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Research Article

Assessment of Habitat Quality
and Landscape Connectivity for
Forest-Dependent Cracids in the
Sierra Madre del Sur Mesoamerican
Biological Corridor, México

Mar�ıa C. Escobar Ocampo1 , Miguel �Angel Castillo Santiago2 ,
Susana Ochoa-Gaona3, Paula L. Enr�ıquez4, and Nicole Sibelet5,6

Abstract

Assessing landscape connectivity allows us to identify critical areas that impede or facilitate the movement of organisms and

their genes and to plan their conservation and management. In this article, we assessed landscape connectivity and ecological

condition of the habitat patches of a highly biodiverse region in Chiapas, Mexico. We employed data of three cracid species

with different characteristics in habitat use and mobility. The habitat map of each species was derived from a spatial

intersection of the models of potential distribution and a high-resolution map of current land cover and land use.

The ecological condition of vegetation types was evaluated using 75 field plots. Structure of landscape was estimated by

fragmentation metrics, while functional connectivity was assessed using spatially explicit graph analysis. The extent of suitable

habitat for Oreophasis derbianus, Penelopina nigra, and Penelope purpurascens correspond to 25%, 46%, and 55% of the study

area (5,185.6 km2), respectively. Although the pine-oak forests were the most fragmented vegetation type, habitats of the

three species were well connected, and only 4% to 9% of the fragments located on the periphery of the corridor had low

connectivity. Landscape connectivity depends mainly on land uses with an intermediate and lower ecological condition

(secondary forests and coffee agroforestry systems). Therefore, we suggest that in addition to promoting the improvement

in connectivity in fragmented forests, conservation efforts should be aimed at preventing the conversion of mature forests

into agricultural uses and maintaining agroforestry systems.
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Introduction

The persistence of species in a fragmented landscape has

been the subject of study of island biogeography and

metapopulation dynamics and can be interpreted as

the result of the equilibrium of extinction and coloniza-

tion processes (McArthur & Wilson, 1967). On this

basis, species populations are more likely to occur in

larger and well-connected habitat fragments than in

small and isolated fragments (Dupré & Ehrlén, 2002;

Hanski, 1998). However, recent research have shown

evidence that this also depends on the patch context:

the spatial heterogeneity, on permeability of the matrix

(surface surrounding the habitat), and the behavior of

each species in response to the landscape structure. If the

matrix surrounding habitat fragments is not completely
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hostile, if it has usable resources for the species, island
biogeography has limited application (Sekercioglu,
Loarie, Oviedo Brenes, Ehrlich, & Daily, 2007;
Tscharntke et al., 2012). The matrix can have variable
levels of quality for species due to their structural and
composition, resulting in different levels of permeability
that provide wide-ranging risks and survival benefits for
the animals that cross it. In this way, the matrix func-
tions as a complete or a semipermeable barrier that can
contribute to animal movement or as a habitat comple-
ment (Biz, Cornelius, & Metzger, 2017; Driscoll, Banks,
Barton, Lindenmayer, & Smith, 2013).

Besides, species with different ecological needs and
dispersal capacities may respond differently to habitat
fragmentation, which may be determinant in ensuring
the survival of the population (Liao, Bearup, &
Blasius, 2017). Landscape connectivity can be explained
as the physical arrangement of the vegetation structure
in the landscape or by an organism’s response to that
structure (functional connectivity; Tischendorf &
Fahrig, 2000; Xun, Yu, & Wang, 2017). Different
approaches have been applied to assess connectivity,
including structural metrics and the network approach
or graph theory. Structural metrics quantify heterogene-
ity, levels of fragmentation, and habitat isolation at dif-
ferent scales (Botequilha Leit~ao & Ahern, 2002). In
addition, by using spatially explicit graph analysis, it is
possible to estimate functional connectivity and model
the possibilities of species movement in a network of
habitat fragments spatially isolated in heterogeneous
landscapes (Saura & Rubio, 2010; Urban & Keitt,
2001). According to this approach, habitat fragments
are represented by nodes in a graph and the distance
between them is represented by links, which in turn rep-
resent the dispersal possibilities of a species between two
patches (Bodin & Saura, 2010; Saura & Rubio, 2010).
Consequently, the results of the functional connectivity
analysis will depend on the ecological requirements and
the mobility capacity of the species studied.

Members of the Cracidae bird family are useful as an
indicator species for forest connectivity since they inhabit
tropical forests, their movement habits are predominantly
arboreal, and they respond negatively to habitat fragmen-
tation. They also play a vital role in the regeneration of
tropical forests because they are seed dispersers (Thornton,
Branch, & Sunquist, 2012). In this bird family, guans
(genera Penelopina, Penelope, and Oreophasis) are the spe-
cies with arboreal habits that are most sensitive to the
conversion of forested landscapes to agriculture and to
continuous hunting pressure, due to their low reproductive
capacity (L�opez et al., 2014).

