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Introduction
Timely evaluation of heat exposure is essential to mitigate one 
of the most critical environmental concerns affecting workers.1 
Among the myriad of heat indices, such as the Universal 
Thermal Climate Index (UTCI)2 and Physiological Equivalent 
Temperature (PET),3 the Wet Bulb Globe Temperature 
(WBGT) index is widely recognized as an international refer-
ence for assessing environmental heat risks in occupational set-
tings.4 Here, heat risk refers to environmental heat stress 
assessed by WBGT, indicating potential risks for heat-related 
illnesses among workers. This index incorporates weather vari-
ables such as natural wet-bulb temperature (Tnwb), air tempera-
ture (Ta), and globe temperature (Tg), forming the basis for 
safety guidelines.5 Occupational safety institutions like the 
National Institute for Occupational Safety and Health 
(NIOSH),6 the American Conference of Governmental 
Industrial Hygienists (ACGIH),7 and the International 
Organization for Standardization (ISO),8 provide the WBGT-
based heat exposure limits, such as ACGIH’s thermal limit val-
ues and NIOSH’s recommended alert limit and recommended 
exposure limits. These include ACGIH’s thermal limit values 
and NIOSH’s recommended alert limits and recommended 
exposure limits, along with other heat mitigation strategies, 
such as appropriate work/rest scheduling to accommodate high 
heat-sensitive work areas and periods.6

Despite the crucial role of the WBGT index in occupational 
safety management, obtaining timely WBGT information in 

outdoor workplaces presents practical challenges. It often 
requires additional weather sensors, such as a black globe ther-
mometer,9 which introduce logistical and cost constraints on-
site along with the need for frequent calibrations.10 Predicting 
future occupational heat risks for strategic mitigation planning 
is even more complex. Such predictions require large-scale 
numerical simulations and expert adjustments to properly cap-
ture global and local weather patterns, alongside daily and sea-
sonal fluctuations.11 To address these challenges, previous 
studies have explored the use of weather forecasting services to 
estimate predictive WBGT values as effective alternatives.12,13 
One notable example is the HEAT-SHIELD project,14 which 
leverages European Center for Medium Range Weather 
Forecasts (ECMWF)15 to provide daily maximum WBGT 
forecasts for Europe. Despite these efforts, gaps remain in the 
application of such forecasts to occupational safety. Specifically, 
short-term forecast information, such as hourly updates, is cru-
cial for effective safety planning, as maximum values alone do 
not account for diurnal variations in heat risks. Additionally, the 
accuracy of these forecasts has not been validated, raising con-
cerns about their reliability for safety management purposes.

In June 2022, the US National Weather Service (NWS) ini-
tiated its operational WBGT forecasts, hereafter referred to as 
NWS WBGT forecasts.16 This service provides public fore-
casts on a 2.5 km grid for the contiguous United States, updated 
hourly for up to 36 hours, every 3 hours for up to 72 hours, and 
every 6 hours for up to 168 hours, also including Hawaii, Guam, 
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and Puerto Rico at 3-hour intervals for up to 72 hours and 
6-hour intervals for up to 168 hours.17 Recognizing the practi-
cal value of these forecasts, recent studies have assessed their 
accuracy against observed data, which are measurements col-
lected directly from weather stations. For instance, Ahn et al18 
evaluated the NWS WBGT data from 2018 to 2019 across the 
US and found average discrepancies ranging from −0.64°C to 
1.46°C, while Clark et  al19 examined forecast accuracy for 
North Carolina during the summers of 2019 to 2021, noting 
variations in accuracy depending on the level of heat risk and 
time of day.

Although these evaluations provide valuable insights, a 
comprehensive understanding of their role in supporting criti-
cal safety decisions requires more than just overall accuracy 
assessments. For example, if the forecasts perform well in non-
heat-risk scenarios but falter under heat-sensitive conditions, 
their reliability for practical applications may be compromised. 
Similarly, evaluating forecast performance over different time 
horizons (e.g. 1 hour ahead versus 6 hours ahead) is crucial, as 
high fidelity in short-term forecasts but poor performance in 
longer-term scenarios would limit the service’s application in 
occupational safety management. Moreover, these evaluations 
were conducted before the service became operational in 2022. 
Since then, WBGT calculation methods have been refined in 
several areas, including direct and diffused solar radiation, con-
vective heat transfer coefficients, adjustment of solar flux based 
on cloud cover, and the calculation of natural wet-bulb tem-
perature.20 However, the accuracies of these updates have not 
yet been explored.

