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Abstract

The distribution of mountain permafrost in the northern hemisphere depends on

topographic and climatic factors, ranging from the maritime conditions of Iceland

over transitional conditions in southern Norway to continental conditions in

Mongolia, and from alpine mountains to paleic mountains. This study discusses the

different environmental factors that govern permafrost distribution based on

personal studies and a literature review. It is hypothesized that the thermal state

of the ground is an important parameter to understand the time and spatial scale of

sediment transfer and landscape development in cold mountainous regions. This is

exemplified for the cases of rock walls, glacier forefields, rock glaciers, and the case

of sediment remobilization due to glacier advance. The authors propose that

thorough knowledge of the ground thermal regime is an important basis for

addressing sediment budgets in space and time.

DOI: 10.1657/1938-4246(08-026)[ETZELMUELLER]2.0.CO;2

Introduction and Background

Permafrost in mountains is a comparably new scientific topic.

During recent years mountain permafrost gained increasing

attention due to its influence on the occurrence of geotechnical

hazards (e.g. Haeberli, 1992; Harris et al., 2001; Arenson et al.,

2003) and due to its role as a freshwater supplier in arid mountain

chains (Corte, 1976; Schrott, 1998). Mountain permafrost is

special for two main reasons: First, it is extremely heterogeneous.

The transition between permafrost patches and continuous

permafrost can be located along a single slope, with correspond-

ingly great variability of ground temperatures, unfrozen water

content, and geotechnical properties of the ground over short

distances (e.g. Hauck et al., 2004). Second, most mountain

permafrost areas are characterized by relatively ‘‘warm’’ ground

temperatures (i.e. temperatures close to 0 uC), making these areas

extremely sensitive to climate change impacts (cf. Haeberli et al.,

1993).

Permafrost is defined as a certain thermal state of the ground.

The term ‘‘periglacial’’ addresses this domain, even though

permafrost is not a prerequisite. Geomorphological processes in

permafrost areas mainly relate to products of annual freeze-thaw

cycles (patterned ground), gravitational processes (solifluction,

creep), and landscape-forming processes associated with valley

building and cryoplanation. The role of permafrost in a sediment

budget concept, and its influence in general landscape develop-

ment, is less elaborated in the literature, and mainly related to the

influence of rock glaciers (e.g. Jäckli, 1957; Barsch et al., 1979;

Frauenfelder, 2006; Berthling and Etzelmuller, 2007).

It is evident that mountain permafrost is an important factor

for processes related to sediment production, mobilization, and

deposition. High mountains in Europe (e.g. the Scandes, Alps),

North America, and Central Asia (e.g. Himalaya, Pamir, Altai,

etc.) were glaciated to a varying degree and in varying extents

during the Pleistocene and Holocene, in contrast to more

continental areas in, for example, the northern Yukon and parts

of Siberia/Russia and Alaska. In these formerly or presently

glaciated mountain chains most of the sediment availability and

mass flux can be described within the concept of paraglacial

sediment adjustment (see overview in Ballantyne, 2002). The

exhaustion rate of sediments within this framework is dependent

upon different factors, such as bedrock geology, topography, and

climate (Ballantyne, 2002). As a consequence of certain climate

factors, the evolution or prevalence of permafrost after the early

Holocene glacier retreat is affecting time-dependant sediment

budgets in core areas of many mountain chains.

The term ‘‘paraglacial’’ does not refer to a certain process

domain but is an expression for transitional processes, in this case

caused by glaciations, adapting to a new equilibrium. This is also

known for other geomorphological processes, such as the

periglacial weathering-cover or loess accumulation in, e.g., Central

Europe (Büdel, 1982; French, 1996), planation and tropic soil

accumulation throughout the Tertiary in Central Europe (cf.

Büdel, 1982), or rapid land uplift and associated erosion and

accumulation processes in tectonically active continental margins

(cf. Summerfield, 1991). The term ‘‘paraglacial’’ explicitly

addresses the geomorphologic imbalance caused by glaciations

in terms of erosion and accumulation of debris, available for non-

glacial processes.

