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Abstract.  Sequence variation of control region mitochon-
drial DNA, phylogenetic reconstruction, and analysis of molec-
ular variance (AMOVA) were used to determine the degree of 
genetic structure of Yellow Warblers (Dendroica petechia) in the 
Galápagos Archipelago. When the Galápagos population was 
partitioned into subpopulations (by island), AMOVA indicated 
a nonsignificant level of genetic structure. The presence of the 
same haplotype on more than one island also indicated low ge-
netic divergence among subpopulations. Using these sequences 
and those available in Genbank, we also determined the degree 
of divergence between the Galápagos Yellow Warbler population 
and other New World populations. Mean sequence divergence 
between the Galápagos population and Latin American popula-
tions was 3.7%, and between the Galápagos population and North 
American populations was 6.7%. 

Key words: ������������������  Dendroica petechia, Galápagos Islands, mito-
chondrial DNA, population structure, Yellow Warbler. 

Estructura Genética de las Poblaciones de Dendroica  
petechia de Galápagos 

Resumen. ���������������������������������������������      Determinamos el grado de estructura genética 
de Dendroica petechia en el archipiélago de Galápagos usan-
do la variación en una región de control del ADN mitocondri-
al, una reconstrucción filogenética y un análisis de varianza 
molecular (AMOVA). Cuando la población de Galápagos fue 
separadas en subpoblaciones (una en cada isla), el AMOVA 
presentó un nivel no significativo de estructura genética. La 
presencia del mismo haplotipo en más de una isla también in-
dicó una baja divergencia genética entre subpoblaciones. Utili-
zando estas secuencias y las que están disponibles en Genbank, 
también determinamos el grado de divergencia entre la po-
blación de D. petechia de Galápagos y otras poblaciones del 
Nuevo Mundo. El promedio de la divergencia de las secuencias 
entre la población de Galápagos y las de América Latina fue de 
3.7%, y entre la población de Galápagos y las poblaciones de 
Norte America fue de 6.7%.

The Galápagos Archipelago is located approximately 1100 km 
southwest of Central America, 1000 km from continental South 

America, and 720 km from Cocos Island. Potassium-argon aging 
indicates a maximum age for extant islands of less than six mil-
lion years (Bailey 1976, Geist 1996), although a series of now-
submerged islands in this region could have supported terrestrial 
life more than 10 million years ago (Cox 1983, Christie et al. 
1992, Geist 1996). 

Yellow Warblers (Dendroica petechia) are found on all ma-
jor Galápagos Islands and many of the islets. Yellow Warblers 
from the Galápagos Islands and Cocos Island have been recog-
nized as an endemic subspecies, D. p. aureola (Lowther et al. 
1999), based on the rusty crowns of mature males (Harris 1974, 
Castro and Phillips 2000). This trait is usually absent or is muted 
in Yellow Warblers in other locations, consistent with divergence 
of these populations from the remainder of the range. Some in-
vestigators have hypothesized, based on the absence of Yellow 
Warbler fossils in lava tubes, that the species has colonized the 
Galápagos relatively recently, perhaps in conjunction with hu-
man colonization (Snow 1966, Steadman 1986). Despite its 
widespread distribution throughout the islands, we lack morpho-
logical or genetic studies on the Galápagos population beyond 
casual observations. 

The geographic range of Yellow Warblers extends from 
Canada to the middle of South America. Based on geographical 
variation in plumage color and pattern (Browning 1994), nine 
subspecies are assigned to the aestiva group, eighteen to the pete-
chia group, and sixteen to the erithachorides group. In the eritha-
chorides group, subspecies inhabit the coasts of Mexico, Central 
America, northern South America, Cocos Island, and the Galá-
pagos Archipelago (Browning 1994). Previous work using mito-
chondrial DNA (mtDNA) restriction sites examined populations 
throughout North America, Central America, South America, and 
the West Indies (Klein and Brown 1994). The phylogenetic rela-
tionships among subspecies in the eastern Pacific, including the 
Galápagos and Cocos Island populations, have not been clearly 
established. These populations (collectively, D. p. aureola)�����  are 
similar to other members of the erithachorides group in size, but 
have chestnut crowns (like the petechia group) rather than chest-
nut heads as do other members of the erithachorides (Klein and 
Brown 1994).