These gaps in knowledge motivate our study to revisit the 
evaluation of NWS WBGT forecasts by comparing them with 
observed weather data, aiming to better understand its role in 
occupational safety management. To this end, we have com-
piled an extensive dataset, resulting in 1.3 million hourly data 
points, including in-situ observations at 252 locations and his-
torical NWS WBGT forecasts during the summer months of 
2023 in the US. Our analysis addresses forecast horizons, times 
of interest, climate types, and the ability to detect occupational 
heat risk levels to uncover practical insights and identify areas 
for future research and improvement. The main contributions 
of this study are threefold. First, it explores hourly NWS 
WBGT forecast data, improving the granularity across times of 
interest and forecast horizons. The findings offer empirical 
insights into the effectiveness of NWS WBGT forecasts 
according to different heat risk levels. Second, the study evalu-
ates weather biases affecting forecast accuracy across various 
climate types, providing insights on potential improvement 
plans to minimize climate-specific biases in future research 
endeavors and highlighting heat-risk-vulnerable climate types 
that require more vigilant occupational heat risk monitoring. 
Third, it provides empirical evidence on the importance of 
addressing multiple factors in assessing heat-health warning 
systems, beyond overall accuracy. This underscores the need to 
incorporate forecast horizons, times of interest, climate types, 

and the ability to detect occupational heat risk levels. Overall, 
this study contributes to improving the role of operational heat 
risk forecasting services in effectively managing heat exposures 
for occupational workers.

Materials and Methods
Our study evaluates the effectiveness of NWS WBGT fore-
casts by comparing them to observations from in-situ weather 
stations across the US. To accomplish this, we integrated data 
from multiple sources into a unified dataset, aligning observa-
tion locations with forecast times to enable a direct compari-
son, as detailed in the data collection and preprocessing section. 
This integration process involved collecting hourly data from 
June 1, 2023, to August 31, 2023, during the hours of 6:00 AM 
to 8:00 PM, from 252 weather stations in the US. Following 
data collection, WBGT values were calculated using the NWS 
WBGT calculation method to analyze the reliability of NWS 
WBGT forecasts in the context of occupational safety man-
agement. This section details the research methodology, out-
lining the procedures of (1) data collection and preparation, (2) 
WBGT calculations, and (3) an evaluation of the effectiveness 
of NWS WBGT forecasts, as illustrated in Figure 1.

Data collection and preprocessing

National digital forecast database (NDFD).  The NDFD inte-
grates digital weather forecasts from the weather forecast 
offices, the river forecast centers, and the national centers for 
environmental prediction.11 Our study focused on collecting 
hourly data on weather variables pertinent to NWS WBGT 
forecasts from the NDFD, including Ta, RH, cloud cover, and 
air velocity at 10 m (Va10). The NDFD provides weather fore-
casts for these variables on an hourly basis for up to 36 hours 
and every 3 hours for up to 168 hours, with a 2.5 km gridded 
horizontal resolution.21 The frequency of updates can vary 
based on the discretions of the weather forecast offices.22 The 
NDFD is publicly available through the National Oceanic and 
Atmospheric Administration (NOAA)’s data portals, accessi-
ble via Hypertext Transfer Protocol (HTTP) or File Transfer 
Protocol (FTP).23

Additional data for NWS WBGT computation.  The NWS 
WBGT computation requires additional data not available in 
the NDFD.20 These include (1) surface air pressure, (2) surface 
albedo, and (3) surface roughness length. For surface air pres-
sure, the NWS algorithm uses the 50th percentile mean sea 
level pressure from the National Blend of Models (NBM) and 
converts this to surface air pressure. This study, however, 
directly sourced surface air pressure from the High-Resolution 
Rapid Refresh (HRRR) model,24 streamlining the computa-
tion by avoiding the need for conversion. For surface albedo, 
the NWS algorithm employs the NOAA17 Advanced Very 
High Resolution Radiometer (AVHRR3), which is no longer 
publicly available. Alternatively, this study has sourced data 
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from the Visible Infrared Imaging Radiometer Suite (VIIRS) 
Level 3 daily gridded land surface albedo from the NOAA-20 
satellite.25 Additionally, land cover type data required for calcu-
lating surface roughness length was sourced from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) Land 
Cover Type Product (MCD12Q1) version 6.1,26 then con-
verted to surface roughness length, according to Supplemental 
Table 1.

In-situ observation data.  Observed weather data were col-
lected from 5 weather station networks: Automated Weather 
Data Network27; Agriculture and meteorology28; California 
Irrigation Management Information System29; Soil Climate 
Analysis Network30; and WeatherSTEM.31 Consequently, 
approximately 1.8 million hourly data for Ta, RH, Va, Global 
Horizontal Irradiance (GHI) and their geolocation data (lati-
tude and longitude) were collected from 1508 stations. The 
data were further refined through 3 rounds of filtering. First, 
we eliminated hourly data recorded when the sun’s elevation 
was below 3°, according to the NWS WBGT calculations to 
exclude nighttime observations.20 Second, we applied quality 
control measures to remove statistically suspect observations. 
This involved filtering out hourly weather data outliers for 
each station’s monthly data by identifying observations with 
z-scores in the top or bottom 0.5% for each weather param-
eter over the study period. Finally, to avoid an overconcentra-
tion of data from specific regions, we randomly selected 
stations based on their latitudes and longitudes within a 
100 km radius. Table 1 and Figure 2 show the number of sta-
tions and data points according to the Köppen climates based 

Figure 1.  Overview of studying the effectiveness of NWS WBGT forecasts.

