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Abstract  
Despite the importance of sharks in structuring the marine food web, their biomass is declining dramatically 
throughout the world´s oceans due to fishing pressures. Sharks caught as by-catch in long-line fisheries are 
sold for shark fins in the Asian fish market and secondarily as trunk sales for local consumption and fish 
meal. In order to determine the levels of heavy metals (mercury and lead) in oceanic shark populations in 
South Pacific waters, analyses of 39 Prionace glauca and 69 Isurus oxyrinchus were conducted. Mercury (Hg) 
and lead (Pb) were measured by cold vapor and via acetylene flame techniques, respectively. Mercury 
concentrations were similar in the studied sharks (p=0.1516), with 0.048 ± 0.03 μg·g-1 w/w for P. glauca and 
0.034 ± 0.023 μg·g-1 w/w for I. oxyrinchus. P. glauca showed greater values of lead than I. oxyrinchus 
(p<0.001). Large specimens of both species showed high heavy metal concentration, while sexes showed no 
statistical differences (p>0.05). The metal concentrations reported in this work constitute a risk for human 
health, mainly from the high contributions of lead in tissues of P. glauca and I. oxyrinchus.  
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Introduction 
Blue shark (Prionace glauca) and mako short fin shark (Isurus oxyrinchus) are pelagic, oceanic and highly 
migratory species [1]. These fishes have a wide geographic range and play an important role in marine food 
webs as apex predators, feeding on squid, tuna and other fishes [2–7]. The importance of these sharks in 
structuring marine food webs has been demonstrated, thus their biomass decrease throughout the world´s 
oceans is a concern [8,9]. Acuña [10] reported that  sharks comprise over 70% of the total catch in the 
swordfish long-line fisheries. Sharks caught as by-catch in long-line fisheries are sold for shark fins in the 
Asian market and as trunk sales for local meat consumption and fish meal [11].  
 
Sharks accumulate trace elements in their tissues such as mercury (Hg), arsenic (As) and lead (Pb)[12,13], 
largely through the diet [12].  Although blue and mako short fin sharks are the most abundant and are 
highly exploited throughout the oceans, knowledge of their heavy metal concentrations is very poor. The 
mercury and lead concentration of P. glauca and I. oxyrinchus tissues since 1974 in different oceans is 
summarized in Appendix 1. Mercury is the most studied element, principally in the Northern Hemisphere; 
in contrast lead is the least studied. Mercury and lead are volatile and highly toxic environmental 
contaminants present in marine ecosystems [13] where sharks are more susceptible to uptake and 
biomagnification of these heavy metals, because they incorporate the metals very efficiently and eliminate 
them slowly.  
 
In the southeastern Pacific Ocean concentrations of mercury and Lead in fresh fish tissues for human 
consumption are not regulated, but international agencies (European Union and Food and Agriculture 
Organization/World Health Organization) have established limits for these heavy metals, which are 1.0 
μg·g-1 and 0.3 μg·g-1 wet weight for mercury and lead, respectively [15–18]. In addition, since well-
documented incidents of heavy metal exposure of human communities in Japan and Iraq have resulted in 
severe toxic effects [19], there has been widespread public concern over the bioaccumulation of heavy 
metals through consumption of shark meat by humans as well as by animals. The main goal of this study 
was to determine the mercury and lead concentrations in different tissues of two highly migratory sharks 
that are consumed by humans. 
 

Methods  
During March 2011 and December of 2011 one hundred and eight sharks (n=69 I. oxyrinchus and n=39 P. 
glauca) were collected as by-catch from industrial long-line swordfish (Xiphias gladius) fisheries off Chile, in 
a geographic range between 21°- 35°S and 78°- 118°W. The total length (TL) was measured and sex 
determined on board. Muscles from the dorsal part and liver samples (1.0 g) were taken from both species 
of sharks; however, stomach tissue was obtained only from mako shark specimens. All tissue samples were 
stored at -80 °C until processing in the laboratory. 
 

Laboratory analysis 
All laboratory material was previously decontaminated for two days with HNO3 (20%) [20] and washed with 
mili-Q water. Tissue samples were digested with 65% HNO3 using a microwave system [21,22] and analyzed 
with a Shimadzu AA-6200 atomic absorption spectrophotometer (AAS). Mercury was analyzed by a hydride 
vapor system HV-1 (cold vapor technique), and lead was measured by acetylene flame [21,22]. The AAS 
was calibrated using Custom Grade standards, with detection limits of 0.007 μg·g-1 for mercury (Certipur 
Merck 1000 mg/L) and 0.0088 μg·g-1 for lead (PbCl2). Further quality control included periodic blind analysis 
of an aliquot from a large sample of known concentration, and blind runs of duplicate samples (± 15%) 
during the analysis for each metal.  
 

