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Abstract

Data mining—the discovery of previously unknown information from a large collection of

individual data sources—is becoming increasingly popular for scientific data archives. We

describe an approach to data mining that uses spatial, temporal, and type constraints to

obtain a broad list of data that are potentially related to a data set of interest. Tree- and

spline-based multivariate regression and classification techniques are then used to identify

functional relationships between the data. Expert knowledge is used to constrain and guide

the model building and evaluation process.

We demonstrate the approach by identifying relationships between indicators in

a state of the Antarctic environment reporting database. Analyses of the fuel usage of

electrical generators and boilers at Australia’s Davis station yielded fuel usage

dependencies on air temperature and wind speed that were in good accordance with

known physical processes. The phenomenon of periodic haul-outs of large numbers of

leopard seals on Macquarie Island was related to anomalies in regional sea ice cover and

sea surface temperature.

Introduction

The Australian Antarctic Data Centre (AADC) was established in

1995 in order to provide a coordinated facility for managing the

scientific data collected by the Australian Antarctic scientific program.

Creating an aggregated collection of data such as this makes data

maintenance more efficient, provides users with simplified access to

data in a consistent format, and can assist in saving data that might

otherwise be lost over time in individual scientists’ notebooks and

computer files. A data center can also provide a critical mass of infor-

mation from which previously unknown patterns and relationships can

emerge. The active pursuit of this process—data mining—is wide-

spread in the corporate sector, finding application in fields such as

insurance risk analysis (Apte et al., 1999), analysis of customer

transaction databases (Agrawal et al., 1993), and of event sequences in

telecommunications fault databases (Mannila et al., 1997). In recent

years, data mining techniques have become increasingly applied to

scientific data. Examples include searching for specific patterns in very

large collections, such as astronomical data (Ng et al., 1998; Rocke and

Dai, 2003) and global satellite observations (Potter et al., 2003), and

using regression rules to relate spatial and temporal dependences be-

tween climatic and vegetation data (Schwabacher and Langley, 2001).

Data mining has been given varying definitions in the literature

(Friedman, 1997; Ramakrishnan and Grama, 2001). Here we use the

term to describe the entire process of discovering knowledge in

databases, including such aspects as database design and the validation

of discovered knowledge. Data mining is complementary to traditional

statistical analyses of scientific data. While the formulation of scientific

hypotheses has conventionally followed the observation of physical

phenomena, the observation of numerical properties of previously

collected data can also provide this stimulus (Crawford and Crawford,

1996). Hypotheses formed in this manner can be tested using existing

data, or where this is inadequate, by further physical experiment or

observation. Data mining therefore has a role in the strategic planning

of scientific research.

The boundary between data mining and conventional statistical

methods is not well defined (Glymour et al., 1996; Friedman, 1997;

Hand, 1999). The distinction is generally drawn on the grounds of

complexity: data mining typically operates on very large data sets with

many variables, to which classical statistical methods often do not scale

well. The processes of data mining and data maintenance are also

tightly linked, so that database design and interaction must be carefully

considered (Chaudhuri, 1998; Mannila, 2000). Data mining is also

commonly applied to data originally collected for some other purpose

and can be considered to be a secondary analysis (Mannila, 2000).

Antarctic science is in many ways a prime candidate for data

mining. While remote sensing can be used to obtain measurements of

some environmental variables, the direct acquisition of data from the

Antarctic is very expensive and logistically difficult. Data mining

offers a means of extracting maximum scientific value from expensive

data. The diversity of Antarctic terrestrial ecosystems is relatively low

(Bergstrom and Chown, 1999) and so, despite the wide range of types

of data collected, many of these data might be interrelated. Further,

sampling locations tend to be concentrated in those areas that are

relatively easy to access (generally, near to Antarctic stations).

Disparate projects often collect data from the same location, giving

a variety of data at relatively few sampling sites. These characteristics

are broadly true of data collected from any harsh, remote environment.

Issues related to Antarctic data mining are therefore likely to be

applicable to data from other cold regions.

We present two examples of data mining analyses of a small

subset of the AADC’s holdings. The aim of the investigation was to

establish a methodology for identifying functional relationships among

a variety of data sources within the AADC.