In terms of the understanding of process interactions and

landform development, the paraglacial concept opens up an

interesting connection between the glacial and the periglacial

realm, especially a coupling of the ‘‘glacial system’’ and the

‘‘coarse debris system’’ according to the morphogenetic definitions

of high mountain process areas (cf. Caine, 1974; Barsch and

Caine, 1984).

The motivation for this paper is to formulate and discuss

concepts of the relationship between permafrost and sediment

transfer in cold mountain areas within the framework of the IAG

SEDIBUD working group (Beylich et al., 2008). We suggest that

the thermal state of the ground and thus, mountain permafrost

distribution, is an important factor for the sediment transfer and

subsequent landscape development in cold mountainous regions,

as schematically illustrated in Figure 1. The objective of this paper
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is to highlight process patterns based on a conceptional,

geomorphological understanding by a modification of the para-

glacial exhaustion model with consideration of permafrost

conditions especially for the glacier sediment system and the

coarse (and thus paraglacial) sediment system in the sense of

Barsch and Caine (1984), neglecting frost-driven creep processes

and fluvial dynamics. This paper outlines mountain permafrost in

relation to the factors influencing its distribution in different

environmental settings, and its influence on glaciers. Mountain

ground thermal regimes are then coupled conceptionally and

discussed based on their influence on selected aspects of the

paraglacial concept and the sediment transfer system.

Factors Affecting Mountain Permafrost in Different
Environmental Settings

TOPOGRAPHY

Topography is one of the major constraints for the existence

of mountain permafrost. At present no clear consensus exists

about how to define a mountain range. Geomorphologists

normally use a morphometric definition in terms of elevation

variability within a certain spatial range (cf. Barsch and Caine,

1984), which is, for example, easily implemented using digital

elevation models (DEMs) (Fig. 2). Such morphometric character-

istics are important to understand mountain permafrost distribu-

tion and associated geomorphologic processes. Permafrost in

Scandinavia is, for instance, related to other topographic settings

than permafrost in the Alps. In Scandinavia, relatively high, but

smooth mountains (paleic surfaces) dominate within the perma-

frost realm, while this type of smooth topography is absent in the

Alps (Fig. 2). This causes different landform assemblages, e.g. the

scarcity of rock glaciers in southern Scandinavia (cf. Etzelmüller et

al., 2003).

CLIMATE, SURFACE WETNESS, SNOW, VEGETATION,

AND SURFACE COVER

Haeberli et al. (1993) has distinguished mountain permafrost

into more maritime and more continental realms early-on. In

many mountain ranges there exist continuous transitions between

maritime- and continental-dominated climate conditions because

of the rain-shadow effect of mountain ranges. There, both an

increase of the equilibrium line altitude of glaciers (ELA) and a

decrease of the lower permafrost limit towards the rain-shadow

direction can be observed. This is documented, for example, for

Scandinavia (Fig. 3) (Etzelmüller et al., 2003), the Yukon

mountains (Lewkowicz and Bonnaventure, 2008), and Iceland

(Etzelmüller et al., 2007).

In mountain areas, the relationship between permafrost

existence and topographic and climatic factors has been widely

used to map permafrost distribution, and conceptually outlined

using precipitation-temperature diagrams like the one shown in

Figure 4 (Haeberli and Burn, 2002). In these studies the

distribution of certain permafrost landforms, such as rock glaciers

(e.g. Frauenfelder et al., 2001), or ground temperature parameter

proxies, such as the bottom temperature of the snow cover (BTS),

were statistically related to permafrost temperatures or, simply to

its existence/absence (e.g. Hoelzle, 1992; Gruber and Hoelzle,

2001; Isaksen et al., 2002; Lewkowicz and Ednie, 2004; Heggem et

al., 2005; Lewkowicz and Bonnaventure, 2008). Altogether, such

studies document certain prevailing dependencies (Table 1), which

are summarized in the following:

Elevation and topographic aspect are the most important

factors governing permafrost distribution, and are proxies for the

energy balance near the ground surface. Topographic aspect is

normally substituted by incoming solar radiation, calculated using

DEMs. However, many studies demonstrate that the influence of

topographic aspect increases with continentality and slope

inclination. In maritime areas like the western Yukon (Lewkowicz

and Bonnaventure, 2008) or western Norway (Isaksen et al., 2002),

permafrost distribution can be explained quite adequately by

elevation alone, while in more continental areas, like the eastern

Yukon (Lewkowicz and Bonnaventure, 2008), eastern central

Scandinavia (Heggem et al., 2005; Juliussen and Humlum, 2007b),

or Mongolia (Etzelmüller et al., 2006; Heggem et al., 2006;

Sharkhuu et al., 2007), topographic aspect gains increasing

influence. In high-relief regions, such as the Alps, topographic

aspect is a key parameter for the assessment of the permafrost

distribution pattern (Hoelzle, 1992; Gruber and Hoelzle, 2001;

Lewkowicz and Bonnaventure, 2008).

Snow cover decouples the atmosphere from the ground in

terms of energy exchange, and the degree of decoupling is

governed by snow thickness (Goodrich, 1982). According to

Smith and Riseborough (2002), the snow cover delineates the

transitional area between discontinuous and continuous perma-

frost. In mountains, however, snow cover is extremely heteroge-

neous due to topography and wind redistribution, and important

in all settings (e.g. Mittaz et al., 2002).

Surface wetness and high soil water content act differently in

maritime and continental settings. In more maritime mountains,

permafrost is restricted to high-alpine zones with cool summers

and low vegetation coverage. Wet areas act as a heat source due to

latent heat and accumulation of snow in such areas (Heggem et al.,

2005). In continental areas, summer temperatures are higher and

allow denser vegetation in terms of biomass and consequently the

build-up of associated organic material. Here, the vegetation

damps summer temperatures, while the winter cold can penetrate

easily into the ground due to the higher thermal conductivity of

frozen versus thawed organic material (Williams and Smith, 1989).

Thus, wet areas are positively correlated with permafrost existence

in more continental environments, while the opposite is true in

maritime settings (Etzelmüller et al., 2006).

It is only in continental mountain environments that

vegetation is important. In arid continental mountains, permafrost

FIGURE 1. Sediment cascade system in mountainous areas. The
relative importance of the arrows indicating paraglacial sediment
fluxes are highly influenced by the ground thermal regime (based on
Etzelmüller, 2000).
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may be the reason for denser vegetation as compared to non-

permafrost areas, due to the fact that the active layer keeps the

water close to the surface during summer and, therefore, makes it

available for vegetation. The large influence of vegetation cover on

permafrost distribution in, e.g., northern Mongolia has been

demonstrated by Sharkhuu et al. (2007). In other, more moderate,

continental areas like Finnmark county, northern Norway,

vegetation may have the opposite effect, by maintaining a stable

snow cover and, thus, preventing permafrost aggradation (Isaksen

et al., 2008).

Surficial sediments are highly heterogeneous in mountains.

According to Smith and Riseborough (2002), organic material

determines the limits of sporadic permafrost in lowland perma-

frost areas. This is also valid for many mountain areas and

manifested in the distribution of palsas. Examples can be found in

northern Scandinavia, where we can observe palsas close to sea

level in Finnmark (Svensson, 1964), while the lower limit of

discontinuous mountain permafrost is found at elevations between

400 and 500 m a.s.l. (Farbrot et al., 2008). A similar pattern is

documented for the Abisko area, Sweden (Zuidhoff and Kolstrup,

2005), northern Finland (cf. Seppälä, 1997; Luoto and Seppälä,

2002), and Iceland (Etzelmüller et al., 2007).

An additional factor in mountains is coarse, block-rich

material. It has been widely shown that the surface offset between

‘‘surface temperatures’’ and ‘‘top of permafrost temperatures’’ is

high in such material due to advective heat transport (cf.