Data analyses  
Based on size, studied specimens of blue shark were assigned into groups according to Lopez [2] as small 
(Ss): TL ≤ 195 cm, and large (Ls): TL > 195 cm. Similarly, individuals of Mako short fin sharks with TL ≤ 285 
cm were considered small, and specimens above 285 cm of TL were large. The Shapiro-Wilks test was used 
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to test the normality of data of concentrations of mercury and lead in blue and mako shark tissues, and a 
one-way ANOVA followed by a Tukey`s post hoc test was used to compare heavy metal concentrations in 
different species, groups, sexes and type of tissues. All statistical analyses were performed using R software 
[23]. 
 

Results 
Tissue/organ concentrations 
Considering all tissues analyzed (muscle, liver and stomach), P. glauca showed 0.048 ± 0.03 (mean ± 
standard deviation) μg·g-1 of Hg and 1.996 ± 0.67 μg·g-1 of lead, while I. oxyrinchus presented 0.034 ± 0.023 
and 0.922 ± 0.44 μg·g-1 of mercury and lead, respectively. The statistical test did not find differences in the 
mercury concentration of specimens of blue and mako sharks (F=2.08; p=0.1516) (Fig 1a). However, blue 
sharks exhibited a significantly higher accumulation of lead than mako sharks (F=24.7; p<0.001) (Fig. 1b).  
 

 

 
 
 
 
 
 
 
Fig. 1. Mercury and lead 
concentration comparison of 
blue sharks and mako 
shortfin sharks off Chile in 
2011. a) mercury and b) lead 
concentration. p-value 
corresponding to one way 
ANOVA.  

 

 
Analyzing metal concentrations separately, blue shark mercury concentrations in the liver (0.104 ± 0.03 
μg·g-1) were greater than in muscle tissues (0.014± 0.09 μg·g-1), and significantly different (F=40.6; p < 
0.001). In contrast, lead concentration was greater in muscle tissue (2.244 ± 0.81 μg·g-1) than in liver (1.602 
± 0.298 μg·g-1) but statistically similar (F=2.17; p = 0.1491). 
 
In mako shark individuals, mercury concentrations were highest in the liver, followed by stomach tissue and 
muscle tissue with 0.108 ± 0.02, 0.06 ± 0.01 and 0.006 ± 0.001 μg·g-1, respectively.  Lead concentration was 
greater in liver (1.67 ± 0.28 μg·g-1) than in muscle (0.848 ± 0.47 μg·g-1) and stomach tissues (0.448 ± 0.16 
μg·g-1); the statistical analysis also revealed that differences in levels of mercury and lead were highly 
significant (p <0.001).  
 

Concentration by sexes and size 
Male blue sharks had the highest concentration of mercury with 0.07 ± 0.03 μg·g-1, followed by female 
mako sharks with 0.04 ± 0.02 μg·g-1 (Appendix 2). Male blue sharks had statistically significant (p=0.012) 
greater mercury values than females. No differences were found in mercury concentration in males and 
females of mako shark (p=0.2969) (Appendix 3).  In contrast to blue sharks, female mako sharks had higher 
mercury concentrations than males (Appendix 2). In comparison with individuals of mako shark, females 
and males of blue sharks had higher concentrations of lead with 2.07 ± 0.84 and 1.9 ± 0.4 μg·g-1, 
respectively (Appendix 3). Nevertheless, it should be noted that female blue and mako sharks had higher 
concentrations of lead than males.  
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In large-sized sharks (Fig. 2 and 3), the highest concentrations of mercury were found in blue sharks with 
0.05 ± 0.03 μg·g-1, and 0.04 ± 0.02 μg·g-1 for mako sharks. In contrast, the highest lead concentrations were 
encountered in small sized blue sharks and mako sharks (Appendix 2). Statistical differences were not 
found for mercury (p=0.986) or lead concentrations (p=0.835) between small and large blue shark 
specimens. A similar situation was found in mako sharks (Appendix  4).  
 
 
 

 

 
 
 
 
 
 
Fig. 2. Mercury and lead 
concentration found in 
different length 
individuals of blue shark 
off Chile, in 2011. 