Methods

The principal database used in this investigation was the System

for Indicator Management and Reporting (SIMR, accessible online at

http://www.aad.gov.au/soe). The SIMR was designed specifically to

facilitate Australian Antarctic State of the Environment reporting

(Belbin et al., 2003). At the heart of the SIMR is a set of environmental

indicators (a partial list appears in Table 1). Each indicator is a variable

that measures an aspect of environmental conditions, a pressure applied

to the environment by human activities, or a response that has been

initiated to minimize an environmental pressure. These indicators
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provide an ongoing, objective record of aspects of the state of the

Antarctic environment. The SIMR indicator set encompasses a wide

diversity of information, including measurements of atmospheric and

marine conditions, biodiversity, and direct human impacts on the

environment (see Table 1). As of October 2004, there were 43 publicly

accessible indicators in the SIMR, although the indicator set is dynamic

and continuing to evolve. This database was chosen for investigation

because the broad diversity of information contained within it is

representative of that of Antarctic data in general. Some of the

indicators in the database are widely studied and well understood

processes, and some are not. The better studied indicators provide

a testing ground on which to prove data mining techniques, before

tackling the more difficult data held by the AADC.

The model fitting and selection aspects of the data mining process

can be described in terms of regression and classification. The goal is to

model the dependence of a response variable y on a set of explanatory

variables x1 . . . xn (often called independent variables). The response

y may be categorical, in which case the problem becomes one of

classification. Not all of the explanatory variables will be relevant. The

objective is therefore to identify which of the explanatory variables are

relevant to the response variable and to suggest the forms of the

relationships between them. The naive approach of trying each

explanatory variable in turn rapidly becomes infeasible when higher-

order terms are included to allow for nonlinear behavior. There are

a large number of established methods for multivariate regression and

variable selection—see, for example, Miller (2002) and Hastie et al.

(2001). Here, we use two techniques that simultaneously select relevant

variables and construct the model: classification and regression trees

(Breiman et al., 1984) and multivariate adaptive regression splines

(Friedman, 1991). Both techniques are nonlinear and use relatively ef-

ficient search strategies to locate relevant explanatory variables

from those available. Regression trees use a recursive set of if . . . then

rules to construct an approximation to the response variable. Trees are

fast to build, and can provide an intuitive illustration of the relation-

ships among the variables provided that the tree does not become too

large. Trees have a considerable advantage over many multivariate tech-

niques in that there is no need to choose a specific measure of association.

This can be particularly appealing when working with categorical or

ordinal data. Missing data can be handled by finding surrogate

predictors, capitalizing on shared information among explanatory

variables. Trees can also be used for classification purposes. However,

trees have several drawbacks. Regression trees can produce models that

are discontinuous, which can make model interpretation difficult. Trees

also do not work well with small data sets (Hastie et al., 2001) and can

often perform poorly when modeling additive interactions between ex-

planatory variables. An example of a regression tree is shown in Figure 1.

The technique of multivariate adaptive regression splines (MARS;

Friedman, 1991) offers some advantages when compared to the tree

methodology. MARS first constructs a set of building blocks: basis

functions that are linear over part of the input range of an explanatory

variable, and zero over the remainder of its range. These functions are

iteratively added to the model to construct a progressively more

TABLE 1

A partial list of State of the Environment indicators, sorted by
theme. C, P, and R denote that the indicator reflects a condition,
pressure, or response (some indicators may reflect more than one

of these). See http://www.aad.gov.au/soe for more information.

