more uniform, because of 
the regulatory role of the Mediterranean.

Conclusions
1. The proposed index identifies the relevance of thermal 

anomalies in their incidence, intensity, and inequality, 
being able to be comparable in different seasons, time 
periods, geographic areas and according to the graphic 
device.

2. It is effective in representing noticeable changes in maxi-
mum and minimum temperature anomalies over time.

3. In southern Spain, in particular, these anomalies have 
increased in frequency, with a variable intensity, except 
during the last 5 years, in which there is a clear increase 
in both intensity and frequency.

Figure 8. Geographical distribution, using Kriging of the A2 Index, for the difference of Tmin from 2013 to 2017 relative to 2003 to 2007.
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4. Tmax has steadily increased anomalies throughout the 
period considered, while Tmin had major and irregular 
anomalies only at the end of the period.

5. In geographical terms, the distribution of thermal anom-
alies in Malaga seems to have a unique pattern. The 
inland region (for maximum and minimum tempera-
tures) and the mountainous areas (for maximum tem-
peratures) had the greatest temperature anomalies, being 
the coast, due to the smoothing effect of the sea, the least 
anomalous area.
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