Table 1.  Number of stations and data points for Köppen climates.

Köppen climate type Stationa Observationb

Humid subtropical climate (Cfa) 98 108

Cold desert climate (BSk) 52 53.3

Warm-summer humid continental 
climate (Dfb)

32 31.9

Hot-summer humid continental 
climate (Dfa)

26 21.9

Mediterranean climate (Csb) 12 14.6

Hot desert climate (BWh) 7 8.2

Mediterranean climate (Csa) 6 7.2

Cold desert climate (BWk) 4 3.7

Warm-summer continental 
Mediterranean climate (Dsb)

3 3.7

Subarctic climate with dry winters 
(Dwa)

3 2.5

Subarctic climate with dry winters 
(Dwb)

3 2.5

Tropical monsoon climate (Am) 2 2.2

Hot desert climate (BSh) 1 1.2

Oceanic climate (Cfb) 1 1.2

Hot-summer continental 
Mediterranean climate (Dsa)

1 1.2

Tundra climate (ET) 1 0.8

aNumber of stations.
bNumber of hourly data points (in thousands).
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on climate trends from 1981 to 2000.32 The collected data 
represent that Humid subtropical climate (Cfa), Cold desert 
climate (BSk), Warm-summer humid continental climate 
(Dfb), and Hot-summer humid continental climate (Dfa) are 
the most frequent Köppen climates in the US. More details 
on how the Köppen climates are determined can be found in 
this reference.32

Matching dataset.  The NDFD data, additional data for NWS 
WBGT computation, and in-situ observation data were 
aligned based on their forecast horizons and local standard 
times (LST). This alignment process involved matching the 
LST of the in-situ observations with the NDFD data across 
forecast intervals of 1, 6, 12, 18, and 24 hours. For example, an 
in-situ observation recorded on July 2nd at 12:00 in the Cen-
tral Time Zone (UTC-5 hours) was matched with the NDFD 
data as follows: the 24-hour forecast data was collected from 
the NDFD data issued on July 1st at 17:00, the 18-hour fore-
cast data from July 1st at 23:00, the 12-hour forecast data from 
July 2nd at 05:00, the 6-hour forecast data from July 2nd at 
11:00, and the 1-hour forecast data from July 2nd at 16:00. 
This integration effort resulted in an extensive dataset of 
1 300 737 hourly data points over the study period. These data 
points were used to calculate WBGT values, allowing for a 
direct comparison between the NWS WBGT forecasts and the 
WBGT values derived from in-situ observations across differ-
ent local work hours and forecast horizons.

WBGT calculations

The WBGT index is the most widely used thermo-physiolog-
ical model for occupational heat stress assessments.33 Its out-
door calculations involve 3 variables: Tnwb, Tg, and Ta, as shown 
in equation (1).34

	 WBGT T T Tnwb g a� � �� � � � � �. . . 	 (1)

The NWS employs equation (2) for Tnwb calculations in its 
WBGT computation mechanism.20

	
T T GHI V

T T
nwb wb a

a wb

� � �
� � �

� ������ � �����
� ����� � �����

. .
. ( ) . 	 (2)

Where Twb represents the thermodynamic wet bulb tem-
perature in °C. To ensure consistency in comparing in-situ 
observations with NWS forecasts, this study uses a formula35 
for Twb calculation, as shown in equation (3).

T T RH
T RH RH

wb a

a

� �

� � �

�

� �

tan ( . ( . ) )
tan ( ) tan

.� � �

� �

� ������ � ������

��� �
� ��

� ������

� �������� � ������ � ������� � �

.
. tan ( . ) ..RH RH

   (3)

For GHI calculation, in accordance with the NWS WBGT 
computation mechanism, the daily maximum of solar radiation 
flux (GHImax) is calculated based on the Environment Canada 
weather forecast model.20 To accommodate the impact of cloud 
cover on solar radiation flux, this value is subsequently refined 
using equation (4).

	 GHI GHI nmax� �( . ).� � �� � � 	 (4)

Where, n represents the cloud cover percentage, expressed as 
a fraction (0.0-1.0). Subsequently, the hourly solar radiation flux 
is determined using a Gaussian distribution, under the assump-
tion that the maximum daily solar radiation flux occurs at noon.36

For Va calculation, given that NDFD only provides Va10 (i.e. 
air velocity at 10 m), the equation (5) is further employed, 
where l  represents the roughness length in meters, obtained 
from the MODIS MCD12Q1 dataset.