Indicator Type

Theme: Atmosphere

Daily broadband ultraviolet radiation observations using

biologically effective UVR detectors

C

Highest monthly air temperatures at Australian Antarctic

stations

C

Lowest monthly air temperatures at Australian Antarctic

stations

C

Monthly mean air temperatures at Australian Antarctic

stations

C

Monthly mean atmospheric pressure at Australian

Antarctic stations

C

Monthly mean lower stratospheric temperatures above

Australian Antarctic stations

C

Atmospheric concentrations of greenhouse gas species CP

Daily records of total column ozone at Macquarie Island CP

Theme: Biodiversity

Fecundity and pup growth in fur seal colonies on

Macquarie Island

C

Regional populations of Adelie penguins in the vicinity of

Casey, Davis and Mawson

C

The presence or absence of vascular plant species in two

defined areas of Heard Island

C

Annual catch in tonnes of marine species harvested in

Australian Antarctic and sub-Antarctic waters

CP

Species and number of species killed, taken or interfered

with or disturbed in the Antarctic and the sub-Antarctic

for the purpose of scientific research

P

Theme: Coasts and Oceans

Fast ice thickness at Davis and Mawson C

Mean sea level for the Antarctic region C

Theme: Human Settlements

Medical consultations per 1000 person years C

Quality of potable water at Australian Antarctic and

subantarctic stations

C

Annual tourist ship visits and tourist numbers P

Biological Oxygen Demand (BOD) of wastewater

discharged from Australian Antarctic stations

P

Monthly electricity usage at Australian Antarctic stations P

Monthly fuel usage of the generator sets and boilers P

Monthly incinerator fuel usage of Australian Antarctic

stations

P

Monthly total of fuel used by vehicles at Australian

Antarctic stations

P

Station and ship person days P

Suspended solids content of wastewater discharged from

Australian Antarctic stations

P

Total potable water consumption at Australian Antarctic

stations

P

Volume of wastewater discharged from Australian

Antarctic stations

P

Amount of waste incinerated at Australian Antarctic

stations

PR

Waste returned to Australia PR

Number of expeditioners undergoing environmental

education

R

Resources committed to environmental issues R

Theme: Land

Water levels of Deep Lake, Vestfold Hills C

Station footprint for Australian Antarctic stations P

TABLE 1

(Cont.)

Indicator (indicator number and title) Type

The number of permits issued for entry into Antarctic

Specially Protected Areas (ASPAs) in the Australian

Antarctic Territory

P

Resources committed to heritage expertise R

The number and area of protected areas in the Australian

Antarctic and sub-Antarctic jurisdiction

R
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detailed approximation to the response variable. An example is shown

in Figure 2. In its simplest form, MARS produces a model that is

piecewise linear with respect to the explanatory variables. Allowing

products of two or more basis functions to be added to the model

introduces higher-order terms and interactions among variables. The

method is more computationally demanding than trees, but is better

able to handle additive structures (Friedman, 1991) and is likely to

offer better performance with small data sets. MARS can also be used

for classification (e.g., Hastie et al., 1994).

Data mining requires a high degree of interaction with the users

(Crawford and Crawford, 1996; Hand, 1999; Mannila, 2000). Here, the

data miner (a scientist with a background in statistical methods) was

the principal driver of the process. Other scientists with expertise in

relevant disciplines were consulted and participated throughout the

process. The role of the discipline experts was to guide the variable

selection and model building process, as described below, and to

provide critical evaluation of the discovered models. The data mining

process is outlined in broad terms by the flowchart in Figure 3. The first

step of the process was to ensure that the problem was in a suitable

form for regression analysis. In many cases this required a trans-

formation of the response variable. Other preprocessing included the

removal of outliers and seasonal variations. Environmental and other

data often display a strong seasonal component that may not be

scientifically important; it is the other variations (e.g., long-term trends)

in the data that are often of interest. Once a suitable form of the

response variable had been established, a semi-automated search (as

described below) for potentially relevant explanatory variables was

carried out. The search included other indicators in the SIMR database,

as well as other data held by the AADC, such as automatic weather

station data from each of the four Australian stations, and remotely

FIGURE 1. An example of a re-
gression tree. The target data
were drawn from a noisy half-
sinusoid and are shown as the
gray points in (a). The regression
tree approximation is the solid
line, and the tree itself is shown
in (b).

FIGURE 2. An example of
a multivariate adaptive regres-
sion spline (MARS) model. The
target data were drawn from
a noisy half-sinusoid and are
shown as the gray points in (a).
The MARS approximation is the
solid line. The MARS model is
made up of a sum of piecewise
linear basis functions (b–e).
Compare the accuracy of this
model to that obtained using
a regression tree (Fig. 1).
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sensed environmental data (Reynolds et al., 2001; Cavalieri et al.,

1999; Smith and Reynolds, 2003). Each data source held by the AADC

has an associated metadata record: a complete description of the data,

including sampling methods, spatial and temporal coverage, and the

details of the personnel responsible for maintaining the data. The data

type is also documented, and linked to a data dictionary that defines the

measurement units and acceptable ranges of values for that data type.

This metadata was used to automatically construct a shortlist of

potentially relevant explanatory data, using spatio-temporal coverage

and data type as initial search criteria. Subsets of data with broad

spatio-temporal coverage (such as global sea surface temperature data

sets) were used where appropriate. The spatial extents of these subsets

were chosen by the expert. This initial search was quite general and

often yielded explanatory variables with no conceivable connection to

the response variable. Irrelevant explanatory variables were removed

from the shortlist at the discretion of the relevant expert. Overly

aggressive removal of apparently irrelevant explanatory variables was

discouraged because it could remove variables with a previously

unknown connection to the response variable.

