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Abstract: Confinement is the predominant method of producing poultry and eggs for consumption in the US. Because of its high-density 
approach, the potential health threats regarding pathogenesis in animals and humans have raised concerns. Although there best manage-
ment practices exist to control the persistence and proliferation of pathogenic bacteria in poultry houses, very little is known about the 
bacterial communities, and poultry houses are potential pathogen sinks. We assessed the contribution of industrial poultry production to 
the structure and composition of bacterial communities in the soils at a poultry production site. Soil samples were collected from under 
poultry housing areas, litter storage areas, and an accompanying pasture adjacent to the production area; and environmental DNA was 
extracted from the samples. Following validation and amplification, DNA was sequenced using bacterial-tag encoded pyrosequencing. 
Bioinformatics analysis showed that the bacterial communities in the soils showed no significant differences in species richness accord-
ing to observed and estimated operational taxonomic units ( Chao1 and rarefaction). Proteobacteria were the major phyla present in all 
samples ranging from 37.1% in the soils under poultry houses to 53.4% of the sequences identified under pasture soils. Significant shifts 
in specific taxa were observed, including drops in the abundance of Acidobacteria observed from the poultry house to litter storage soils 
(P , 0.05) α-Proteobacteria increased from poultry house soil (10.9%) to pasture soils (32.8%, P , 0.01) and soils under litter storage 
(22.3%, P , 0.05). The phyla Bacteroidetes, which were observed between poultry house and pasture soils, dropped significantly from 
21.8% to 7.2% (P , 0.05). Clustering exhibited a closer relationship between the soils under pasture and litter storage, while those 
under the poultry houses were unique. Pathogenic genera were also found in greater abundance under the poultry houses, which raises 
the question of persistence and re-colonization of bedding material even in the presence of mitigation attempts.
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trends in industrial broiler production have led to 
confined housing of thousands of birds, which has led 
to the practice of antibiotic management for purposes 
of treating anticipated and visible infections as well 
as improving flock growth. Recent concerns have 
been raised about the ability of pathogenic bacteria 
to develop resistance to antimicrobials used in food 
animal operations. Several reviews have addressed 
this issue;10–13 specifically, zoonotic enteropathogens 
(ie, Salmonella, Campylobacter, Yersinia, and some 
strains of E. coli, such as serotype O157:H7) and 
commensals (ie, Enterococcus and other E. coli 
strains) have shown the capacity to develop antibiotic 
resistance in various animals.14–21 The importance of 
these particular groups lies in their possible exposure 
to humans.22

Variations in on-site decisions, as well as the abil-
ity of some microbiota to survive adverse conditions, 
allow for the cultivation of potentially harmful micro-
bial communities in litter as well as in underlying 
soils and surrounding water sources. Groundwater 
pollution by microbiota occurs through the percola-
tion of microbes along with water (ie, rainwater or 
irrigation water) through the soil profile, reaching 
underground aquifers. The implications for such pol-
lution have been shown, as between 1989 and 200223 
64% cases of waterborne diseases in the US were 
traceable to groundwater. Another survey showed 
that figure to be significantly higher (94%) for the 
years 2001–2002.24

There have been multiple studies directed at the 
microbial characterization of poultry litter,7,8,25–27 
as well as its effects on soil microbial communities 
through land application as a fertilizer.28–31 Many 
microbial issues require improved management, and 
it is not clear to what extent poultry litter management 
influences soil microbial communities under confined 
poultry production operations.

The goal of this study was to characterize the 
microbial community structure of the soils in and 
around a confined broiler production system using 
pyrosequencing based on 16S rRNA gene sequences. 
Specifically, this study seeks to determine whether 
there are changes in bacterial community compo-
sition in structure between poultry houses, litter 
storage areas, and pastured areas. We also assessed 
the presence of pathogenic bacteria in each of these 
soils.