In this study, we used mtDNA sequences, analysis of mo-
lecular variance (AMOVA), and phylogenetic reconstruction to 
determine the degree of genetic structure of the Yellow Warbler 
population in the Galápagos Archipelago. We also used sequences  
available in Genbank to estimate the degree of divergence be-
tween the Galápagos D. petechia populations and other New 
World populations. 
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METHODS

Blood samples from the brachial vein were collected on filter paper 
from 44 Yellow Warblers caught in May 2001 in mist nets on six 
islands (Fig. 1) of the Galápagos Archipelago at the following loca-
tions: Punta Cevallos, Española (samples 1–8), 01°23′S, 89°37′W; 
Darwin Bay, Genovesa (samples 9–13), 00°19′N, 89°57′W; Pun-
ta Pitt, San Cristóbal (samples 14–21), 01°42′S, 89°15′W; Puerto 
Ayora, Santa Cruz (samples 22–31), 00°40′S, 90°10′W; Post Of-
fice Bay, Floreana (samples 32–38), 01°13′S, 90°27′W; Espum-
illa Beach, Santiago (samples 40–44), 00°10′S, 90°30′W. After 
drying, samples were stored at ambient temperature in Galápa-
gos until our return to Wake Forest University when they were 
stored at –70°C prior to analysis. 

Total DNA extractions were performed using phenol chloro-
form: isoamyl alcohol (Hillis et al. 1996). A 348–base pair frag-
ment of the control region of mtDNA was amplified using the 
polymerase chain reaction (PCR). We used the primers DPdl-L5 
(5′ TTCTTGCTTTAAGGGTATGT) and DPdl-H4 (5′ TCAATA-
GATAAC CATGTCCT), located 86 base pairs upstream of the 
3′ end of L16743 and 9 base pairs downstream of the 3′ end of 
H417, respectively (Milot et al. 2000). Amplification using PCR 
protocols followed standard procedures, which are described in 
detail by Collins (2003). Sequencing was performed on an ABI 
Prism 377 automated sequencer (Perkin-Elmer, Boston, Mas-
sachusetts). Primers used in DNA sequencing were the same 
primers used in PCR amplification. Sequences were deposited in 
GenBank under accession numbers AY124884–AY124933. Af-
ter sequencing, amplified fragments were manually aligned us-
ing program BioEdit (Version 5.0.6; Hall 1999) and compared to 
previously published Yellow Warbler sequences from Pennsyl-
vania (n = 5), western Canada or Alaska (n = 6), eastern Canada 
(n = 44), Costa Rica (n = 1), Venezuela (n = 1), and Puerto Rico 
(n = 1), as well as two species in the sister clade (Blackpoll War-
bler [Dendroica striata] and Chestnut-sided Warbler [Dendroica 
pennsylvanica]), deposited in GenBank under Accession num-
bers AF205953–AF206016 (Milot et al. 2000). 

Statistical analyses 

Using previously published Yellow Warbler mtDNA sequences 
(Milot et al. 2000), we calculated the average number of pair-
wise differences, based on the distance method of Tajima and Nei 

(1984), for Yellow Warblers from the Galápagos Islands (con-
sisting of six subpopulations), from North America (consisting 
of eastern Canada, western Canada or Alaska, and Pennsylva-
nia populations), and from Latin America (consisting of Puerto 
Rico, Venezuela, and Costa Rica populations). Calculations were 
based on 348 base pairs. Sequence divergence estimates among 
phylogenetic groups were corrected for within-group variation 
with a formula from Wilson et al. (1985).