In many cases the temporal granularity of the explanatory and

response variables differed (e.g., a yearly response variable but

monthly explanatory data). Shorter-term data were transformed to

longer-term data by averaging. In the case of monthly to yearly

transformation, the averaging was carried out either across the whole

year, or across subsets of the year (each month, or each quarter) as

chosen by the expert. As with the response variable, many explanatory

variables required transformation—often to their anomaly values (the

anomaly of an observation with respect to a long-term mean). Other

derived data (e.g., the distances of an observation to the ice pack edge

and the nearest coast) were also included where appropriate.

Once the list of potential explanatory variables was finalized, the

regression models were applied. Cross-validation (Stone, 1974) was

used to select models and to assess their predictive accuracies. The

process of list construction and model building was often iterated

several times (indicated by the feedback paths in Fig. 3) before a final

model was produced.

Results

We have chosen two examples to illustrate the data mining

process. The first is a fairly well understood phenomenon, and we

present the example as an intuitive problem against which we can

explore and evaluate the discovery process. The second is a more

speculative analysis. Each step in the process is marked by the

corresponding label in Figure 3.

INDICATOR 56—MONTHLY FUEL USAGE OF THE

ELECTRICAL GENERATOR SETS AND BOILERS

AT AUSTRALIAN ANTARCTIC STATIONS

Special Antarctic blend, which is a light, diesel-like fuel, is used

to power the electrical generators and boilers in each of the four

Australian Antarctic stations. The fuel usage is measured from

consumption gauges on each machine set and the total usage reported

monthly. Fuel used elsewhere at the station, such as in the incinerators,

vehicles, and water melt bells, is not included in this total.

The combined monthly fuel usage of the generator sets and boilers

for Davis station (688359S, 778589E) from 1996 to 2001 was analyzed

here. This fuel usage represents the fuel needed for both heating and

powering the station. The heat generated by the electrical generators is

used as the primary heat source for heating the station. During summer,

this heat is often sufficient (or even excess to requirements), and the

boilers are generally not used. During winter the boilers are used to

provide additional heat to maintain the station temperature.

Problem Specification

We wished to determine which variables were the best predictors

of station fuel usage. In fact, this is a relatively well understood

problem: the fuel needed to heat each station is known to be dependent

on the outside air temperature and wind conditions. Wind disturbs the

layer of warm air that would otherwise envelope the building, in-

creasing heat loss in a similar manner to the wind chill effect on the

human body. The heating fuel needs also depend on various structural

parameters such as the building volume and insulation efficiency. Our

interest was in the intra-annual variations in fuel usage rather than the

long-term (inter-annual) variations. The latter are largely determined by

factors such as changes to the physical infrastructure of the stations.

These changes were generally made during the summer months (be-

tween December and February). The monthly fuel usages were there-

fore normalized by subtracting the average fuel usage for each year.

Data and Preprocessing

The available explanatory variables comprised surface air

temperatures (mean, lowest, and highest), mean lower stratospheric

temperatures, mean mid-tropospheric temperatures, mean atmospheric

pressure, electricity usage, mean wind speed, and the number of people

on station (all measured at Davis station), and the sea surface

temperature, sea surface temperature anomaly (the anomaly with

respect to the long-term monthly average), and sea ice cover (measured

adjacent to Davis). All explanatory variables were monthly. For the

FIGURE 3. A flowchart of the
data mining process. Asterisks
denote steps that involve interac-
tion with a domain expert in
order to constrain and guide the
process. CART ¼ classification
and regression trees; MARS ¼
multivariate adaptive regression
splines.
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purposes of the demonstration, all of these variables were included as

potential explanatory variables (there was no removal of irrelevant

variables by the discipline expert).

Variable Selection and Model Building

Regression tree analysis yielded a tree with a single split. Months

with a mean air temperature of less than�5.28C had a higher fuel usage

(an increase of 3200 L above the yearly baseline, n ¼ 56), whereas

warmer months had a lower fuel usage (a decrease of 6390 L below the

baseline, n ¼ 22). This simplistic model was relatively inaccurate

(mean squared cross-validation error of 9.7 3 106 L2, equivalent to an

absolute error of 4.9% of the average monthly fuel usage). The relative

importance of each explanatory variable in the regression tree is shown

in Table 2. Surface air temperatures were the most important, followed

by other variables with strong seasonal variations (e.g., sea ice cover

and sea surface temperatures).