Landscape connectivity analysis represents a valuable
tool for planning landscape conservation and management
actions and allows the identification and prioritization of
critical areas for conservation; the identification of these

areas is particularly necessary for biodiverse landscapes

affected by high anthropic pressure, such as biological

corridors that connect net of natural protected areas.

Even though the goal of biological corridors is to facilitate

the animal movement between fragments, thereby increas-

ing gene flow, and eventually ensure the viability of pop-

ulations (Evans, Levey, & Tewksbury, 2013; Simberloff,

Farr, Cox, & Mehlman, 1992), few works have analyzed

their degree of functional connectivity and ecological qual-

ity of their forest fragments.
In this article, we applied a landscape connectivity

analysis to identify the critical areas for maintaining

forest connectivity in a biological corridor of southeast

Mexico. Species-distribution models, high-resolution

land-cover maps, and the ecological requirements of

the three cracids species (Penelope purpurascens,

Penelopina nigra, and Oreophasis derbianus) were

employed to elaborate habitat maps. Spatially graph

analysis was carried out to calculate their functional con-

nectivity; moreover, an ecological condition index of the

habitats fragments was calculated using field data.

Methods

Study Area

The study area corresponds to the Sierra Madre del Sur

Mesoamerican Biological Corridor (SMSMBC), a sub-

system of the Mesoamerican Biological Corridor, which

is an international initiative to coordinate and imple-

ment conservation and sustainable human development

actions (Miller, Chang, & Johnson, 2001). SMSMBC is

recognized as one of the world’s most important biodi-

versity hotspots due to host high richness and endemism

of the species (Brooks et al., 2002; Myers, Mittermeier,

Mittermeier, da Fonseca, & Kent, 2000). It covers an

area of 5,185.6 km2 and it is located in southern

Mexico, in the physiographic region of Sierra Madre

de Chiapas (Müllerried, 1982); the relief of this area

forms a mountainous landscape with hillside exposures

facing the Pacific Ocean and the Central Chiapas

Depression, with an altitudinal gradient ranging from

sea level to 3,000m asl (Instituto Nacional de

Estad�ıstica y Geograf�ıa, 2017; Müllerried, 1982). Ten

vegetation types were recorded, including one of the

largest areas of cloud forest in Mexico (Challenger,

1998). Within the corridor, there are three Protected

Natural Areas—El Triunfo (biosphere reserve), La

Frailescana (natural resource protection area), and

Cord�on Pico El Loro Paxtal (state reserve)—and the

remaining area is without specific protection.

Productive human activities are not allowed in the El

Triunfo core zones so the best conserved forests are

found there. The buffer zone also includes areas with
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good conservation status but low-impact productive

activities are practiced in this area (Figure 1).

Habitat Maps

Three sources of information were employed to elabo-

rate the current habitat maps of the species: (a) potential

species-distribution models derived from presence-only

records, (b) a high-resolution map of the vegetation

types and current land use (scale 1:40,000) elaborated

for this study, and (c) reviews of the literature and

field data to identify the ecological requirements of the

three species. Once all the maps were ready, a spatial

intersection operation was applied to obtain the current

distribution areas. After that, a filter was applied to

select only the vegetation types, and land uses reported

in the ecological requirements review.

Potential species-distribution model. The maximum entropy

method was used to model species distributions with

presence-only data and environmental layers. In this

study, we obtained 137 visual and vocal records or

other evidence such as feathers, nests, or eggs.
Complementary records (4,145) of the three species in
Chiapas were obtained from the following:

1. Biological information platforms (scientific collections)
such as The Global Biodiversity Information Facility
(GBIF.org, 2016) and CONABIO’s National
Biodiversity Information System (Enr�ıquez, Rangel-
Salazar, Vázquez Pérez, & Partida Lara, 2014);

2. Species monitoring records (visual, auditory and
camera traps): from the Secretariat of Environment
and Natural History (Secretar�ıa de Medio Ambiente
e Historia Natural, 2017), the community monitoring
coordination of La Frailescana (Bioconciencia, 2015,
2016), the Network of Community Monitors of the
Sierra Madre and Coast of Chiapas (Pronatura Sur,
2017), the Campesinos Ecol�ogicos de la Sierra Madre
de Chiapas organization (Campesinos Ecol�ogicos de la
Sierra Madre de Chiapas, 2017), and PRONATURA
Sur A.C. (Pronatura Sur, 2014).