Average pairwise differences between populations and 
subpopulations, total number of haplotypes, haplotype group-
ing in all subpopulations, and AMOVA results were all calcu-
lated using program Arlequin (Version 2.000; Schneider et al. 
2000). Kimura (1981) two-parameter distances were used. This 
approach requires a priori considerations that are used to group 
sets of populations together to form defined hierarchical levels. 
For comparative purposes, samples can be hierarchically sorted 
into seven sampling units composed of Yellow Warblers from 
three North American sites (Pennsylvania, eastern Canada, and 
western Canada or Alaska), three Latin American sites (Puerto  
Rico, Venezuela, and Costa Rica), and the Galápagos Islands 
sites, representing six subpopulations (six islands). We used ϕST , 
an analog of Wright’s fixation index (FST; Wright 1921), to quan-
tify the inbreeding effects of population structure. Pairwise ϕST 
values were calculated in Arlequin for all combinations of sites 
sampled. The null distribution of values under a hypothesis of no 
difference among sites was obtained by permuting haplotypes 
among sites. P-values were determined as the proportion of per-
mutations leading to ϕST values larger than or equal to the value 
observed. Attempts to obtain maximum likelihood estimates of 
Nm (the number of migrants successfully exchanged between a 
pair of populations per generation) for the Galápagos samples 
using program MIGRATE 1.6.7 (Beerli and Felsenstein 2001), 
which employs a coalescent-theory approach to estimate past mi-
gration rates with an asymmetric matrix model, were inconsis-
tent, probably due to the relatively small sample size and single 
mitochondrial locus employed. We used Mantel’s test (Mantel 
1967) to examine the relationship between genetic distance ver-
sus geographical distance among populations of Yellow War-
blers within the Galápagos archipelago. Historical demography 
of populations was investigated with Fu’s F statistic (Fu 1997). 
Mismatch distributions of pairwise distances between halop-
types (Rogers and Harpending 1992) were plotted using DNASP 
3.53 (Rozas and Rozas 1999). Mismatch distributions were com-
pared to Poisson distributions (Slatkin and Hudson 1991), and the 
associated raggedness indices were interpreted using the gener-
alizable simulation results of Harpending (1994). 

We used statistical parsimony (Templeton et al. 1995, Tem-
pleton 1998) to construct a haplotype network for the Galápagos 
samples and to infer phylogenies among haplotypes. This tech-
nique assesses the limits of parsimony and connects operational  
taxonomic units within the calculated 95% probability limit. 
Whereas traditional methods of phylogenetic reconstruction 
have greater statistical power when sequences are more diver-
gent (Huelsenbeck and Hillis 1993), statistical parsimony has 
been found to outperform parsimony bootstrapping when the 
number of shared characters is large (Crandall 1996). The lim-
its of probability were assessed for Yellow Warbler data sets, 
matrices of absolute pairwise differences were calculated con-
sidering gaps as an additional character state, and matrices 
were used to construct statistical parsimony cladograms in TCS 
1.13 (Clement et al. 2000). Multifurcations in the generalized 
network were resolved using the criteria of Templeton and Sing 
(1993). For all analyses, we considered results with P < 0.05 to 
be significant.

Española

Genovesa

100 km

N

San Cristóbal

Santiago

Santa
Cruz

Floreana

FIGURE 1. T he Galápagos Archipelago. Islands where Yellow 
Warblers were obtained in 2001 for mitochondrial DNA analysis are 
labeled.

Short_commun.indd   550 10/3/08   4:03:07 PM

Downloaded From: https://bioone.org/journals/The-Condor on 24 Jan 2025
Terms of Use: https://bioone.org/terms-of-use



SHORT COMMUNICATIONS�����     551

RESULTS

We found 24 haplotypes in 44 individuals examined from the  
Galápagos Islands. Several haplotypes were shared among Ga-
lápagos subpopulations (islands). No shared haplotypes were 
found among the Galápagos, North America, and Latin America. 
For Yellow Warblers in the Galápagos, nucleotide substitutions 
were observed at 72 of 348 (20.7%) loci. Diversity indices (re-
ported as mean ± SD) for Galápagos Yellow Warblers are as fol-
lows: π, pairwise differences between haplotypes (Tajima 1983), 
was 17.4 ± 8.2; H, gene diversity (Nei 1987), was 0.973 ± 0.021; 
and nucleotide diversity, h (Nei 1987), was 0.033 ± 0.017. 