 

 

 

 
 
 
 
 
 
 
Fig. 3. Mercury and lead 
concentration found in 
different length 
individuals of Mako 
shortfin shark off Chile 
in 2011.  
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Discussion 
The significant differences of mercury and lead found in tissues/organs between blue and mako sharks are 
due to an organotropism phenomenon in which mercury or lead are distributed differentially in shark 
organs[13]. In fact, organotropism in some marine species is related to the uptake (gill, stomach, intestine) 
or excretion rate (liver, kidney)[24], but in sharks it is well known that heavy metals are incorporated by 
dietary habits in a dose-dependent manner and consequently they accumulate in the internal organs 
(through the blood)[13], producing the organotropism phenomenon in these predators.  
 
All tissues of blue and mako sharks showed lower concentration of mercury and were below the limit value 
proposed by international organizations (1 μg·g-1) and also with other reports [15-17]. In contrast, the mean 
lead concentration in both sharks was greater than the limit proposed by WHO/FAO and European 
commission (0.3 μg·g-1). A similar situation occurred in females and males of the studied sharks, with a 
lower mercury concentration than lead. The differences in mercury concentration found between female 
and male blue shark may be due to the type of food they consume, as suggested by Barrera-Garcia[12], 
who attributed these parameters to the differences between sexes and maturity stages, where females 
consume more invertebrates  and males feed on fish such as mackerel.  
 
Large size individuals of P. glauca had greater mercury and lead concentrations than small individuals. This 
is a well-documented process [12,13,20,25–34] known as bioaccumulation [25,28,35]. The bioaccumulation 
process can take different pathways, one of which is through the diet (biomagnification). Thus, the prey of 
small or large P. glauca and I. oxyrinchus individuals play an important role in size concentrations. In fact, 
the diet of these predators consists mainly of bony fishes in small individuals and squid in large specimens 
[3,4]; moreover, Maz-Courrau [28] found that different prey produced variable concentrations of heavy 
metals in blue sharks.    
 

Risk for human consumption 
Recently, the concentration of heavy metals in marine predators has been investigated because they form 
part of the diet of humans. In the last ten years sharks have been exploited in this region of the Pacific as 
target-species or by-catch [11]. Lamilla [11] identified the final destination of sharks caught in the fisheries 
as: sale of fins, local consumption and fishmeal. Thus the concentration of heavy metals reported in this 
study will constitute a risk for human health. Apparently, following the proposal by WHO/FAO, the mercury 
concentration will be not a problem for human consumption because it does not exceed the limit level, 
while lead concentration exceeded the limit value proposed by international organisms, which is 0.3 μg·g-1 
wet weight, thus indicating a risk for human health. However, recent studies [44-47] showed that even 
though the mercury concentration is low and in an acceptable range, there are synergistic effects of 
mercury and lead combined in tissues. Thus the mercury may be masked by another metal, which is 
probably cadmium because it presents a simultaneous synergism in tissues [44,45].   
 
Another problem detected is the indirect consumption of sharks as fish meal [11]; its principal component 
is the internal organs such liver or stomach. This fish meal is used to make pellet food for farm fish, which 
are an important item in human diet. For example, Vizzini [48] compared the levels of heavy metals 
between wild and farmed tuna, finding no differences in both mercury and lead concentrations. It is well 
known that wild tuna accumulate high concentrations of these trace metals, thus for tuna from farms we 
would have expected lower concentrations. The unexpectedly high metal concentrations of farm fish may 
be due to pellet food, which is probably made with shark internal organs. Finally, possible risks to humans 
from lead and its synergistic effects with mercury due to fish consumption are poorly known; they probably 
involve cancer (mainly gastrointestinal), neurotoxicity, immunotoxicity, cardiotoxicity, reproductive toxicity, 
teratogenesis and genotoxicity [36].  
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Implications for conservation 
Sharks are apex predators in all oceans; they play an important role structuring the ecosystems which they 
inhabit [2-4]. The ecological impacts of eliminating these top predators are already indicated in the 
literature [49], such as predator control and induction of subsequent cascades of indirect trophic 
interactions [50]. Fishing pressure has disproportionately reduced abundances of these predators mainly 
near the coast [51], which in turn could produce the above-mentioned effects. Despite a rich ecological and 
fishery literature on trophic cascades, consequences of removing oceanic apex predators remain uncertain. 
Moreover, exploitation of large sharks (principally P. glauca and I. oxyrinchus) has been intensified 
worldwide in recent decades, driven by an upsurge in demand for shark fins and meat [11] and in by-catch 
in many fisheries.  Also, data to assess direct impacts of exploitation on these large sharks are limited, but 
consistently indicate that they have been driven to low levels of abundance [49,50]. In fact, when fisheries 
affect indirectly the mean trophic levels of the large sharks, an increase begins because they feed on high 
trophic level prey, which produce a major accumulation of the trace metals in their tissues, which is finally 
consumed by human as meat and fins or indirectly as fish meal.  
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Appendix 1. Summary data of heavy metal concentrations (μg·g-1 w.w.) in different tissues of 
blue and mako shortfin shark in different oceans. Mean ± standard deviation.  
 