Gorbunov et al., 2004; Harris and Pedersen, 1998), because of

high surface roughness, preventing the accumulation of enough

snow to cover blocks during winter (e.g. Juliussen and Humlum,

2008) or simply due to low thermal conductivity of the upper

block-rich layer (Gruber and Hoelzle, 2008). Many studies clearly

show the cooling effect of block fields, both on slopes and on

planes (Delaloye et al., 2003; Juliussen and Humlum, 2007b,

2008). This means that block-rich surface layers in mountains, in

the form of block fields, rock glaciers, or block streams, play a

similar role as organic material. Block-rich material depresses the

lower limit of mountain permafrost. Locally, steep blocky slopes

in shaded topographic settings may display patches of permafrost

or permafrost islands far below the regional permafrost limit (e.g.

Delaloye et al., 2003; Luetschg et al., 2003).

FIGURE 2. The figure illus-
trates the topography variability
in the permafrost areas of south-
ern Norway and the Alps. The
topographic variation is expressed
as the standard deviation of ele-
vation within a 10 km radius from
each point (cell in a DEM) in the
map. The colored areas denote the
areas potentially underlain by
permafrost according to Brown
et al. (1995). While the mountains
of southern Norway are dominat-
ed by an elevation standard devi-
ation of below 300 m, the corre-
sponding value for the Alps is
above 300 m, with large areas
above 500 m. The photographs
display the difference of paleic
and alpine landscapes, exempli-
fied for southern Norway (Dov-
refjell) and Switzerland (Enga-
din). The dotted line shows the
position of the profile of Figure 3.
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Permafrost and Glaciers

Permafrost and glaciers co-exist in the transitional area

between maritime-dominated and continental-dominated climatic

settings in mountain areas. In addition, several mountain areas

within the continuous and discontinuous arctic permafrost zone

are partly glaciated with glaciers ending in permafrost environ-

ments (e.g. East-Canadian Arctic Islands, Svalbard, Franz-Josef

land, etc.).

A comprehensive overview on glacier-permafrost relations is

given in, e.g., Haeberli (2005) and Etzelmüller and Hagen (2005)

(Fig. 5). The basic assumption thereby is that glaciers ending in

the permafrost zone will always have at least parts of their tongues

frozen to the bed. Thus, glaciers in the permafrost zone are

polythermal with partly cold-based margins. It is evident that

permafrost at glacier margins (1) enhances basal marginal on-

freezing of debris (basal freezing conditions) (cf. Boulton, 1972),

(2) leads to enhanced transport and accumulation of debris onto

the glaciers’ surface (cf. Weertman, 1961), (3) favors the

development of long-term ice-cored moraine land systems (if the

debris cover is thicker than the regional active layer) (e.g. Souchez,

1971), and (4) is thermally unstable (e.g. Etzelmüller, 2000; Sletten

et al., 2001; Schomacker and Kjaer, 2008).

Deposited in sloping terrain, such frozen debris deposits may

start creeping, resulting in rock glacier–like landforms. Such

‘‘moraine-derived’’ creep deposits may contain ice of different

origin (glacier ice, segregation ice, interstitial ice) but even so

require permafrost conditions for their long-term maintenance.

While creeping sediment deposits originating from rock wall

processes are closely related to their debris-supplying headwalls

FIGURE 3. Example of the relation between equilibrium line altitude of glaciers (ELA) and lower limit of discontinuous mountain
permafrost (MPA) along a west–eastern transect in southern Norway (based on Etzelmüller et al., 2003, modified). The shaded areas denote
locations of palsa mires as a morphological expression for sporadic permafrost. The numbers indicate: (1) the zone of dominating glacier
coverage, (2) the zone of co-existing glaciers and permafrost, and (3) the zone of periglacial dominance and the absence of glaciers. Jb =
Jostedalsbreen, SFj = Sognefjell, Jh = Jotunheimen, Ron = Rondane, Tf = Tronfjell, Fe = Femund area.