To minimize doubtful georeferencing data in the poten-
tial distribution map, we eliminated duplicate records
(records within the same grid cell, res of 100m2) and
only employed records from the period 2010 to 2017.
The performance of the model was evaluated using the
ROC statistic (Phillips, Anderson, & Schapire, 2006), a
data set of 203 records of P. purpurascens, 740 of
P. nigra, and 32 records of O. derbianus were used, of
which 75% was used to calibrate the model of each species
and 25% for validation. The variables used in the models
were as follows: minimum and maximum temperature,
precipitation (Fick & Hijmans, 2017), elevation
(Instituto Nacional de Estad�ıstica y Geograf�ıa, 2017),
and potential vegetation (Rzedowski, 1990). Potential veg-
etation has been described as “the natural vegetation that
would exist in a given place if land use had never existed”
(Levavasseur, Vrac, Roche, Paillard, & Guiot, 2013). The
potential vegetation map was used to define the potential
distribution area based on existing environmental condi-
tions, regardless of changes in land cover and land use.
The correlation between the predictor variables was calcu-
lated using Pearson’s correlation coefficient, using R’s
packages (R Core Team, 2018). Data modeling was
done on Maxent version 3.3.3k (Phillips, 2016).

High-resolution land-cover/land-use maps. Using high-
resolution satellite images SPOTs 6 and 7 (El Colegio
de la Frontera Sur, 2015; Secretar�ıa de Marina, 2008),
a map of vegetation types and land use in the study area
was drawn up. All scenes included panchromatic (spatial
resolution of 1.5m) and multispectral (four bands with
spatial resolution of 6m) bands dated January 25, 2015,
February 8, 2015, and February 14, 2014 (SPOT 6) and
January 31, 2015, February 21, 2015, and February 26,

Figure 1. Protected natural areas and management zones of the
El Triunfo Biosphere Reserve located in the Sierra Madre del Sur
Mesoamerican Biological Corridor in the state of Chiapas, Mexico.
El Triunfo core zone is subdivided into five polygons: I (El Triunfo),
II (Ovando), III (Custepec), IV (El Venado), and V (La Angostura).
The black triangles represent the location of the 75 sampling sites
in this study.
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2015 (SPOT 7). The images were classified with an

object-oriented approach, using the random forest algo-

rithm (Breiman, 2001). Training samples were derived

from information obtained in the field and from other

sources such as the National Forest Inventory (Ricker,

Villela, & Espinosa, 2019), coffee plantation census

(COMCAFE, 2008), and the georeferenced records of

woody species from the ECOSUR herbarium (ECO-

CH-H). In addition to the spectral data of the satellite

images, environmental data available in the following

layers were used: digital elevation model, with spatial

resolution of 30m; exposure, slope, and solar radiation

(derived from the digital elevation model); and precipi-

tation and annual mean temperature generated from

bioclimatic data from the State of Chiapas (Fick &

Hijmans, 2017). At a later stage, errors in the automated

classification were detected and corrected by visual

inspection of the map. All satellite image processing

was performed using the open software Python and

QGIS (Clewley et al., 2014; QGIS Development

Team, 2017).

Ecological requirements. The cracid species have different

ecological niche widths but very similar requirements in

their arboreal habits, the types of fruit in their diet, and

the need to migrate altitudinally, following the fructifi-

cation of the arboreal species, so they partially share

habitat in some altitudinal ranges and types of vegeta-

tion (Table 1).
Of the three species, O. derbianus is heavily dependent

on the evergreen cloud forest and has a restricted

geographic distribution and is endemic to

Mesoamerica. Based on the International Union for

Conservation of Nature categories, O. derbianus is clas-

sified as “Endangered” (EN), criterion C2a(i), while

P. nigra is Vulnerable (VU), and P. purpurascens is clas-

sified as Least Concern (LC) (Birdlife International,

2016a, 2016b, 2016c).

Ecological Condition Index

From April to August 2017, 14 field trips were con-

ducted to measure 75 sampling sites in nine municipali-

ties (Figure 1). At each site, a circular plot of 1,000m2

was established, and a set of indicator variables were

recorded including vegetation type, canopy height,

basal area of dominant tree species, and tree species rich-

ness. Forest disturbance factors were also recorded such

as grazing and trampling, firewood and wood extraction,

damages for fire, trails, and logging evidence.

Disturbance qualitative data were classified into three

classes depending on their intensity or frequency:

absent or low, medium, and high. Finally, the qualitative

and quantitative values assigned to the variables were

processed to construct a multicriteria ecological condi-

tion index (Ochoa-Gaona et al., 2010), which range from

0 (worst condition) to 1 (best condition).