Figure 2.  Spatial distributions of in-situ stations based on Köppen climates according to Table 1.
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	 V V l
la a� ��

�
��

log( / )
log( / ) 	 (5)

Tg is derived from the equation (6).37

	 T CT B CTg g a
� � � � 	 (6)

Once B and C are determined using equations (7) and (8), 
the remaining value to be determined from the quartic equa-
tion is Tg. This value is calculated under the assumption that 
the real solution to the quartic equation is the one nearest to 
Ta.37

	 B GHI f
z

f Tdb
dif a a� � �(

cos( )
. )

�
� � �

� �
� 	 (7)

	 C Va�
�

� �

� ��� ����

� ���� ��

� ��

�

. ( )
.

.
	 (8)

Where, fdif is the diffuse radiation constant, defined as the 
sky cover percentage, with a minimum value set at 0.25; fdb is 
the direct radiation constant, calculated as 1 − fdif; σ represents 
the Stephan-Boltzmann constant (i.e. 5.6−7 × 10−8 W/m2⋅K4); 
z is zenith angle in degrees, determined using the Solar Position 
and Intensity (SOLPOS) algorithm38; and εa is the thermal 
emissivity calculated as

	 �a ae� � ��� � �. ( / ) 	 (9)

Where ea is the atmospheric vapor pressure, determined by 
equation (10).39

e
T T

T
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d a

d
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	 (10)

Where, P is the surface air pressure in millibars, sourced 
from the HRRR dataset,24 and Td is the dew point temperature 
in °C, calculated using equation (11).40

	 T T RH
d a� �

�( )���
�

	 (11)

The WBGT heat risk levels are evaluated using the follow-
ing reference criterion outlined in Table 2,41 originally pro-
posed by the armed services, which targets acclimated 
average-sized people. This criterion is also used by the 
Occupational Safety and Health Administration (OSHA).42 
This criterion was chosen for its detailed safety guidelines, 
including work/rest ratios and water intake recommendations, 
which offer actionable insights for managing occupational 
safety.6 This study investigates the performance of NWS 
WBGT forecasts, focusing on their ability to accurately assess 
heat risk levels using this criterion.

Evaluating the effectiveness of NWS WBGT 
forecasts

The effectiveness of NWS WBGT forecasts is assessed through 
the comparison of matched WBGT values derived from obser-
vations and forecasts across 5 time horizons (1, 6, 12, 18, and 
24 hours), focusing on (1) the numerical closeness between 
observed and forecasted WBGT values and (2) the detection 
performance of heat risk levels. Forecast accuracy at each 
hourly observation is determined using root-mean-square error 
(RMSE) and mean bias error (MBE), based on formulas,43 
according to equations (12) and (13):

	 RMSE
y y

n
i i

�
��( )

�

	 (12)

	 MBE
y y

n
i i

�
��( )

	 (13)

Where yi  represents the forecasted value for the ith data 
point, yi  is the observed value for the ith data point, and n is 
the total number of data points. The performance of NWS 
WBGT forecasts to identify occupational heat risk levels is 
measured using a row-normalized confusion matrix, which 
identifies discrepancies between forecasted and observed 
WBGT heat risk levels. The confusion matrix is widely used 
to assess detection performance.44,45 Given the prevalence of 
data points at the lowest heat risk level, which exhibit variabil-
ity across Köppen climates, this study adjusts the confusion 

Table 2.  Work/rest ratios and water intake based on WBGT index and work intensities.6

Heat stress 
level

WBGT 
index (°C)

Easy work (250 W) Moderate work (425 W) Hard work (600 W)

Work/rest 
(min)

Water intake 
(qt h−1)

Work/rest 
(min)

Water intake 
(qt h−1)

Work/rest 
(min)

Water intake 
(qt h−1)

1 25.6-27.7 Unlimited 0.5 Unlimited 0.75 40/20 0.75

2 27.8-29.4 Unlimited 0.5 50/10 0.75 30/30 1

3 29.4-31.1 Unlimited 0.75 40/20 0.75 30/30 1

4 31.1-32.2 Unlimited 0.75 30/30 0.75 20/40 1

5 32.2+ 50/10 1 20/40 1 10/50 1
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matrix by normalizing each row. This process involves dividing 
the counts by the row totals and converting the results to per-
centage form to better recognize the NWS WBGT forecasts 
performance across the different heat risk levels and Köppen 
climates.