MARS analysis offered a more complex model in which fuel

usage was determined by electricity usage, mean air temperature, and

wind speed (Fig. 4). The model error was 4.2 3 106 L2 (3.2%), less

than half of that of the regression tree. The modeled effects of air

temperature, wind, and electricity usage on fuel usage can be observed

from Figures 4b and 4c. Colder air temperatures increased fuel usage,

as did higher wind speeds and higher electricity usages. Both electricity

usage and wind speed showed a threshold effect: increases of wind

speed over 6.5 m s�1, or electricity usage above about 160 MWh did

not cause further increase in fuel consumption.

Evaluation against Domain Knowledge

These results are in good agreement with the known physical

processes. However, for management purposes it would be preferable

if electricity usage was not needed as an input. With this variable

removed from the explanatory variable set, the MARS model used

mean air temperature, wind speed, and mean lower stratospheric

temperature as explanatory variables (Fig. 5). The model error (MSE

4.8 3 106 L2, 3.5%) was slightly worse than that with electricity

included. The model was particularly inaccurate during the summer

months (note the truncation of the model estimates at low values in

Fig. 5a). This is not surprising: as noted above, the summer fuel usage

is essentially that needed for electricity generation. This result suggests

that the electricity demand at Davis station is not well predicted by the

remaining variables (which include station population). That electricity

demand is independent of station population might seem to be counter-

intuitive; however, the majority of the electricity needs of the station

are largely independent of personnel numbers (e.g., kitchen appliances,

potable water management, hydroponics, refrigeration, and communi-

cations). Other needs such as lighting and general appliances tend to

balance out: more lighting is needed in winter but there are fewer

station personnel using appliances (J. Bonnice, unpublished data). The

inclusion of lower stratospheric temperature as a explanatory variable

was an indirect consequence of the fact that electricity usage during

spring was lower than that during autumn. Surface air temperatures are

roughly equal during these two seasons. However, lower stratospheric

TABLE 2

The relative importance of each variable in explaining the
monthly fuel usage of the generator sets and boilers at Davis
station (regression tree model). The importance value reflects
the contribution that each variable makes as a splitting variable in

the tree (maximum value arbitrarily scaled to 100%).

Explanatory variable Importance (%)

Monthly mean air temperature 100

Highest monthly air temperature 89.8

Lowest monthly air temperature 89.2

Sea ice cover adjacent to Davis 80.2

Sea surface temperature adjacent to Davis 77.6

Monthly mean mid tropospheric temperature 77.0

Monthly mean lower stratospheric temperature 63.9

Sea surface temperature anomaly adjacent to Davis 25.6

Monthly mean of three-hourly wind speeds 19.1

Monthly electricity usage 15.4

Monthly mean atmospheric pressure 14.6

FIGURE 4. Multivariate re-
gression spline model of fuel
usage at Davis station. (a) Actual
and predicted monthly fuel us-
ages (fuel usages are shown as
deviations from annual means,
see text); (b) partial effects of air
temperature and electricity us-
age on fuel usage; (c) partial
effects of wind and air tempera-
ture on fuel usage. Contour lines
(dotted) show predicted fuel us-
age, points show observed data.
Predicted fuel usage increases
with increased electricity usage
or wind, or decreased air tem-
perature.
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temperatures lag the surface air temperatures by about one month. This

allows the model to distinguish spring from autumn and adjust the fuel

usage estimates accordingly. Excluding electricity usage did not affect

the regression tree.

This relatively simple example demonstrates that both the tree and

MARS methods are able to identify relevant explanatory variables

from those available. The model generated by the MARS method was

more representative of the true processes involved. The exclusion of

electricity demand (which has a direct physical link with fuel usage)

from the explanatory variable set yielded only a slight loss of

predictive accuracy, but the model included a variable with no direct

connection to the response variable. Inclusions such as this can be the

result of a chance correlation (particularly if the number of data is few).

Alternatively, as was the case here, the explanatory variable might be

included to compensate for the lack of a more direct one. The two

scenarios lead to quite different conclusions regarding the role of that

variable. Differentiating between the two cannot be done numerically,

and requires expert validation of the results in order to interpret the

meaning of a variable in a given context.