Landscape Fragmentation

Metrics of landscape fragmentation were calculated

using raster format of habitat maps and the software

Fragstats v. 4.3 (McGarigal & Marks, 1995). The met-

rics used to measure composition and structure at class

and landscape level were as follows: percentage of land-

scape or percentage of habitat (PLAND), patch density

(PD), largest patch index (LPI), mean patch size

(Area_MN), interspersion and juxtaposition index

(IJI), and contagion (CONTAG) (McGarigal &

Marks, 1995; Vila, Vargas, Llausàs, & Ribas, 2006).

Only the four-cell neighborhood criterion was used to

calculate the above metrics.

Functional Connectivity

Statistics derived from spatial graph analysis. The functional

connectivity of habitat fragments was evaluated using

statistics derived from the analysis of spatial graphs.

Two derived indices were used in the Conefor 2.6

Table 1. Ecological Requirements of the Three Studied Cracids Species.

Ecological requirements Penelope purpurascens Penelopina nigra Oreophasis derbianus

Vegetation types

Evergreen cloud forest X X Preferably

Evergreen tropical forest X X X

Pine-oak forest X X X

Tropical deciduous forest X

Riparian vegetation X X

Secondary arboreal successions of marked mature forests X X X

Coffee agroforestry systems under the shade of native trees X X X

Cocoa agroforestry systems under the shade of native trees X

Elevation range (m asl) 0 to 2,500 300 to 2,500 1,600 to 3,350

Source: Del Hoyo and Kirwan (2019); Eisermann (2012); Gaudrain and Harvey (2003); González-Garc�ıa (2009); Howell and Webb (1995); Kattan, Mu~noz,
and Kikuchi (2016); L�opez et al. (2014); Strewe and Navarro (2003); Walter et al. (2017).
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program (Saura & Torné, 2009): the integral connectiv-
ity index (IIC) and the probability of connectivity (PC).
The first is based on a binary connection model and is
recommended for analyzing the structure and general
pattern of long-term functional connectivity, while the
second uses a probabilistic connection model and is
useful for studying the flow of organisms regardless of
their origin (Qi, Fan, Nam, Wang, & Xie, 2017).
To calculate both indices, Conefor requires information
on the node attribute, distances between them, and dis-
persion distances. As an indicator of node attribute,
the size of the fragment was used, as well as the
Euclidean distance between the edges of each fragment
and the dispersal distances defined for each species (see
next subsection).

Once the indices were calculated, their values were
grouped into two categories according to their contribu-
tion to landscape connectivity, using the natural break
method, which better groups similar values between clas-
ses that have considerable differences in data values
(Smith, Goodchild, & Longley, 2018). The dIIC index
corresponds to the ranking of each patch according to
the proportion by which the value of the IIC decreases
when this patch is removed (Decout, Manel, Miaud, &
Luque, 2012). In the same way, dPC represents percent-
age of the variation in PC caused by the removal of each
individual element from the landscape (Saura & Rubio,
2010). dIIC is divided into three fractions that indicate
different aspects of connectivity (Crouzeilles, Lorini,
Grelle, Lucia, & Eduardo, 2013):

1. dIICintra estimates available habitat based on the
area provided by the patch;

2. dIICconnect values critical patches that facilitate the
flow of species between two other patches within the
shortest path, and this fraction is used as a criterion
for selecting priority stepping stones or corridors; and

3. dIICflux evaluates fragments based on area-weighted
dispersal flow and is used as a substitute for how well
one fragment connects to another when it is the final
or starting point of flow.

Dispersal distance. Based on the literature reviewed, no
data were found on the specific range of action of the
three species, so dispersal distances data from species of
the same family or taxonomic genus with similar habits
were used as a reference and experts were also consulted.
For P. purpurascens, a range of 10 to 15 km for maxi-
mum dispersion distance was estimated; this range was
based on the reported dispersion distances of another
species of the same genus, the white-winged guan
(Penelope albipennis), with similar body structure and
habits, which moves a maximum of 13 km during an
annual period to where food is more readily available
(Pratolongo, 2004). For P. nigra, a range of 3 to 8 km

was defined because it moves at a slower speed than P.
purpurascens (Eisermann, 2012). For O. derbianus, a
range of 0.5 to 1.5 km was estimated because it is a sed-
entary species and is no ability to fly, as it is a glider
(González-Garc�ıa, 2011, 2012).

Results

Habitat Map

Potential distribution models. Potential distribution values
were high for the three species, for O. derbianus was
90.6%, for P. nigra 90%, and for P. purpurascens was
83.4%. These values were acceptable because they were
higher than .5 of a random model (Figure 2). Different
environmental variables were related to the distribution
of the three species. Precipitation was negatively related
to the occurrence of P. purpurascens and P. nigra, eleva-
tion was also a positively related to P. nigra and
O. derbianus, and minimum temperature was positively
associated with O. derbianus.