Results
Occupational heat vulnerabilities based on Köppen 
climates

Figure 3 features a blue line representing the mean of hourly 
WBGT values, encompassed by shaded areas indicating the 
upper and lower quartiles. Furthermore, colored horizontal 
dotted lines highlight the WBGT levels ranging from Level 1 

(25.6 °C-27.7 °C) to Level 5 (over 32.2 °C). Generally, the 
WBGT trends form a bell-shaped curve, peaking between 
12:00 and 14:00 across all climate types, reflecting the typical 
pattern of occupational heat exposure in the US. Notably, cli-
mate types “Csb,” “Dfb,” “Dsa,” “Dsb,” “Dwb,” and “ET” have 
upper quartile values that do not surpass Level 1, indicating 
relatively lower occupational environmental heat risks. 
Furthermore, climate types “BSk,” “BWk,” “Cfb,” “Csa,” “Dfa,” 
and “Dwa” mostly remain WBGT values below Level 1 for the 
mean and lower quartiles, but their upper quartile may occa-
sionally surpass Level 1. The most pronounced occupational 
heat risks are observed in climate types “Am,” “BSh,” “BWh,” 
and “Cfa,” with working hours often ranging between Level 1 
and Level 5. Additionally, the data reveals variability in the 

Figure 3.  Hourly WBGT variations and interquartile ranges across Köppen climates during local standard work hours (06:00-20:00).
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interquartile ranges of WBGT across these climates, with “Am” 
showing a narrower interquartile range, indicating consistent 
occupational heat risk, while “BSh,” “BWh,” and “Cfa” display 
wider ranges, suggesting more daily variations in occupational 
heat risks. Figure 4 represents the occupational heat risk level 
distributions across Köppen climates, where each colored bar 
indicates the proportion of WBGT heat risk levels. In climates 
“Dsb” and “ET,” the majority of heat risk levels are at Level 0 
(below 25.6°C), indicating lower occupational heat risks. In 
contrast, climates “Am,” “BSh,” “BWh,” “Cfa,” and “Csa” pre-
dominately face heat risks above this threshold, emphasizing 
distinct occupational heat vulnerabilities. Notably, “Am,” “Cfa,” 
and “Csa” show relatively consistent variances in heat risk level 
distributions, while “BSh” and “BWh” exhibit increasing trends 

in percentages across the risk levels with Level 5 (over 32.2°C) 
being the most prevalent.

Accuracy of NWS WBGT forecasts compared to in-
situ observations

Given that WBGT is a function of the weather variables, the 
accuracy of NWS WBGT forecasts is intrinsically associated 
with the accuracy of its input weather variables: Ta, RH, Va, and 
GHI. Table 3 outlines the MBE and RMSE for these forecasts 
over 5 time horizons (1, 6, 12, 18, and 24 hours) and 7 local 
standard times (6:00-20:00 at 2-hour intervals) for the 4 
weather variables and WBGT forecasts. The MBE and RMSE 
for Ta vary from −0.04°C to −1.84°C and from 1.85°C to 

Figure 4.  Distribution of WBGT heat risk levels by Köppen climate classification.
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3.13°C, respectively. For RH, these metrics range from −0.50% 
to 6.43% and from 9.51% to 15.35%, respectively; for Va, from 
0.01 to −1.20 m/s and from 2.22 to 2.95 m/s. Ta and RH show 
the most pronounced errors at 20:00 and the highest accuracy 
at around noon, whereas Va shows the best performance at 6:00 
and 8:00, deteriorating between 16:00 and 20:00. GHI discrep-
ancies are notably higher, with MBE and RMSE ranging from 
34.08 to 325.77 W/m2 and from 63.67 to 384.69 W/m2, respec-
tively. Overall, the MBE and RMSE for WBGT range from 

0.01°C to 1.77°C and from 1.91°C to 3.00°C, respectively, with 
the most significant inaccuracies observed at 8:00 and the 
smallest between 12:00 and 18:00.

Figure 5 illustrates how these biases in NWS WBGT fore-
casts vary across Köppen climates. While MBE remains around 
±2.0°C and RMSE remains within 3.0°C in most Köppen cli-
mates, the climates “Cfb,” “Dsa,” and “Dsb” exhibit larger errors 
with a decreasing trend, peaking at 6:00, reaching their mini-
mum around 12:00, and continuing to decrease until 20:00. 

Table 3.  Comparative analysis of MBE and RMSE metrics for Ta, RH, Va, GHI, WBGT across five horizons of 1, 6, 12, 18, and 24 hours at 7 local 
standard time (6:00-20:00) at 2-hour intervals.

Variable Horizon Local standard time (MBE/RMSE)

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

Ta (°C) 1 h 0.50/2.10 1.32/2.56 0.52/2.03 −0.04/1.85 −0.52/1.94 −0.86/2.17 −1.21/2.45 −1.61/2.97

6 h 0.55/2.14 1.36/2.56 0.46/2.04 −0.13/1.89 −0.64/2.02 −1.00/2.27 −1.37/2.56 −1.80/3.04

12 h 0.56/2.15 1.37/2.58 0.45/2.09 −0.17/1.99 −0.68/2.10 −1.01/2.30 −1.40/2.59 −1.80/3.06

18 h 0.54/2.17 1.37/2.59 0.43/2.10 −0.17/1.99 −0.70/2.14 −1.05/2.40 −1.43/2.68 −1.83/3.11