Introduction
The importance of poultry production lies in its 
increasing significance to the economic and envi-
ronmental well-being of agricultural systems in the 
United States. About 8.6 billion broilers are produced 
each year in the US, valuing $23.2 billion.1 More 
than 65% of US broiler production is concentrated in 
the Southeastern States, with Alabama ranking third 
behind Georgia and Arkansas.1 In 2011, Alabama pro-
duced roughly 1 billion birds with total cash receipts 
of $2.66 billion and representing an approximately 
14% increase compared with 2002.1 Poultry farm-
ers reached this level of productivity by using con-
finement housing, in which high-density broilers are 
raised on litter in houses containing between 15,000 
and 50,000 birds per batch.2 As a result of the shift to 
fewer and larger confined animal operations, environ-
mental and economic issues associated with utiliza-
tion or disposal of animal manures and litters have 
become a focal point of conservation efforts.3 A layer 
of wood shavings, sawdust, straw, peanut hulls, or 
other suitable bedding material is placed on the soil 
surface of poultry houses to mitigate the downward 
migration of excess nutrients, pathogens, and toxins. 
Dry/wet litter (cake) is removed after each flock with 
a complete clean-out performed once every 12 months 
or longer, depending on owner requirements. It is 
estimated that each of the 700,000 poultry houses for 
broiler production in the US generates approximately 
180 tons of litter per year.4

Although land application is the most common 
and usually the most desirable method of utilizing 
manure because of nutrient and organic matter addi-
tion to soils, poultry litter has versatility in its uses 
as feed5–7 and biomass for fuel production. How-
ever, concerns regarding pathogenic microorgan-
isms commonly found in poultry litter (eg, Listeria 
monocytogenes, Salmonella spp., Escherichia coli, 
Clostridium spp., Campylobacter spp., Staphylococ-
cus aureus and Bordetella spp.) raise issues related to 
management practices for reasons of food safety and 
public health. Researchers have previously identified 
these microorganisms among others as residential 
pathogens in poultry litter.7–9 These and other bacte-
rial species are pathogenic to humans and also may 
be pathogenic to poultry, causing serious infections 
that may lead to death and/or poor flock performance 
with no obvious symptoms. As stated above, recent 
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the amount of samples collected was proportional to 
the size of the sampling areas.

DNA extraction
Whole community DNA was extracted from approx-
imately 0.25 g of soil (oven dried basis of field-moist 
soil) using the Power Soil Extraction Kit (MO BIO 
Laboratories, Soloana Beach, CA, USA) according 
to the protocol provided by manufacturer. Extracted 
DNA (2 µL) was checked for purity and concentra-
tion using a Nanodrop ND-1000 spectrophotometer 
(Nanodrop Technologies, Wilmington, DE, USA) as 
well as being run on an 0.8% agarose gel. Once quality 
and concentration were determined, 3 samples from 
each of the three land-use types were pooled at equal 
bacterial DNA ratios to create three pools of DNA, 
each representing a major category of land use across 
the agroecosystem. The samples were then submit-
ted to Research and Testing Laboratories (Lubbock, 
TX, USA) for PCR optimization and pyrosequenc-
ing analysis. PCR, massively parallel pyrosequenc-
ing, and tag design were carried out according to a 
procedure described previously by Dowd et al.33,34

All DNA samples were diluted to 20 ng/µL from 
which a 20 ng (1 µL) aliquot of each sample DNA 
was used for a 25 µL PCR reaction: 5 min denaturing 
at 95°C, anneal for 30 cycles of 94°C for 30 sec, 52°C 
for 40 sec, 70°C for 40 sec, and final extension at 
70°C for 5 min. Primers used were the 16S universal 
Eubacterial primers 28 F (5′-GGC GVA CGG GTG 
AGT AA) and 530 R (5′-CCG CNG CNG CTG GCA 
CS). The resulting amplicons were equally mixed and 
purified using Agencourt Ampure beads (Agencourt 
Bioscience Corporation, MA, USA). In preparation 
for pyrosequencing, the size and concentration of 
DNA fragments were measured using DNA chips 
under a Bio-Rad Experion Automated Electrophoresis 
Station (Bio-Rad Laboratories, Hercules, CA, USA) 
and a TBS-380 Fluorometer (Promega Corporation, 
Madison, WI, USA). Samples of double-stranded 
DNA (9.6 × 106 molecules/µL with an average size 
of 625 bp) were combined with 9.6 million DNA 
capture beads for emulsion PCR. The resulting bead-
attached DNAs were denatured with NaOH and 
sequencing primers were annealed. The 454 Titanium 
sequencing run was performed on a 70 × 75 GS Pico-
TiterPlate by using a Genome Sequencer FLX System 
(Roche, Nutley, NJ, USA).