We found a high correlation (r �|.5|) between eleva-
tion and maximum and minimum temperatures, also
between maximum and minimum temperatures.
The other variables have a low correlation with each
other (|0.1|< r � |.3|). Despite of this correlation, these
variables were used as predictors of the model, based on
Braunisch et al. (2013) that it is preferable to include
correlated variables, but potentially relevant to the cur-
rent distribution model, when the “true” predictor of a
set of correlated variables cannot be identified.

High-resolution land-cover/land-use maps. We identified
11 forest land-cover types that account for 66.5% of
the study area, of which 3 correspond to mature
forests (89,150 ha), 6 secondary or disturbed forests
(178,641 ha), and 2 agroforestry systems of coffee and
cocoa (77,584 ha) (Figure 3). Six land uses were also
identified, including different types of agriculture,
human settlements, areas without vegetation, and
bodies of water, which account for 174,094 ha (33.5%
of the study area).

Habitat map. The current habitat for the indicator species
was a mixture of mature and disturbed forests and agro-
forestry systems (Figure 4). The habitat of P. purpuras-
cens occupied 282,893 ha (55% of the study area),
P. nigra occupied 238,435 ha (46%), and O. derbianus
only 127,233 ha (25%). The coffee agroforestry system,
mature pine-oak forest, and secondary evergreen cloud
forest conformed the habitat of the three species mainly.
In the habitat of O. derbianus, the mature evergreen
cloud forest was also one of the largest (Figure 5).
In terms of protection levels, a high proportion of the
habitats of P. nigra and P. purpurascens were out of

Ocampo et al. 5
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the protected natural areas, with a low level of legal

protection (Figure 6).

Ecological Condition Index

The ecological condition index showed that mature for-

ests provided the highest richness of tree species, the

most significant vertical and horizontal structure,

lowest levels of disturbance, and, in general, best habitat

quality, while agroforestry systems presented the most

considerable disturbance and lowest quality of habitat

(Figure 7).

Landscape Fragmentation

According to the fragmentation indexes, the structural

connectivity of the habitat of the three species is still at

an intermediate level; for example, in all cases, the

Figure 2. �Area under the receiver operating characteristic curve (AUC) to evaluate model performance for (a) P. purpurascens,
(b) P. nigra, and (c) O. derbianus). The value of AUC ranges from 0 to 1. An AUC value of 0.50 indicates that model did not perform
better than random, whereas a value of 1.0 indicates perfect discrimination.
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Figure 4. Distribution of forests and agroforestry systems in the current habitat of the three cracid species in the study area.

Figure 3. High-resolution map showing the most important vegetation types and land uses in the study area. Vegetation types covering
less than 1% of the study area are not included. EverClou_M¼mature evergreen cloud forest; EverClou_S¼ secondary evergreen cloud
forest; EverTrop_M¼mature evergreen tropical forest; EverTrop_S¼ secondary evergreen tropical forest; PineOakF_M¼mature pine-
oak forest; PineOakF_S¼ secondary pine-oak forest; PineOakF_D¼ disturbed pine-oak forest; RiparVeget¼ riparian vegetation;
CoffeAgro¼ coffee agroforestry systems.

Ocampo et al. 7
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contagion index was higher than 50% (Table 2). At the
class level, mature evergreen cloud forest was the least
fragmented, while mature, secondary, and disturbed
pine-oak forests and secondary evergreen cloud forest
were the highest fragmented classes, consistently both
IJI and PD had higher values (Table 3).

Coffee agroforestry systems had the largest fragment
size (LPI) in the habitat of P. purpurascens (6,211 ha)
and P. nigra (4,271 ha). The mature evergreen cloud
forest for O. derbianus had the largest continuous
forest fragment size (LPI¼ 6,072 ha). For the P. purpur-
ascens habitat, the main land cover were coffee

Figure 5. Main vegetation types and land uses in the habitats of the three cracid species. Land cover and land uses of less than 1% of the
study area were not included. EverClou_M¼mature evergreen cloud forest; EverClou_S¼ secondary evergreen cloud forest;
EverTrop_M¼mature evergreen tropical forest; EverTrop_S¼ secondary evergreen tropical forest; PineOakF_M¼mature pine-oak
forest; PineOakF_S¼ secondary pine-oak forest; PineOakF_D¼ disturbed pine-oak forest; CoffeAgrof¼ coffee agroforestry systems.

Figure 6. Surface area occupied by the three cracid species in each protection or management zones in the study area.
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agroforestry system, mature and secondary pine-oak
forest. Mature evergreen cloud forest and coffee agro-
forestry systems had the largest mean patch size
(Area_MN¼ 24 ha and 22 ha, respectively), which repre-
sented habitat availability for this species (Table 3).