Specie Hg Pb Region References* 

Prionace glauca 1.03 ± 0.08 < 0.07 ± 0.01 North East Pacific Barrera-García et al. 2012 

Prionace glauca 1.39 ± 1.58  -  North East Pacific Escobar-Sanchez et al. 2011 

Prionace glauca 0.82 ± 0.34  -  North Pacific Maz-Courrau and López-Vera 2006 

Prionace glauca  -  < 0.02 North Atlantic Vas 1991 

Prionace glauca 0.38  -  South Adriatic Sea Storelli et al. 2001 

Prionace glauca 0.22-2.5  -  Central Atlantic Branco et al. 2007 

Prionace glauca 0.27-1.2  -  South West Pacific Davenport 1995 

Prionace glauca 0.16-1.84  -  North East Atlantic Branco et al. 2004 

Prionace glauca 0.76  -  South East Atlantic Dias et al. 2008 

Prionace glauca 1.96 ± 1.48  -  North Pacific Maz-Courrau et al. 2012 

Prionace glauca  -  < 0.02 North East Atlantic Stevens and Brown 1974 

Isurus oxyrinchus 0.4 0.29 North Pacific Velez 2009 

Isurus oxyrinchus 1.58  -  South West Pacific Vlieg et al. 1993 

Isurus oxyrinchus > 0.45  -  South West Pacific Menasveta and Siriyong 1977 

Isurus oxyrinchus 1.05 ± 0.82  -  North Pacific Maz-Courrau et al. 2012 

*Barrera-García[12], Escobar-Sanchez[25], Maz-Courrau and López-Vera[35], Vas[37], Storelli[38], 
Branco[20], Davenport[39], Branco[31], Dias[40], Maz-Courrau[28], Stevens and Brown[30], Velez[41], 
Vielg[42], Manasyeta and Siriyong[43]. 
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Appendix 2. Mean concentration of Hg and Pb by sexes and size of Prionace glauca and 
Isurus oxyrinchus off Chile during 2011. BS: Blue shark (Prionace glauca) and MSf: Mako 
shortfin shark (Isurus oxyrinchus). Ss: Small size and Ls: Large size. 
 

   Hg Pb 

   μg·g-1 w.w. 

 BS female 0.03 ± 0.01 2.08 ± 0.85 

Sexes BS male 0.08 ± 0.04 1.90 ± 0.40 

 MSf female 0.04 ± 0.03 0.94 ± 0.41 

 MSf male 0.02 ± 0.02 0.89 ± 0.53 

 BS Ss 0.05 ± 0.02 2.81 ± 0.51 

 BS Ls 0.05 ± 0.04 1.88 ± 0.80 

Size MSf Ss 0.02 ± 0.01 1.03 ± 0.42 

 MSf Ls 0.04 ± 0.03 0.87 ± 0.45 
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Appendix 3. Differences in mercury and lead between males-females of P. glauca and I. 
oxyrinchus off Chile in 2011. Above the diagonal are p-values for Hg and below the diagonal 
is Pb from  one-way ANOVA analysis.   

 

 BS female BS male MSf female MSf male 

BS female  - 0.012 0.635 0.970 

BS male 0.959  - 0.070 0.002 

MSf female < 0.001 0.013  - 0.296 

MSf male 0.002 0.017 0.996  - 
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Appendix 4. Differences between small and large size of P. glauca and I. oxyrinchus 
individuals off Chile in 2011. Above the diagonal are p-values for Hg and below the diagonal 
is Pb from one-way ANOVA analysis.   

 

 BS Ss BS Ls MSf Ss MSf Ls 

BS Ss  - 0.986 0.473 0.991 

BS Ls 0.835  - 0.181 0.860 

MSf Ss 0.008 0.035  - 0.416 

MSf Ls < 0.001 0.001 0.934  - 
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