Material and Methods
Study sites
The study site was Wayne Farms broiler production 
unit located at 32° 4′ 2.2′′ N and 85° 42′ 35.9′′ W, on 
a 4 Hectare (Ha) land in Bullock County, AL, USA. 
The soil series of the study area were Alaga (loamy 
sand, thermic, coated Typic Quartzipsamments) and 
Conecuh (sandy loam, fine, smectic, thermic Vertic 
Hapludults). For the past 10 years, this land has been 
used as an industrial broiler production site. During 
each of those ten years, 5–6 batches (~80,000 broilers 
per batch) were produced with residual litter being 
removed annually and stored outside of the poultry 
houses at a designated site until a market could be 
established for the litter. In addition, there was 
approximately 1 Ha of pasture for a herd of 10 horses 
to graze. This area was only lightly grazed, as the 
horses were released onto this part of the land for 
only 2–3 days per week.

A preliminary geostatistical study of soil biochem-
ical characteristics provided the initial evidence that 
soil biochemical and biological factors spatially vary 
with respect to land use type on this site (Table 1).32 
A stratified random sampling design was used in an 
effort to obtain a statistically useful dataset while 
being cost-efficient. The three sampling areas were 
constructed of different sizes, which were reflective 
of the amount of area covered by each on the farm 
and overlaid by sampling grids. Samples were ran-
domly collected from vertices of the grid, such that 

Table 1. Selected soil properties amongst different land 
use strata.

Soil property Broiler housing Storage Pastured
APA† 2.25a 2.81b 2.52ab
ACP† 1.75a 1.91b 1.90b
PD† 0.98ab 1.34b 0.71a
pH 6.39a 7.70b 6.55a
SOC 1.34 2.17 1.61
TN 0.22 0.26 0.18
Sand‡ 0.72a 0.73a 0.79b
Silt & Clay‡ 0.28 0.27 0.21

Notes: Different letters denote significant differences between measured 
variables at P , 0.05.
†Values for enzyme activity are in units of µmol p-nitrophenol g soil–1 hr–1.
‡Values for particle size are expressed as a fraction of total soil particles 
(1.00).
Abbreviations: APA, acid phosphatase; ACP, alkaline phosphatase; 
PD, phosphodiesterase; SOC, soil organic carbon; TN, total nitrogen.

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 05 Sep 2024
Terms of Use: https://bioone.org/terms-of-use

http://www.la-press.com


Shange et al

94	 Air, Soil and Water Research 2013:6

Clusters at 3% were then utilized to generate rarefac-
tion curves and the (diversity) indices ACE41 and 
CHAO42 as well as unweighted UniFrac for principle 
coordinate analysis (PCoA) plots.

Results and discussion
Richness and diversity estimates
Figure 1 shows the observed and expected OTUs at 3% 
dissimilarity. The maximum OTUs detected across the 
soilscape at the site according to the observed clusters 
(sobs) at 3% dissimilarity was 1035 (Fig. 1), found in 
the pastured bacterial community. All Chao1 values 
reported in Figure 1 were comparable to the maxi-
mum OTUs predicted by rarefaction models (Fig. 2), 
while ACE estimators predicted significantly higher 
OTUs. No significant differences were observed 
between the bacterial communities under various 
areas for any of the estimators (P , 0.05). A distinct 
trend was detected in all estimators, suggesting that 
the highest richness was detected in the pastured area, 