INDICATOR 31—ANNUAL POPULATION ESTIMATES OF

SOUTHERN ELEPHANT AND LEOPARD SEALS AT

MACQUARIE ISLAND

Problem Specification

Observations of leopard seals (Hydrurga leptonyx) on Macquarie

Island (548309S, 1588579E) have been recorded since 1949 (note that

this is a non-public indicator and does not appear in Table 1). While

mature leopard seals normally reside in or near the outer edge of the

Antarctic ice pack (Gilbert and Erickson, 1977), large numbers of

juvenile leopard seals periodically occur on Macquarie Island,

approximately every three to five years (Rounsevell and Eberhard,

1980; Rounsevell, 1988). No relationship between these periodic seal

sightings and physical or biological environmental variables has to our

knowledge been published. Ledingham (1979) investigated but did not

find a relationship between variations in the proximity of pack ice and

leopard seal abundance on Macquarie Island. A shortage of resources

in the ice pack has been suggested as the most likely explanation for

these periodic events (Rounsevell and Eberhard, 1980). Juvenile seals,

being less adept at foraging in pack ice, might be out-competed for

food and so forage northwards to subantarctic islands. The intent of

this exercise was to use the data mining process to find relevant

explanatory variables for these periodic leopard seal occurrences.

Data and Preprocessing

The seal abundance data (see Fig. 6) were collated from biology

log-books, previous publications, and personal records of expedi-

tioners. It is known that not all seals that visit the island are counted,

and some (particularly during early years) may have been counted

more than once. The accuracies of the raw abundance data were

therefore variable. Further, the abundance data show evidence of

a long-term decrease. These effects serve to obscure the periodic

variations in the data, and so the abundance data were log-transformed

and detrended. Those years during which large numbers of leopard

seals were sighted (more than 2.5 times the fitted linear trend, n¼ 19)

were marked as ‘‘leopard seal years’’ (see Fig. 6). Models were

assessed on their ability to predict whether or not each year was

a leopard seal year, thus making the problem one of classification

rather than regression.

Few explanatory data were available for the period spanned by the

seal observations. Those available comprised the lowest, highest, and

mean monthly air temperatures, and mean monthly air pressure and

wind speed at Macquarie Island (Shepherd, 2001). Mean monthly sea

surface temperatures (in a 28 3 28 area just south of Macquarie Island)

were extracted from a global data set (Smith and Reynolds, 2003).

Pack ice conditions are thought to be likely to contribute to this

phenomenon (Rounsevell and Eberhard, 1980; Rounsevell, 1988).

However, no reliable sea ice data were available for this period.

Instead, mean monthly sea surface temperatures in waters just north of

the estimated ice pack edge, immediately south of Macquarie Island,

were used. The average monthly pack ice extent was calculated from

satellite-derived estimates of sea ice cover from October 1978 to

December 2001 (Cavalieri et al., 1999). All explanatory variables were

calculated as yearly averages. We assumed that there might be a time

FIGURE 5. Multivariate re-
gression spline model of fuel
usage at Davis station, excluding
electricity usage as an explana-
tory variable. (a) Actual and
predicted monthly fuel usages
(fuel usages are shown as devia-
tions from annual means, see
text). Note the truncation of the
predicted values during the sum-
mer months when electricity de-
mand dominates fuel usage; (b)
partial effects of air temperature
and lower stratospheric temper-
ature on fuel usage; (c) partial
effects of wind and air tempera-
ture on fuel usage. Contour lines
(dotted) show predicted fuel us-
age, points show observed data.
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lag between environmental conditions and leopard seal movements;

therefore each explanatory variable was included in both immediate

form (i.e., with the explanatory variable value taken from the same

year as a seal population observation) and with a one-year lag

(i.e., the explanatory variable value from the year prior to a seal

population observation).

Variable Selection and Model Building

Classification tree analysis yielded a tree with a single split. In 14

separate years, Macquarie Island had an average highest monthly

temperature of more than 8.98C. On 11 of these 14 occasions, the

following year was a leopard seal year. The cross-validated mis-

classification rate was 25%. This misclassification rate was lower than

the null error rate of 37% (that obtained by simply guessing every year

to be a non-leopard seal year). The next-best predictors were all warm

temperature anomalies: warm mean monthly air temperature (.4.88C)

in the previous year, warm sea surface temperature (.6.78C) adjacent

to Macquarie Island in the previous year, and warm lowest monthly air

temperature (.�0.58C) in the previous year. Of the seven explanatory

variables that yielded better classification accuracy than the null, six

were from the year previous to that being classified. Adding further

splits to the tree led to a decrease in predictive accuracy, indicating

overfitting of the tree to the data.