FIGURE 4. Conceptual diagram showing the relation between precipitation (continentality), temperature, glacier equilibrium line altitude
(ELA), and permafrost (‘‘cryosphere model,’’ modified based on Haeberli and Burn, 2002). The shaded area denotes the zone where
interactions between glacial processes and permafrost are to be expected. The dashed line marks the approximate transition between cold and
warm firn. The dotted line crudely denotes the timberline. The circles indicate areas mentioned in this paper. NM = northern Mongolia, EY =
eastern Yukon, WY = western Yukon, WN= western Norway, EN = eastern Norway, FM = Finnmark county in northern Norway, IS =
northern and eastern Iceland, AL = Alps. The pictures illustrate the diversity of mountain permafrost settings throughout selected sites in the
northern hemisphere.
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through a direct process chain linking frost weathering, rockfall,

and debris displacement by permafrost creep, the development of

moraine-derived landforms contains an additional, both spatially

and temporally, complex transport module (including the whole

glacier history). A moraine-derived rock glacier is, thus, not fed

primarily by continuous debris input but evolves out of an already

existent debris ‘‘reservoir.’’ Consequently, the characteristics of

this debris are significantly different from the original, weathered

material accumulated before glacial transport.

Retreating glaciers (e.g. due to climate forcing) can trigger

permafrost aggradation in recently deglaciated glacier forefields

(ground cooling) (Kneisel, 2003; Kneisel, 2004; Etzelmüller and

Hagen, 2005), while the advancing of glaciers into permafrost

normally leads to a warming of the ground and possible talik

development (ground warming). Hence, there is an imbalance

between the air and ground temperature signals, and the

corresponding responses may differ for decades to millennia.

The time difference in response time of the signal is a major

driving factor, influencing the sediment transport system. At the

temporal and spatial interface between glaciers and permafrost

this leads, in addition, to the frequent triggering of catastrophic

events, such as ice-rock avalanches, glacier-lake outburst floods

from moraine-dammed lakes, etc. (e.g. Richardson and Reynolds,

2000b; Kääb et al., 2005; Schneider, 2005).

Sediment Mobilization and Transfer under
Permafrost Conditions

The paraglacial concept, based on Church and Ryder (1972)

and recently further discussed by Ballantyne (2002), tries to

quantify the time- and process-dependant mobilization of

sediments after glaciations in form of a sediment-exhaustion

model (Fig. 6a). Ballantyne’s (2002) exhaustion model follows in

principle a linear stationary impulse-response function of the form

S ~ S0 e{ k�tð Þ ð1Þ

where S is the amount of material left which is unstable or can be

evacuated, t is time, k is an adjustable parameter related to the

speed of sediment evacuation, and S0 is the starting volume of

available sediments or process frequency. This equation is widely

known for hydrological modeling, describing the linear emptying

of hydrological magazines.

The exhaustion rate of sediments within this framework is

dependent upon different factors, such as bedrock geology,

topography, and climate. As a consequence of certain climate

factors influencing the evolution or prevalence of permafrost after

early Holocene glacier retreat in core areas of many mountain

chains, we can expect a severe impact of the ground thermal

regime on the ability to mobilize material. Thus, we hypothesize

that k is also dependent on ground temperature. In the following

paragraphs, we attempt to defend this hypothesis with examples

for material entrainment during glacier advances under the

influence of permafrost, rock wall processes, debris-mantled

slopes and glacier forelands, and hazard related processes.

PROCESSES RELATED TO PARAGLACIAL MATERIAL

ENTRAINMENT DURING GLACIER ADVANCES

A major discussion in this context is the incorporation of

proglacial debris during glacier advances. A major input into the

glacier system is pre-glacial loose debris incorporated during

glacier advances, in addition to subglacial processes. In a cold-

based system this input is lower, subglacial erosive processes are

less pronounced or even absent (Humlum et al., 2005), and

external material entrainment is relatively more effective. The

material accumulation during glacial activity develops a sediment

magazine, which serves as the initial impulse for the paraglacial

exhaustion model (Fig. 6c).