In the P. nigra habitat, mature and secondary pine-

oak forests and secondary evergreen cloud forests were

widespread but very fragmented, the coffee agroforestry

systems presented a more compact area and the largest

mean patch size (85 ha). In O. derbianus habitat, mature

evergreen cloud forest, secondary pine-oak forest, and

coffee agroforestry systems were predominant. The

latter presented the largest mean patch size (35.5 ha),

indicating opportunities for movement and resources

but also a lower quality habitat for this species, which

is dependent on specific cloud forest conditions. Mature

evergreen cloud forest had the second largest mean patch

size (24 ha) and the largest continuous forest patch size

(6,072 ha), this implies availability of habitat that is suit-

able for this species (Figure 3).

Functional Connectivity

The habitat of the three species was connected through a

single node or patch that almost occupied the entire

area. In the P. purpurascens habitat, the central node

(243,703 ha) corresponded 50% to 35% of the dIIC

and 95% to 93% of the dPC for dispersal distances of

10 to 15 km. The main contribution of this node was as a

flow facilitator and as a priority corridor (Figure 8). In

addition, three zones with low values of dIIC were iden-

tified (Figure 8, Zones a to c). Zone a in Figure 8 is

composed of 24 patches (ranging from 20 to 1,149 ha)

that function as flow facilitators; the largest node in this

zone also acts as a stepping stones connecting the north

of the study area. Finally, Zones h and i in Figure 8 are

composed of patches ranging from 21 to 171 ha and 20

to 1,059 ha, respectively, function as flow facilitators.

These zones and patches with less connectivity as a

Figure 7. Index of the ecological condition of the sites grouped
by land-cover/land-use type. 733� 388mm (120� 120 DPI).

Table 2. Landscape-level metrics for three cracid species in
the SMSMBC.

Landscape metrics

Penelope

purpurascens

Penelopina

nigra

Oreophasis

derbianus

NP 38,605 23,729 14,489

PD (%) 7.5 5.2 4.5

ED (%) 78.8 54.6 36.3

CONTAG (%) 55.9 61.4 68.6

IJI (%) 72.1 68 57.3

Note. SMSMBC¼ Sierra Madre del Sur Mesoamerican Biological Corridor;

CONTAG¼Contagion; PD¼ patch density; NP¼ patch number;

ED¼ edge density; IJI¼ interspersion and juxtaposition index.

Table 3. Structural Class-Level Metrics for the Habitat of the Three Cracid Species in the Study Area.

Classes
Percentage of landscape (%) Patch density (No/100 ha) Interspersion and juxtaposition index (%)

Penelope

purpurascens

Penelopina

nigra

Oreophasis

derbianus

Penelope

purpurascens

Penelopina

nigra

Oreophasis

derbianus

Penelope

purpurascens

Penelopina

nigra

Oreophasis

derbianus

EverClou_M 5.1 5.0 7.8 0.2 0.2 0.3 34 34.1 38.4

EverClou _S 7.7 8.1 11.7 0.6 0.6 0.8 52.5 49.8 54.2

EverTrop_M 2.9 2.2 0.1 0.6 0.5 0.1 66.7 65.7 70.3

EverTrop_S 7.9 4.0 0.2 0.8 0.5 0.1 67.0 66.1 80.4

PineOakF_M 9.1 9.7 8.9 1.0 0.9 0.6 69.8 70.5 60.6

PineOakF_S 10.0 8.5 1.4 1.1 0.8 0.3 70.5 71.5 75.4

PineOakF_D 6.4 2.3 0.6 0.9 0.1 0.2 62.9 56.7 72.8

TropDeci_S 0.2 0.0 0.0 0.1 0 0 41.6 24.8 0

RiparVeget 0.4 0.0 0.0 0.0 0 0 63.4 48.6 0

CoffeAgrof 14.3 12.4 8.5 0.7 0.1 0.2 74.6 73.5 70.7

CocoaAgrof 0.6 0.0 0.0 0.1 0 0 50.4 0 0

Note. EverClou_M¼ mature evergreen cloud forest; EverClou_S¼ secondary evergreen cloud forest; EverTrop_M¼mature evergreen tropical forest;

EverTrop_S¼ secondary evergreen tropical forest; PineOakF_M¼mature pine-oak forest; PineOakF_S¼ secondary pine-oak forest;

PineOakF_D¼ disturbed pine-oak forest; TropDeci_S¼ secondary tropical deciduos forest; RiparVeget¼ riparian vegetation; CoffeAgro¼ coffee agrofor-

estry systems; CocoaAgrof¼ cocoa agroforestry systems.
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whole comprise an area of 20,557 ha, composed by sec-

ondary tropical forest (37%), secondary pine-oak forest

(16%), disturbed pine-oak forest (13%), coffee agrofor-

estry systems (8%), and other forest types (26%).
In the P. nigra habitat, one single node (229,923ha)

represented 99.9% of the dIIC and dPC in the network.