Evaluation against Domain Knowledge

Interpretation of the analyses at once suggests that the Antarctic

circumpolar wave (ACW; White and Peterson, 1996) has a role in

leopard seal haul-outs at Macquarie Island. The circumpolar wave is

known to produce two suites of contrasting events at four to five year

intervals. One suite of characteristics in the ocean and atmosphere

south of Macquarie Island is a warmer sea surface temperature, less

extensive sea ice northwards, higher sea levels, and poleward wind

anomalies. The alternate suite reverses these anomalies. From the

results of the classification analyses it appears that leopard seals tend to

move northwards to Macquarie Island during the warmer sea phase. It

is likely that it is not the sea surface temperatures that drive this

behavior directly, but that these measurements act as a proxy for more

direct factors, such as characteristics of the sea ice or prey abundance.

The results indicate that variables from the previous year were better

predictors than the same variables during the leopard seal year itself.

This suggests that there might be a time lag between environmental

conditions and the response of the leopard seals, possibly reflecting

intermediate steps such as the response of prey species to environment.

Alternatively, the seals might be responding rapidly (i.e., with a time

lag of less than one year) but to environmental conditions to the east

of Macquarie Island. The ACW propagates eastward (White and

Peterson, 1996), and so the warm phase of the ACW to which the seals

might be responding would have been recorded at Macquarie Island

during the previous year.

Problem Iteration

With these initial results in hand, we revisited the problem, this

time focusing on the spatial relationships of the data, in particular the

sea surface temperature and sea ice variables. We explored correlation

maps of leopard seal abundances with gridded sea surface temperature

data (available for all years) and gridded sea ice concentration data

(available only from 1979 onwards). Figure 7 shows these maps for sea

ice and sea surface temperature in the previous year. Leopard seal

abundances were negatively correlated with sea ice cover in the region

south and slightly to the east of Macquarie Island in the previous year

(Spearman r¼�0.65, p , 0.05; Fig. 7a). Areas of positive correlation

at approximately 1208E and 1408W can also be seen on this figure;

these correspond to the cold (more extensive sea ice) nodes of the

ACW. Leopard seal abundances were also correlated with warm sea

surface temperatures in the region of Macquarie Island in the previous

year (Fig. 7b). These correlations were weaker and did not reach

statistical significance, suggesting that the link between leopard seal

behavior and sea ice conditions might be more direct than that with sea

surface temperatures. The correlations for sea ice and sea surface

temperature conditions of the same year (not shown) were generally

weaker than those of the previous year. More data about the role of sea

ice and associated ecosystems at different latitudes in the lives of

leopard seals are required to take explanations further. However, it is

FIGURE 6. Annual abundance
of leopard seals on Macquarie
Island. (a) Raw data; (b) after
log-transformation and linear
detrending. Filled circles denote
‘‘leopard seal years’’: periodic
occurrences of large numbers of
leopard seals on the island.
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clear that short-term climate periodicities at sea south of Macquarie

Island have importance in determining northwards movements of

leopard seals. These results will contribute to ongoing research in this

area (Burton, 1998–2003).

Discussion

The examples presented here demonstrate that a data mining

approach can be used to identify functional relationships within a

collection of data. The approach has obvious application to developing

and refining scientific models. It also offers promise as a unique search

tool to assist scientists in navigating the holdings of a data center, by

searching for data that is functionally related to a data set of interest.

Our experiences with Antarctic scientific data have identified some

particular challenges for data mining. Antarctic data sets tend to be

sparse, containing only a few observations. Often a data set will be

collected for a specific project and span only one or two seasons.

Antarctic data are also diverse, covering many different types of data,

sampling frequencies, and acquisition methods. For the model selection

problem, this means that there are often many potential explanatory

variables but few observations on which to base the selection

algorithms. This is in contrast to typical applications of data mining

in business and other scientific fields, in which data volumes are often

large and homogeneous. Further, the explanatory data available for

Antarctic data are often not directly relevant to the response variable.

This was demonstrated with the leopard seal data. The phenomenon of

leopard seals on Macquarie Island has previously been postulated to be

due to food scarcity in the ice pack. However, none of the available

explanatory variables were direct measures of prey abundance. In these

situations, the resultant models will tend to have weak predictive power.