As determined via AMOVA, within-subpopulation sequence 
variation of Yellow Warblers for the six Galápagos sites was 1.7% 
for Española, 3.1% for Genovesa, 2.2% for San Cristóbal, 1.2% 
for Santa Cruz, 0.5% for Floreana, and 1.2% for Santiago. Within-
population sequence variation for the three continental sites where 
n (the number of individual sequences) > 1 was 2.4% for Penn-
sylvania, 1.2% for eastern Canada, and 0.7% for western Canada. 
The mean within-subpopulation value (1.7%) for sequence varia-
tion from the six Galápagos sites and the mean within-site value 
(1.4%) from the three continental sites were not significantly dif-
ferent from each other (independent t107 = 0.3, P > 0.75). 

For the Galápagos samples, Fu’s F test produced a value 
of FS = –16.2, P < 0.001). Significant negative FS values are as-
sociated with a demographic model indicative of an expanding 
population. 

Statistical parsimony analysis depicted a haplotype network 
(Fig. 2) that was largely in agreement with results obtained using 
traditional parsimony, but which showed much greater resolu-
tion. Due to the strict statistical nature of this analysis, four sepa-
rate networks more distant than ten mutational steps from one 
another (the distance calculated by the 95% probability for this 
dataset) were recovered for Yellow Warblers from the Galápagos 
Archipelago. One network consisted of a single individual from 
San Cristóbal. The remaining networks each contained haplo-
types from four or more islands. 

Percent sequence differences among all Yellow Warbler 
sampling units are listed in Table 1. Mean sequence divergence 
between the Galápagos Archipelago population and Yellow War-
blers from the three Latin America sites was 3.7%, and between 
the Galápagos population and the three North American sites 
was 6.7%. Mean sequence divergence between the six Galápagos 

FIGURE 2.  Haplotype networks of 44 Yellow Warbler mitochon-
drial DNA sequences, estimated under the parsimony criterion, with 
ambiguities resolved using the method of Templeton and Sing (1993). 
Four separate networks not within ten mutational steps of one another 
(the cutoff for 95% probability for this dataset) were recovered. Hap-
lotype numbers represent individuals from the following Galápagos 
Islands: 1–8, Española; 9–13, Genovesa; 14–21, San Cristóbal; 22–31, 
Santa Cruz; 32–39, Floreana; 40–44, Santiago.

subpopulations and the six continental sites was 5.2 %. When the 
Galápagos population was compared to Yellow Warblers from all 
other sites, the smallest sequence divergence, 3.4%, was for Ven-
ezuela, and the largest value, 6.9%, was for western Canada.

TABLE 1. P ercent mitochondrial DNA nucleotide sequence differences among all Yellow Warbler populations sampled, based on Tajima 
and Nei’s distance method (Tajima and Nei 1978). Samples from the Galápagos Islands (Española, Genovesa, San Cristóbal, Santa Cruz, and 
Floreana) were collected in 2001. Sequence data from Yellow Warblers from the remaining locations were taken from Milot et al. (2000).

Genovesa
San 

Cristóbal
Santa  
Cruz Floreana Santiago Venezuela

Puerto  
Rico

Costa  
Rica Pennsylvania

Eastern  
Canada

Western  
Canada  

or Alaska

Española 0.5 0.4 1.4 0.5 0.4 5.0 5.5 5.0 7.0 7.5 7.8
Genovesa 0.1 0.2 1.0 0.6 3.2 3.2 3.2 5.4 5.7 5.9
San Cristóbal 0.8 0.4 0.01 4.1 4.1 4.0 6.2 6.6 6.6
Santa Cruz 2.0 1.6 2.7 2.7 2.7 5.3 5.2 5.6
Floreana 0.2 5.6 5.6 5.6 7.5 8.0 8.0
Santiago 5.3 5.0 5.3 7.2 7.7 7.6
Venezuela 1.7 1.7 6.1 5.0 5.2
Puerto Rico 1.2 5.4 4.9 5.5
Costa Rica 5.0 4.7 5.2
Pennsylvania 5.7 6.8
Eastern Canada 1.8
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the Galápagos in modern historical times (Snow 1966, Stead-
man 1986). Additional studies will be necessary before robust 
conclusions can be made for interisland variation or differences 
between Galápagos and continental populations of Yellow War-
blers, and additional molecular markers are needed to clarify di-
vergence time estimates. 
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permits. This material is based upon work supported by the Na-
tional Science Foundation under grant no. DEB 98-06606 to DJA 
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