This node contributes as a habitat provider (dIICintra)

and as a priority corridor for this network (dIICconnect).

Besides, three main zones with low connectivity values

(dIIC) were identified (Figure 8, Zones d to f). Zone d

in Figure 8 is composed of nodes (ranging from 41 to

572ha) that function as flow facilitating elements. Zone

e in Figure 8 functions as flow facilitator and it is made of

four nodes (128 to 517 ha) with abandoned coffee-

growing areas now under regeneration process due to

the inhabitants being relocated to other areas after they

were affected by Hurricane Stan. Zone f in Figure 8 had

nodes (58 to 493ha) that function as connectors to

the south of the Sierra Madre de Chiapas. The nodes of

lowest connectivity values occupy a total area of 8,510ha

and area composed mainly by secondary tropical forest

(23%), coffee agroforestry systems (23%), secondary

pine-oak forest (16%), disturbed pine-oak forests

(10%), and, to a lesser extent, other types of for-

ests (27%).
In the O. derbianus habitat, a single node of 115,702 ha

represented connectivity value higher than 99% for dis-

persion distances of 0.5 to 1.5 km (Figure 8). The main

roles of the nodes were as habitat providers (dIICintra)

and as facilitators of the flow of the species between

fragments (dIICflux). Besides, three zones with less

connectivity were identified (Zones g to i in Figure 8);

Zone g in Figure 8 functions as flow facilitators toward

La Frailescana and the north of the Sierra Madre.

Zone h in Figure 8 functions as a stepping stones

(dIICconnect) to the south of the Sierra Madres; this

zone was made up for one larger node and several

smaller, isolated, and heterogeneous patches. Small

patches without connection compose Zone i in Figure 8.

The nodes with the least connectivity occupy a total of

11,529 ha and are composed mainly of coffee agroforestry

systems (40%), mature pine-oak forest (27%), secondary

evergreen cloud forest (14%), and, to a lesser extent,

other types of forest (19% overall).

Figure 8. Connectivity level (dIIC) of habitat nodes for functional connectivity of P. purpurascens, P. nigra, and O. derbianus, based on three
dispersion distances for each species. The red circle indicates the areas with lower functional connectivity for each species.
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Discussion

Habitat Map and Ecological Condition

Analysis of the ecological condition data showed that
mature forests presented the best habitat quality,
because of their higher structural complexity, higher
tree species richness, and lower levels of disturbance.
Coffee agroforestry systems presented higher levels of
anthropic disturbance. In the study area, although
forest cover occupied between 41% and 86% of the
potential distribution areas of the species studied, only
11% to 15% of this coverage corresponds to mature
forest; disturbed forests, and agroforestry systems
occupy the rest. The ecological condition will have a
differentiated impact on the species studied.

O. derbianus is recognized as being dependent on
evergreen cloud forest and sensitive to disturbance
(González-Garc�ıa, 2012), but most of the information
is restricted to the breeding season (González-Garc�ıa,
2017). Nevertheless, in this study, we include other
types of forests and coffee agroforestry systems in their
habitat due to recent evidence of their presence in these
forests and land use in El Triunfo and La Frailescana
(Ciro Mej�ıa Mart�ınez, personal comm., June 29, 2017;
Francisco Murgu�ıa Community Monitoring Brigade,
June 21, 2018). In La Frailescana, O. derbianus has
been recorded in lower elevations of its altitudinal
range (900m asl), which still requires further investiga-
tion (Bioconciencia, 2016).

Factors causing a decline in O. derbianus populations
in addition to those mentioned earlier include the estab-
lishment of new coffee plantations and the effects of
climate change (González-Garc�ıa, 2017; Peterson et al.,
2001). Our results indicated that only 20% of its habitat
remains as mature evergreen cloud forest, other types of
forests with different degrees of fragmentation and dis-
turbance and coffee agroforestry systems occupy the
rest. However, these alternative forms of land use con-
serve relative permeability of movement between frag-
ments of mature forest, which could be buffering the
habitat as a whole, mitigating disturbance and improv-
ing connectivity (Cayuela, Golicher, & Rey-Benayas,
2006). Nevertheless, more studies are needed to define
the impact that the lower quality of resources provided
by these fragments could have on the health of popula-
tions of this species.

On the other hand, P. nigra can be considered as the
species with the most optimal habitat conditions because
it has the higher tolerance for disturbed forests and
shaded coffee agroforestry systems of native trees,
some of which produce the fruits on which this species
feeds. In El Triunfo, it has been reported as common in
moderate-sized populations, but it is recognized that in
some sites these birds require adequate protection

against hunting and deforestation (González-Garc�ıa,
2009; L�opez et al., 2014). P. purpurascens prefers

mature or slightly disturbed forests with a high propor-

tion of vegetation cover in which it is rare (González-

Garc�ıa & Mart�ınez-Morales, 2010).