Bioinformatics and statistical analysis
As a result of pyrosequencing services, quality trimmed 
sequences and hierarchal taxonomic data were pro-
vided following the bioinformatic pipeline described 
by Acosta-Martinez et al.35 Each sequence was trimmed 
back to utilize only high-quality sequence information. 
Tags whose sequences designated individual samples 
were extracted from the FLX-generated multi-FASTA 
file, while parsing that file into individual sample-spe-
cific files. Tags that did not have 100% homology to the 
original sample tag designation as well as sequences 
that were less than 200 bp after quality trimming were 
not considered. Samples were then depleted of definite 
chimeras using B2C2 software that is described and 
freely available from Research and Testing Laboratory 
(Lubbock, TX, USA, USA). The resulting sequences 
were then evaluated using BLASTn36 against a cus-
tom database derived from the RDP-II database37 and 
GenBank (http://ncbi.nlm.nih.gov). The sequences 
contained within the curated 16S database were those 
considered to be high-quality based upon RDP-II38 
standards and which had complete taxonomic infor-
mation within their annotations.

Identification at the species level for the purpose 
of this study was considered tentative, and these 
taxonomic groups are referred to as operational taxo-
nomic units (OTUs) and not species. Following best-
hit processing, a secondary post-processing algorithm 
was utilized to combine genus and other taxonomic 
designations generating compiled data with relative 
abundance of each taxonomic entity within the given 
sample. Phylogenetic assignments were based upon 
NCBI taxonomic designations. Further processing 
and out-based analyses were then carried out using the 
MOTHUR39 suite of programs for sequence process-
ing and diversity analysis [v.1.19.3]. Processing com-
mands included those for identifying/consolidating 
unique sequences, removing low-quality sequences, 
filtering, chimera removal, multiple sequence align-
ment, distance matrix generation, and sequence clus-
tering into OTUs. OTU-based analysis differentiates 
itself from other methods of phylogenetic analysis 
in that it quantifies richness, diversity, and similarity 
amongst and between samples. The resulting clusters 
were assessed at 3% dissimilarity to provide the data 
needed for downstream analysis given a previous 
explanation of the relationship percent dissimilarity 
and species estimation based upon rarefaction.40 
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Figure 3. Relative abundance of major phyla across land use systems.

while the lowest richness was found in the bacterial 
community under the poultry houses.

The amount of species richness seemed to be 
similar among the different areas of the agricul-
tural ecosystem, as significant differences in the 
soils were only observable using the ACE diversity 
index (Figs. 1 and 2). With the application of organic 
amendments (particularly poultry litter) to soils, 
researchers have reported changes in microbial com-
munities found within these soils.43,28 An important 
exception was that reported in a study by Acosta-
Martinez and Harmel28 who observed that that when 
poultry litter was applied to pasture surface soils and 
not incorporated into the soil, there was an obvious 
lack of response by microbial communities at the 
highest application rates, suggesting the need of some 
type of mechanical mixing of soil and litter to aid 
enhancement. This observation can be compared to 
that of the litter storage area, which tends to be higher 
in richness, but has no significant differences except 
for the ACE estimate. There is no frequent mechani-
cal disruption to this area to allow for colonization of 
the soil by poultry litter microbes, thus resulting in a 
moderate level of diversity.

Bacterial taxa
The soils under the poultry litter houses showed sig-
nificant shifts in the relative abundance of five of the 
eight top bacterial phyla (Fig. 3). Significant shifts 
(P  ,  0.005) occurred in the phylum Proteobacteria 

between the broiler house community (37.1%) and the 
pastured community (53.4%). Because of the observed 
dominance of Proteobacteria in soils, the major bac-
terial classes were assessed for significant shifts 
amongst the soil systems as well (Fig. 4). Among the 
five classes of Proteobacteria, α-Proteobacteria was 
the only class to show significant shifts. These shifts 
occurred between BRHS soil (10.9%) and soils under 
grazed pasture (32.8%, P , 0.01) and soils under litter 
storage (22.3%, P , 0.05). Another shift that occurred 
between the BRHS and grazed pasture soil systems 
was in the phyla Bacteroidetes, which dropped from 
21.8% to 7.2% (P , 0.05). The classes Flavobacteria 
and Bacteroidetes showed similar trends (Fig. 4). Other 
major shifts observed between the broiler house area 
and the litter storage areas were a decrease in Acido-
bacteria (9.4% to 1.9% at P , 0.005) and an increase in 
Chloroflexi (3.0% to 10.8% at P , 0.05). Chloroflexi 
was the only phyla showing a significant decrease in 
relative abundance between the litter storage area and 
the grazed pasture soil system. Chloroflexi relative 
abundance actually dropped from 10.8% in the litter 
storage soil to 3.0% in the pasture soil (P , 0.05).