24 h 0.54/2.17 1.36/2.60 0.43/2.14 −0.23/2.04 −0.72/2.18 −1.05/2.41 −1.43/2.69 −1.84/3.13

RH (%) 1 h 0.81/10.05 −3.49/13.22 −0.98/10.69 1.05/9.51 2.41/9.86 3.31/10.62 4.19/11.58 5.42/14.31

6 h 0.86/10.46 −3.46/13.37 −0.82/10.80 1.27/9.66 2.73/10.15 3.91/11.15 4.90/12.15 6.34/14.93

12 h 0.86/10.56 −3.48/13.42 −0.59/11.11 1.52/10.13 2.91/10.13 3.88/11.18 4.87/12.20 6.30/14.99

18 h 1.12/10.72 −3.51/13.53 −0.57/11.12 1.52/10.16 2.97/10.16 4.05/11.57 5.03/12.64 6.43/15.30

24 h 1.10/10.74 −3.48/13.58 −0.50/11.39 1.61/10.37 3.02/10.37 4.01/11.60 5.02/12.64 6.43/15.35

Va (m/s) 1 h −0.29/2.22 0.02/2.23 0.26/2.38 0.20/2.55 0.14/2.78 −0.02/2.87 −0.43/2.81 −0.91/2.59

6 h −0.43/2.24 −0.04/2.25 0.19/2.38 0.13/2.56 0.07/2.81 −0.10/2.91 −0.56/2.88 −1.07/2.65

12 h −0.44/2.27 −0.05/2.27 0.16/2.40 0.07/2.56 0.01/2.82 −0.13/2.91 −0.57/2.89 −1.11/2.68

18 h −0.48/2.29 −0.09/2.28 0.14/2.41 0.06/2.58 0.01/2.84 −0.20/2.94 −0.62/2.91 −1.17/2.70

24 h −0.50/2.30 −0.13/2.28 0.12/2.45 0.07/2.61 0.03/2.86 −0.20/2.95 −0.62/2.92 −1.20/2.72

GHI (W/m2) 1 h 34.82/
89.08

189.33/
247.50

210.36/
291.94

152.58/
283.93

224.51/
326.81

328.94/
384.69

188.58
/236.66

35.22/
63.67

6 h 34.08/
88.59

188.21/
246.90

208.79/
291.55

149.80/
283.86

222.49/
327.02

327.73/
384.05

188.59/
236.74

35.21/
63.73

12 h 34.84/
89.20

188.48/
247.34

206.73/
291.61

145.16/
283.62

218.57/
325.61

327.93/
384.21

188.42/
236.84

35.62/
64.22

18 h 34.57/
89.21

188.14/
247.32

207.00/
292.55

146.36/
285.52

217.54/
325.98

325.77/
383.03

187.73/
236.18

35.41/
64.03

24 h 34.28/
89.18

187.79/
247.49

205.11/
292.41

147.66/
288.00

217.75/
326.89

326.23/
383.64

188.04/
236.47

35.32/
63.77

WBGT (°C) 1 h 0.86/2.44 1.72/2.96 0.83/2.23 0.15/2.01 0.15/1.99 0.49/2.03 0.01/1.91 −0.72/2.24

6 h 0.92/2.47 1.75/2.97 0.80/2.22 0.10/2.03 0.08/2.01 0.43/2.03 −0.05/1.92 −0.81/2.20

12 h 0.93/2.48 1.77/2.99 0.80/2.26 0.09/2.08 0.06/2.04 0.42/2.03 −0.08/1.93 −0.82/2.22

18 h 0.93/2.49 1.77/3.00 0.80/2.26 0.09/2.08 0.05/2.05 0.40/2.07 −0.09/1.97 −0.83/2.25

24 h 0.93/2.49 1.77/3.00 0.78/2.29 0.04/2.11 0.03/2.08 0.40/2.08 −0.10/1.97 −0.84/2.26

The highest MBE and RMSE values for each variable and horizon are in bold, while the lowest values are underlined.
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This feature is more evident in RMSE trends, where “Cfb” and 
“Dsa” display an inverted bell curve, with the best performance 
around 12:00. In contrast, “Dsb” experiences the largest errors 
at 6:00, which subsequently decreases but still shows relatively 
larger errors compared to other climates. Next, this study 
explores how the identified biases of NWS WBGT forecasts 
across Köppen climates misrepresent occupational heat risks 
and identify underlying weather factors that necessitate further 
improvements in their accuracies.