Habitat Connectivity

The study area presents an intermediate level of connec-

tivity (Contag �55.9 and �68.6, IJI � 57.3� 72.1%) for

the three species. In particular, the mature, secondary,

and disturbed pine-oak forests; the secondary evergreen
cloud forest; and the mature and secondary evergreen

tropical forests present the highest degree of fragmenta-

tion. On the other hand, functional connectivity analysis

showed that habitats are connected for all three species

through a main node, due to the large proportion of

coffee agroforestry systems that connect forests in the

middle and high elevations of the Sierra Madre de

Chiapas. The patches with less functional connectivity

are located toward the periphery of the habitat of each

species and are immersed in an inhospitable matrix of

agricultural land use and occupy a large area: For

P. purpurascens, this was 20,557 ha (Figure 8, Zones a

to c), for P. nigra of 8,510 ha (Figure 8, Zones d to f) and

for O. derbianus of 11,529 ha (Figure 8, Zones g to h),

occupied by mosaics of forests and agroforestry systems.

It is important to conserve these fragments insofar as

they connect with other larger areas and for the value

of their coverage for the conservation of each species, so

it would be advisable to apply restoration strategies that

maintain the connectivity of the species to these habi-

tat remnants.
An improvement in the structural connectivity of

these species would require establishing stepping stones

patches with tree species that produce the fruits on which

this especies feed and other types of links between the

areas of remaining tropical forests in social (ejidos) and

private properties in the lower parts of both slopes of the

Sierra Madre. On the other hand, since these are land-
scapes managed by humans, fruit trees can be main-

tained or augmented in these systems to ensure the

long-term survival of these frugivorous species

(Sekercioglu et al., 2007). This can only be achieved by

creating agreements with local landowners and stake-

holders through land-use policies and conservation

incentive schemes (Sibelet, Chamayou, Newing, &

Montes, 2017).

Implications for Conservation

The landscape mosaic is predominantly connected by a

matrix of coffee agroforestry systems in which the hab-

itat fragments of the three species are immersed, so the

maintenance of the connectivity of the species depends
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to a great extent on improvement in the structure of
these systems. However, the incidence of pests and dis-
eases in coffee plants have increased, and government
policies have promoted rust-resistant varieties that do
not require shadow of the canopy, as a strategy to coun-
teract these problems. As a consequence, in recent dec-
ades, shaded coffee plantations (i.e., with a native tree
coverage than regulate light quantity reaching coffee
plants) in the Sierra Madre de Chiapas have been trans-
forming to different management intensities, from
monospecific leguminous shade trees (Inga), to industrial
plantations with little or no shade (Dietsch, 2000;
Williams-Guillén & Perfecto, 2010). With this trend,
agroforestry systems could themselves be expanding
the frontier of matrices hostile to forest-dependent spe-
cies and also exerting intense pressure to change land use
in adjacent areas to current connectivity. In that sense, it
is essential that these kinds of agroforestry systems do
not continue to increase at the expense of the primary
and secondary forests.

Another threat to functional connectivity of these spe-
cies is illegal hunting, because it reduces the efficiency of
these areas to supportingwildlifemovement, turning them
into ecological traps that reduce the viability of the pop-
ulations (Brodie et al., 2016). Illegal hunting is a common
practice in the unprotected SMSMBC area and in Paxtal
(where there is no staff to manage and prevent it) and to a
lesser extent in all other SMSMBCprotected areas (Figure
5). This situation is worrying because most of the habitat
of P. purpurascens and P. nigra and a significant propor-
tion of the habitat of O. derbianus are outside the pro-
tected natural areas. In some sites south of the
SMSMBC, no individuals of these species have been
observed for several years. Therefore, it may be necessary
to establish environmental education strategies for the
population living in these areas to ensure the manage-
ment, survival, andflowof the populations of these species
in their remaining habitats.

Additional threats include deforestation due to agri-
cultural activities, poor management of forest exploita-
tion, urban expansion, soil pollution by agrochemicals
in the upper basin, and cattle expansion in unsuitable
areas (Dom�ınguez-Cervantes, 2009; Juan Pérez, 2017).
Finally, it has been estimated that 13% of Mexico’s tem-
perate forests, especially pine-oak forests, will be lost
because of climate change. This is particularly significant
for O. derbianus since it has been estimated that its dis-
tribution will be reduced due to fragmentation, loss of
habitat, and effects of climate change (Peterson et al.,
2001; Rojas-Soto, Sosa, & Ornelas, 2012; Villers, 1998).
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