Proteobacteria remained the most dominant phyla 
under the different soil conditions, suggesting their 
central role in the soil ecosystem. Along with Acti-
nobacteria and Bacteroidetes, Proteobacteria have  
been suggested to be a copiotrophic group of organi
sms;44 as such, it would be expected that these organ-
isms would be found in high abundance where there 
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is access to plenty of organic carbon. It was observed 
that there was a significant decrease in the Proteobac-
terial phyla from the poultry house soil compared to 
the pastured soil. A further examination of Proteobac-
terial classes showed that the only significant shift 
occurred in one of the five classes, α-Proteobacteria 
(Fig. 4). Another important shift observed was in the 
phyla Bacteroidetes, which are found in soils, but are 
also largely associated with the internal and external 
flora of animals.45 The classes that played major roles 
in this shift are Flavobacteria and Bacteroidetes. The 
class Flavobacteria has recently been described as 
predatory, since a growing number of its members 
are being characterized as such.46–51 As there is no 
literature on the predator-prey relationship of Fla-
vobacteria and other microbes, their increase could 
not be readily explained by shifts in other groups. 
More research in the area of Flavobacteria predation 
could shed more light on this ecological feature of the 
group. Bacteroidetes, one of the most widely studied 
classes, have been ecologically associated with animal 
intestines and feces, but they also contain genera that 
are known to be associated with soils.52 Because both 
of these groups contain organisms that are considered 
opportunistic pathogens, and are associated with ani-
mal feces and soil colonies, the soils under the poul-
try house seem to be an optimal environment to find 
these copiotrophs, where there is a convergence of 
these two ecosystems. This convergence may provide 

the conditions necessary for cross colonization of the 
litter layer and soil layer under the poultry houses.

Clustering of soil samples
Bacterial classes were used in cluster analysis to gen-
erate the double dendrogram shown in Figure 5. The 
double dendrogram allowed visualization of the diver-
sity found among microbial classes over the study site. 
The patterns appeared to show the community in the 
poultry house soils exhibiting a distinct pattern com-
pared to in other systems. Even within the poultry house 
samples, sample BRHS_2 showed less similarity to the 
other poultry house samples. The relative abundance 
was more focused towards the classes at the top of 
the y-axis than in any of the other sampled areas. The 
individuality expressed by this sample was reflected in 
the clustering analysis, as this sample showed a closer 
relationship to the other 6 samples at a distance of 2.25. 
All other samples (litter storage and pasture) clustered 
together at ~1.75, while individual samples for each of 
these strata clustered at ~1.50, showing sample simi-
larity according to their soil system. Further analysis 
using Unifrac metrics and PCoA supported this data.

The 3-dimensional plot visualized from the prin-
ciple coordinates analysis based upon unweighted 
Unifrac metrics (Fig. 6) showed that the samples of 
the bacterial community contained under the poultry 
houses distinguished itself in response to the variation 
detected in the samples across three axes. The x, y, and 
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z axes in the PCoA plots (Fig. 6) represented 16.8%, 
16.1%, and 12.6% of variation, respectively. Simi-
lar clustering can be observed in Figure 4.5 in that 
the samples from the same type of land-use system 
clustered together, with the exception of the BRHS_2 
sample, which differed in response to both axis 1 and 
primarily axis 3.

Genera of interest
Although the sequences represented in Table 2 did 
not have high relative abundances compared to other 
taxonomic classes, scale is important determining 
their potential environmental impact. In order to 
assess the significance of these specific genera for 
the environmental quality of the production system, 

average relative abundances were calculated using 
percentages. T-tests were conducted to determine if 
there were higher abundances in specified soil systems 
across the site. Major groups of interest were genera 
known for their contribution to pathogenesis in human 
and animal systems. With the exception of Mycobac-
terium, all pathogenic genera exhibited their highest 
abundance under poultry houses, with Brevibacterium 
and Staphylococcus being significant. Soils under the 
poultry houses showed the pattern of BRHS . PSTD 
. STRG representing 8.12%, 1.61%, and 0.85% of 
the total sequences in each system.