Many sediment magazines are not connected to the fluvial

system, thus surviving a whole deglaciation period. In a frozen

context, these landforms will not serve as sediment sources during

new glacier advances. This has become more and more evident

during recent studies, e.g. on Svalbard, where plant remnants were

found undisturbed by glacier advances (Humlum et al., 2005).

Such findings can also help to better understand landscape

development in, e.g., Scandinavia (cf. Kleman and Hättestrand,

1999; Fredin, 2002) and Canada (Kleman and Hättestrand, 1999).

Cold-based glaciers neither produce much sediments, nor do they

largely influence pre-glacial sediments; these are basically left

‘‘untouched,’’ as, for example, block-rich material which, as has

been discussed above, favors stable permafrost conditions due to

its large thermal offset (Juliussen and Humlum, 2007a). Thus,

from a paraglacial point of view, the paraglacial period in terms of

an adjustment to a pre-glacial state of sediment transport, does

not exist or is highly restricted (Fig. 6d).

PROCESSES RELATED TO GLACIER FORELANDS AND

DEBRIS-MANTLED SLOPES

Glacial sediments in permafrost regions are frozen, and,

therefore, not available for intense erosion except for the active

layer. As long as the active layer is undisturbed, such landforms

and sediment covers are stable, and often ice-rich. Erosion is

effective at uncovering the active layer, initiating differential

melting and sediment redistribution (Østrem, 1964; Driscoll, 1980;

Etzelmüller, 2000). This makes glacier forelands in the permafrost

zone a constant source of sediment supply during short periods of

TABLE 1

Statistical relation between environmental factors and permafrost existence in different mountain settings. The relations are extracted from
literature, and mainly based on linear or logistic regression analysis of permafrost proxies (bottom temperature of the snow cover [BTS], rock
glaciers) and permafrost existence. ++/22 = strong positive or negative statistically significant relation, +/2 = statistically significant

relation, 0 = weak or no statistical significance.

Continental Maritime

Alpine Paleic Alpine Paleic

Elevation + + ++ ++
Topographic aspect/incoming radiation 22 22 2 0

Surface wetness/soil water + ++ 0 22

Snow, topographic curvature 2 22 22 22

Vegetation + ++ 0 0
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the year, but the amount of debris mobilized is limited due to a

short melting season. This process would speed up, however,

under conditions of climate forcing and during an enhanced melt

of the ice cores.

This pattern obviously has a large effect on the fluvial

sediment evacuation system from glacier-dominated environ-

ments. In temperate environments with a stabilized pro-glacial

river network, sediment concentration is high during spring,

subsequently decreasing during summertime. There is no or low

correlation between river discharge and sediment concentration

and normally a negative hysteresis effect can be observed (e.g.

Lawson, 1993). In polythermal glacier margins and permafrost

dominated environments, however, sediment supply is present

throughout the season, and we find a good correlation between

discharge and sediment concentration (Vatne et al., 1995, 1996;

Bogen and Bønsnes, 2003). The reason for this pattern is related to

the glacial drainage systems and sub-glacial sediment availability.

In temperate glacier systems total discharge is higher and

channelized through sub-glacial tunnels. Material produced

during the previous year is evacuated and the sediment storage

emptied. In polythermal and cold glacier systems discharge is

lower and sediments are usually available closer to the front due to

onfreezing processes in the transition zone between temperate and

cold ice (Weertman, 1961; Boulton, 1972) and thus available for

fluvial evacuation.

This implies that degrading permafrost or enhanced melt of

ice-cored sediments would speed up sediment evacuation during

the paraglacial period. In contrast, stable permafrost conditions or

permafrost aggradation in recently deglaciated terrain would lead

to the bonding of sediments and to reduced evacuation (Fig. 6e).

PROCESSES RELATED TO GLACIALLY OVER-

STEEPENED ROCK WALLS

It is well-known that glacier activity leads to oversteepening

of valley sides and destabilization of bedrock. After deglaciation,

an increased frequency of rock slope failures due to stress release

and erosion can, therefore, be observed.