Performance in detecting occupational heat risk 
levels

Figure 6 compares observed and forecasted WBGT risk levels 
across Köppen climates using normalized confusion matrices. 
Except for the “Am” climate, the NWS WBGT forecasts dem-
onstrate high accuracy in detecting heat risks at Level 0 (below 
25.6°C), with success rates of 86.4% for “BWh,” and above 
90% for other climates. However, for heat risk levels beyond 
Level 0, performances are generally below 50%. In “BSh,” 
“BWh,” and “Cfa” climates, which are vulnerable to work-
related heat risks evidenced in Figure 4, the accuracy for pre-
dicting higher heat risk levels (equal to or exceeding Level 1) is 
not as reliable. Forecasts in “BWh,” and “Cfa” tend to underes-
timate risks in these climates, whereas “BSh” forecasts are more 
likely to overestimate.

We further investigate the causes of certain low perfor-
mance by analyzing the impact of discrepancies between in-
situ observations and NWS weather forecasts (i.e. Ta_diff, RH_diff, 
Va_diff, and GHI_diff) on the WBGT_diff (i.e. the difference between 
observed and forecasted WBGT values). These analyses utilize 
beta coefficients derived from regression analyses, with results 
presented in Figure 7. The symbol “*” denotes statistical signifi-
cance with a P-value below .05, and the values under each 
x-axis label in parentheses represent the variance inflation 

factor (VIF) values. The R² values, ranging from 0.88 to 0.96, 
show strong linearity in explaining variances in WBGT fore-
cast bias, and VIFs, not exceeding 3.6, suggest minimal multi-
collinearity among variables.46 The analysis identifies Ta_diff as 
the most influential factor, with the second most influential 
factor alternating between RH_diff and GHI_diff, whereas Va_diff 
has the least influence. Notably, in climates “Cfb,” “Dsa,” “Dsb,” 
Ta_diff significantly influences WBGT_diff.

Discussion
This study highlights the importance of comprehensive assess-
ments in occupational heat risk forecasts, specifically focusing 
on the performance of NWS WBGT forecasts with respect to 
local time, forecast horizons, and the ability to alarm occupa-
tional heat risks across Köppen climates. Utilizing in-situ 
observations from 252 weather stations and historical NWS 
WBGT forecasts from the summer of 2023 in the US, the 
study underscores the necessity for increased vigilance toward 
occupational heat threats in certain Köppen climates in the US, 
such as “Am,” “BSh,” “BWh,” “Cfa,” and “Csa,” where heat risk 
levels during working hours often exceed Level 0. These cli-
mates demand more regular monitoring due to frequent fluc-
tuations in WBGT heat risk levels from Level 1 to Level 5, 
which can lead to misconceptions about actual risk levels with-
out adequate monitoring.

The study reveals a stronger association between NWS 
WBGT forecast errors and time of day rather than forecast 
horizons. Prior research found that the RMSE for NWS 
WBGT forecasts in North Carolina was 1.3°C from May to 
September during 2019 to 2021,19 and another study iden-
tified that NWS WBGT forecasts’ RMSE varied from 
−0.64°C to 1.46°C from April to October during 2018 to 
2019 in the US.18 These errors likely stem from underlying 
inaccuracies in the component weather forecasts, highlight-
ing the limitations of relying on a single metric for forecast 

Figure 5.  Hourly variations in MBE and RMSE for NWS WBGT forecasts across Köppen climates during local standard work hours (06:00-20:00).
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evaluation. The analysis in this study further reveals its 
temporal trends, with specific times of the day and forecast 
horizons showing increased accuracy or discrepancies for 
different component weather forecasts, as shown in Table 3. 
In most Köppen climates, MBE is approximately ±2.0°C 
and RMSE remains within 3.0°C, as represented in Figure 
5. However, the climates “Cfb,” “Dsa,” and “Dsb” exhibit 
relatively larger errors, peaking at 6:00, reaching a mini-
mum around 12:00, and continuing to decrease until 20:00. 
While such notable errors are observed in these climates, it 
is also noteworthy that the observed time frames with 
greater errors, such as 6:00 and after 16:00, are most likely 

to be under Level 0 heat risks (i.e. no occupational heat 
risk), as evidenced in Figure 3.

The study also evaluates the effectiveness of NWS WBGT 
forecasts in identifying occupational heat risk levels. Results 
reveal consistently low performance in detecting WBGT heat 
risk levels (equal to or exceeding Level 1) across Köppen cli-
mates, with forecast performance correlating more strongly 
with time of day than with forecast horizons within a 1-day 
period, as shown in Figure 6. While NWS WBGT forecasts 
effectively identify the lowest heat risks (i.e. no heat risk), their 
performance declines at higher risk levels, often below 50%, 
highlighting the need for cautious interpretation of NWS 

Figure 6.  Comparison of observed and forecast WBGT risk levels across Köppen climates using normalized confusion matrices.
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WBGT forecasts in safety management. For instance, adopting 
a more conservative interpretation (e.g. include the one level 
below) of forecasts in “BWh” and “Cfa” climates could be rec-
ommended to improve accuracy, potentially exceeding 60% in 
all instances. The “Am” climate demonstrates lower overall 
forecast accuracy, indicating a need for more careful forecast 
interpretation. While forecasts are reliable for detecting Level 
0 heat risks, a careful approach is advised for higher heat risk 
levels, underlining the importance of considering regional cli-
mate characteristics in interpreting NWS WBGT forecasts. 
Without further adjustments, such as post-processing47 or a 
conservative interpretation strategy, the NWS WBGT fore-
casts may not provide a reliable basis for evaluating occupa-
tional heat risk levels for safety management. This also 

highlights the need for more careful attention to its perfor-
mance during heat-sensitive periods (e.g. Level 1 to Level 5), 
where a few degrees of error can affect the implementation of 
appropriate safety standards, as exemplified in Table 2.