A similar problem can arise from the spatial sparsity of the data.

Antarctic data tend to be very patchy in their spatial distributions.

Analyses of such data therefore lead to local conclusions, which can

not necessarily be extended to wider regions of the Antarctic.

These difficulties are not easily overcome. With small data sets,

methods that make limited use of the information provided by data can

perform poorly. The regression tree model of fuel usage presented here

demonstrates this. In such cases, the prior knowledge of the experts

becomes an important source of information. This information was

incorporated here in an indirect manner, by allowing the analyst to

constrain elements of the search procedure and to manipulate variables.

Other techniques, such as Bayesian networks (e.g., Heckerman, 1999)

incorporate prior knowledge in more formal manner. Such models

could be used as replacements for the regression techniques included

here. However, during the early stages of model development, there is

often little prior knowledge available. In these instances, identifying

only a single model to explain the observed data is a poor strategy. A

better approach is to identify a number of likely models. These may

have contradictory interpretations in terms of physical processes.

Further data collection or experimentation, coupled with expert

interpretation, could then resolve the ambiguities. Careful design of

these subsequent experiments can reduce the amount of extra data

needed (e.g., Ramakrishnan and Bailey-Kellog, 2002). Thus, the

iterative nature of the data mining process can extend across the entire

cycle of scientific investigation (Hand, 1999; Ramakrishnan and

Grama, 2001).

Even when data are plentiful, identifying only one candidate

model can be a risky proposition. Often, several of the explanatory

variables yield similar model accuracy. Investigating only one possible

choice risks the drawing of limited or incorrect inferences. This can be

particularly problematic with highly correlated predictors, which is

a common occurrence in environmental databases such as the SIMR

used here. In these analyses we have typically examined a range of

possible models, drawing on the knowledge of the relevant expert to

evaluate each. The ranked list of explanatory variable importances at

each split (trees) or knot placement (MARS) was also examined to

identify a number of possible variables at each stage of a model.

The reuse of archived data in the manner described here must be

undertaken with care. It is the responsibility of the analyst to ascertain

the suitability of data for reuse, including examining the methods used

to collect the data in the first instance. This is often a problem with

observational data (e.g., wildlife sightings) collected opportunistically

and without a balanced sampling strategy (Raymond and Woehler,

2003). In some instances, databases of such sightings can be resampled

to approximate a more rigorous experimental design (Guisan and

Zimmermann, 2000). If the database is large, the subsequent reduction

in data volume might also be beneficial. Other aspects of the model

must also be considered. For example, a large proportion of the data

held by the AADC have spatial and temporal components. Ignoring

spatial correlation can lead to erroneous conclusions (Carroll and

Pearson, 2000; Keitt et al., 2002). Many techniques for mining spatial

and temporal data have been developed—see, for example, Koperski

and Han (1995), Ng and Han (2002), and the bibliography provided by

Roddick and Spiliopoulou (1999). In the leopard seal example we used

FIGURE 7. Correlation maps of annual abundance of leopard
seals on Macquarie Island with (a) average sea ice concentration
from the previous year and (b) average sea surface temperature
from the previous year. Leopard seal abundances are correlated
with low sea ice cover south of Macquarie Island, and more
weakly with warm sea surface temperatures in the Macquarie
Island region.
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spatial correlation maps to explore the relationships between data sets.

For large spatial databases, a more computationally efficient approach

may be required (e.g., Zhang et al., 2003).

Noise or uncertainty in data can be difficult to deal with. Remote

sensed data can have large uncertainties. For example, estimates of sea

ice cover derived from satellite images are known to be poor when

confronted with newly forming sea ice (Cavalieri et al., 1999). Long-

term Antarctic data sets have almost without exception been collected

by a variety of researchers or instruments, giving uncertainties that

vary across the history of the data. However, incorporating uncertainty

information into analyses can provide important guidance for future

experiments by identifying areas where the support for a hypothesis or

the understanding of causal mechanisms is weak. The AADC

encourages Antarctic scientists to describe the likely uncertainties in

their data in the associated metadata records; these uncertainties are

then included as fields in the relevant databases. This information could

be used, for example, in a Monte Carlo approach to uncertainty

analysis. This would examine the effects on a model of random

perturbations to the explanatory data within the limits of these

uncertainties. Regions of explanatory space in which a model is

particularly susceptible to noise might indicate a weakness of the

model, or that further experimentation could profitably be directed to

this aspect of the model’s behavior.
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