The relation between permafrost and rock slope stability is

also documented in the literature. Permafrost in rock walls leads

to ice-fillings in rock joints, and influences the rock hydrology and

the hydrostatic pressure. Steep temperature gradients at the

FIGURE 5. Conceptual diagram indicating the relation between climate (mean annual air temperatures), permafrost, and landform
assemblages in the glacier marginal zone (modified based on Etzelmüller and Hagen, 2005). The numbers on the pictures relate to the numbers
on the diagram and display glacier marginal land systems in different ground thermal regimes.
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surface zone cause the transport and refreezing of free water and

subsequent growth of ice lenses. The resulting increase in pressure

is able to destabilize the rock locally (Haeberli et al., 1997;

Wegmann et al., 1998). With a rise in temperature, frozen rock

joints reach minimal stability at temperatures between –1.5 uC and

0 uC, i.e. even before thaw, as shown by Davis et al (2001) through

centrifuge modeling in the laboratory. Additionally, the hydro-

static pressure within the rock wall might change. As a

consequence, enhanced rockfall activity and rock avalanches are

expected in particular at the lower boundary of permafrost

distribution (Nötzli et al., 2003; Gruber et al., 2004). While cold

permafrost stabilizes rock walls, it may also enhance frost-

weathering related processes and, subsequently, the production

of smaller-grained debris (Fig. 6b). In summary, frozen rock walls

delay sediment exhaustion.

In general, slope deposits form important sediment magazines

which are available for, e.g., fluvial evacuation. However,

permafrost bonds these sediments. On the other hand, ice content

can be so large that creep processes start, bringing a talus slope

closer to a media for material evacuation. Active rock glaciers, for

example, creep down-slope with velocities in the order of

centimeters to decimeters per year, and despite this comparably

slow movement, can be seen as efficient debris transport agents

(Jäckli, 1957; Barsch, 1996). It is evident that rock glacier creep

can delay or even prevent the covering of rock faces by talus

material and thus extend the period for frost shattering. Thus,

rock glacier development may enhance rock wall retreat locally.

However, these processes are extremely slow, delaying sediment

exhaustion over millennia.

Discussion and Conclusive Remarks

PERMAFROST, CLIMATE CHANGE, AND

SEDIMENT TRANSFER

As permafrost is defined by ground temperature and, thus,

depends on the surface energy balance, it is evident that climate

change and presently observed climate forcing have a severe

influence on the distribution of mountain permafrost. The

thickness of the active layer is reacting more or less instanta-

neously to climate warming by an increased thaw depth, thus

potentially making more sediments available for erosion and

transport. Gruber et al. (2004) reported thaw depths of more than

10 m in rock walls in Switzerland during the unprecedented warm

summer of 2003 . It can, therefore, be concluded that increasing

ground temperatures in ice-rich permafrost are likely to cause

thaw-related slope instabilities in mountain areas (Harris et al.,

2001; Haeberli and Burn, 2002) as well as in the continuous

permafrost zone of the Arctic (e.g. Lewkowicz and Harris, 2005).

The latent heat effects of an ice-rich transient layer immediately

FIGURE 6. Conceptual dia-
grams illustrating the relation
between the paraglacial exhaus-
tion model and the ground thermal
regime. (a) Principle of the para-
glacial exhaustion model based on
Church and Ryder (1972). The
model follows the principles of an
impulse-response function, where
the impulse is the sediment accu-
mulation due to glaciations, and
the response is the evacuation or
mobilization of these. (b) Influ-
ence of permafrost on the stabili-
zation or weakening of rock walls.
(c) Material accumulation due to
glaciations in a temperate glacier
setting. (d) Same as (c) but under
permafrost conditions. (e) Con-
ceptional sediment exhaustion
rate of debris-mantled slopes un-
der different ground thermal con-
ditions (from Ballantyne 2002). (f)
Sediment exhaustion in the case
of rapid sediment evacuation due
to failure (natural hazard).
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below the permafrost table reduces thaw penetration (Shur et al.,

2005), but also increases the volume of meltwater released, thereby

increasing the risk of landslides in areas with finer-grained soils.