Along with the quantitative results, which can be directly 
used for practical decision support regarding NWS WBGT 
forecasts, this study offers several practical implications. For 
instance, it identifies empirical causes behind the low perfor-
mance by examining the impact of discrepancies between in-
situ observations and NWS weather forecasts, as shown in 
Figure 7. In all climates, Ta_diff significantly influences WBGT_

diff, which is closely related to the associated weather biases and 
underlying NWS WBGT calculation mechanism, which 
assigns greater weights to Ta. Another notable finding is that 

Figure 7.  Beta coefficients and VIFs of Ta_diff, RH_diff, Va_diff, and GHI_diff for WBGT_diff across Köppen climates.
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the second most influential variable is either GHI_diff or RH_diff, 
depending on Köppen climates. For practical scenarios, these 
insights provide climate-specific recommendations for mini-
mizing relevant weather forecast biases and thus effectively 
improving the reliability of NWS WBGT forecasts, such as 
using post-processing techniques widely employed to improve 
weather forecasts.47 Furthermore, since operational weather 
forecasts are a common feature in most countries,48 the meth-
odologies developed in this study for evaluating public weather 
forecast-driven occupational heat risk forecasts can be readily 
adapted and applied internationally. For instance, the evalua-
tion framework used in this study could be employed to assess 
the performance of heat risk forecasts provided by the HEAT-
SHIELD project,14 which encompasses the entire European 
region. Extending this evaluation approach to different opera-
tional forecast systems around the world would yield new 
insights into the effectiveness of these systems in managing 
occupational safety. This extended application could help iden-
tify specific areas where forecast accuracy needs improvement 
and develop tailored strategies to mitigate occupational heat 
risks in diverse climatic conditions.

Despite its contributions, this study has several limitations 
that open avenues for future research. First, the study primarily 
uses the NWS’s WBGT calculation mechanism for direct 
comparisons between NWS WBGT forecasts and in-situ 
observation-based WBGT. Therefore, this analysis does not 
address the reliability of the NWS’s WBGT calculation vali-
dated by direct measurements using additional weather sensors, 
such as a black globe thermometer. Future research also could 
explore other WBGT estimation methods, such as those pro-
posed by Lemke and Kjellstrom,49 Bernard,50 and Liljegren 
et al51 to evaluate their accuracy. Second, the ability to identify 
occupational heat risk levels is closely linked to the standards of 
occupational heat levels, which may incorporate different risk 
thresholds. Future studies could benefit from sensitivity analy-
ses exploring different safety guidelines, providing practition-
ers with practical insights for interpreting NWS WBGT 
forecasts under various guidelines. For example, OSHA pro-
vides recommendations on exposure limits for light work activ-
ity at 30°C, moderate work activity at 27.8°C, and heavy work 
activity at 26.1°C.6 Revisiting the method of this study to eval-
uate the performance of weather forecasts under different 
guidelines would provide more tailored insights for their appli-
cations. Lastly, the data used in this study is based on observa-
tions from distributed weather stations for the hours of 6:00 
AM to 8:00 PM during the summer months of 2023 in the US, 
resulting in small samples in certain climate types (e.g. BSh, 
Dsa). Additional data would help address this limitation, 
allowing for a more comprehensive analysis that incorporates 
other yearly trends and extends the observation period beyond 
the current timeframe. Furthermore, the effectiveness of heat 
risk forecasts is primarily focused on outdoor work environ-
ments. Different work environments (e.g. indoors) may need to 
consider other environment-related conditions (e.g. indoor air 

temperature), requiring additional types of data for their appli-
cations in safety management.

Conclusion
To properly mitigate the forthcoming heat risks in occupa-
tional settings, predictive information on environmental heat is 
fundamental for developing effective measures to protect the 
health and safety of workers. Leveraging the benefits of public 
weather forecasting has the potential to address this need. In 
this context, this study evaluates the performance of NWS 
WBGT forecasts. The findings identify areas where height-
ened caution and improvements could enhance this under-
standing for proactive occupational safety management. 
Furthermore, this study discusses its practical implications and 
extensive research benefits. Overall, this research contributes to 
enhancing the role of operational heat risk forecasting services, 
ensuring better management of heat exposures for occupa-
tional workers.
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