When considering the genera present in the soils, 
these data suggest that groups important to patho-
genicity are present in all soils, though particularly 

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 05 Sep 2024
Terms of Use: https://bioone.org/terms-of-use

http://www.la-press.com


Shange et al

98	 Air, Soil and Water Research 2013:6

movement of pathogenic bacteria through the soil 
profile to contaminate groundwater.54 Though this 
possibility exists for some microbes, the results of 
a recent study suggest that the potential for ground-
water contamination by Map is low; however, the 
organism may remain bound to the soil near the sur-
face where it can be ingested by grazing animals or 
be released during runoff events.55

Although the ability of the litter layer to prevent 
leaching and migration of nutrients and microor-
ganisms, respectively, has been documented, it was 
observed that biochemical processes still take place 
under the layer at comparable levels to that in other 
areas. Pyrosequencing revealed that some of the same 
pathogenic genera present in studies characterizing 
microbial communities in the litter layer were present 
in the soil layer, but in differing amounts. The gen-
era of note were Brevibacterium, Clostridium, 
Corynebacterium, Mycobacterium, Staphylococcus, 
and Streptococcus. Brevibacterium accounts for 
about 6% of the sequences that were found in the 
soils under the poultry houses, and two-thirds of 
those were Brevibacterium avium, which is thought 
to be a secondary invader of diseased animals.56,57 We 
also detected Clostridium in samples from under the 
poultry house, but there were no hits for C. perfri-
gens or C. botulinum, which are infamous pathogens. 
Staphylococcus was found in abundance as it has 
been found in litter,9,27,7 which included S. cohnii and 
S. endermititis, known pathogens to humans. Other 
Staphylococcus sp. included animal pathogens and 
non-pathogens, but species belonging to this genus 
and Enterococcus may serve as sinks for the trans-
mission of antibiotic resistance to normal human 
commensalist flora.9,58 Another pathogenic genus 
present was Streptococcus, which has been found in 
the ileum of chickens, along with Enterococcus and 
Clostridium.26 S. constellatus was prominent and is 
part of the Streptococcus auginosus group (SAG) 
that has the propensity to cause disease in humans.59 
Bordetella, Enterococcus, and Escherichia were 
found, but they showed relative abundances of less 
than 0.1%. Although these populations were found in 
relatively small abundance, persistence of bacterial 
populations and the development of resistance is a 
complex ecological process, and perhaps easier to 
acquire and maintain for some species of bacteria 
than others.
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0.4
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0
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Figure 6. A 3-dimensional PCoA plot showing the clustering of samples 
around the first three axes of variation based on unweighted Unifrac 
scores.

high relative abundance was observed for spe-
cific genera in the soils under the poultry houses 
(Table  4.1). In the present study, relative abun-
dances of genera did not surpass 8.97%, as only 23 
of the genera identified had a relative abundance 
greater than 1%. When considering the pathogenic 
bacterial genus detected in the samples, the major 
contributor was Mycobacterium. Mycobacterium 
avium subsp. paratuberculosis (Map), an organism 
with excellent survivorship in the environment, as 
it has been detected for up to 600 days in water and 
soil. Although it can survive long periods without a 
host, the organism requires a host to grow and prop-
agate.53 There has been growing concern about the 

Table 2. Salient genera of potentially pathogenic bacteria 
are expressed as mean relative abundance in each of the 
sampled areas. Significant differences are denoted by 
different letters in rows.

BRHS STRG PSTD
Potentially pathogenic genera
Bordetella 0.05 0.04 0.00
Brevibacterium 6.10a 0.00b 0.00b
Clostridium 0.36 0.20 0.02
Enterococcus 0.02 0.00 0.02
Escherichia 0.03 0.01 0.00
Mycobacterium 0.30a 0.41a 1.52b
Staphylococcus 1.11a 0.01b 0.00b
Streptococcus 0.15 0.18 0.05

Total 8.12 0.85 1.61
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