In contrast to rock walls, block field areas in high mountain

ranges or sites with thick organic surface layers in more

continental areas will show a much slower reaction because of

their internal thermal buffering effects (Harris and Pedersen, 1998;

Gorbunov et al., 2004; Yi et al., 2007). Therefore, we can expect

different responses in more continental areas where a climate

warming signal of the permafrost is not clearly visible, and thus

sediment transport reaction might be different (Burn and Nelson,

2006; Lawrence et al., 2008).

Sediment mobilization through polythermal glaciers and

creeping permafrost is extremely slow, delaying sediment exhaus-

tion over millennia notwithstanding climate variability. Nonethe-

less, this leads—over time—to the accumulation of considerable

sediment bodies. One example is the influence of these delay

mechanisms on the intensification of processes when failure

occurs. The sediment exhaustion concept is, therefore, also of

importance for the understanding of alpine geohazards, such as

debris flows and glacier outburst floods (GLOFs). Rock glaciers,

for instance, act as enhanced reservoirs of potentially unstable

debris, increasing potential debris flow starting volumes within

debris flow initiation zones (Hoelzle et al., 1998). Where a rock

glacier has advanced onto steeper ground, rockfall along the steep

rock glacier front may increase (Bauer et al., 2003; Kääb and

Reichmuth, 2005). If the ground falls steeply away below the rock

glacier, rockfall, slides, and subsequent debris flows may affect

considerably larger areas (Kaufmann and Ladstädter, 2003; Roer

et al., 2005; Kääb et al., 2007). These processes are accelerated

during climate warming episodes, because the internal ice warms

up which may lead to velocity increase of such landforms (Kääb et

al., 2007). Thus, in the case of failure, large sediment volumes

would be released within a short time, leading to a step-wise

exhaustion of the sediment magazine (Fig. 6f).

Ground thermal conditions in moraines are often a crucial

factor in the damming of moraine lakes. Permafrost or near-

permafrost conditions support the long-term preservation of dead

ice bodies, which may leave cavities when melting (Richardson

and Reynolds, 2000a, 2000b). Sudden release of meltwater stored

in such cavities may lead to significant hazard, causing GLOFs.

Differential thaw settlement is frequently associated with the

formation of thermokarst lakes, which continue to develop

through positive feedback mechanisms of water convection and

latent heat effects, leading to further ground ice melt (Kääb et al.,

2005). In such unstable terrain, sudden lake drainage is likely.

A TEMPERATURE-DEPENDANT PARAGLACIAL

EXHAUSTION MODEL

Based on the above considerations it seems evident to

incorporate temperature into sediment exhaustion model equa-

tions. Such a model would then take a form like:

S ~ S0 e{k Tð Þ�t ð2Þ

following the principle of Equation 1, as proposed by Ballantyne

(2002). Here, k(T) indicates the temperature dependence of the

exhaustion rate coefficient (Fig. 7). It is obvious that permafrost

aggradation would lead to a flattening of the exhaustion curve,

while the opposite is true for permafrost degradation in relation to

a non-permafrost situation.

CONCLUSIVE REMARKS

As in glaciology, the understanding of the thermal regime

of the ground has a key importance also in a sediment

transfer context within the paraglacial framework. It is evident

that the thermal regime of glacier margins highly governs glacial

land systems (cf. Benn and Evans, 1998), and, therefore,

also influences sediment budgets related to this environment,

such as paraglacial exhaustion rates. Permafrost plays an

important role for more episodic events and, thus, within a

geohazard context, e.g. by stabilizing slopes or accumulating

debris due to permafrost creep. Permafrost degradation can

trigger the failure of sediment storage bodies. Climate change

directly governs the ground thermal regime and surface ice

coverage, and therefore, even though not in phase, influences

sediment mobilization and transport within cold mountainous

environments. With this in mind, it is important to explicitly

address the thermal components in catchments, also in the ground,

when trying to monitor and quantify sediment transfer processes

in mountainous regions.
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