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IntroductIon

Biological soil crusts are important ecosystem 
engineers in harsh terrestrial habitats where high-
er plants’ growth is limited or even not possible. 
The major feature, which enables BSCs to colo-
nize open soil in such habitats, is the poikilohydric 
lifestyle characterizing all of the assembling spe-
cies, lichens, mosses, algae, and cyanobacteria. These 
organisms may, besides using liquid water, also use 
other sources of water, such as water vapor or fog, 
which is not available for higher plants. In hot de-
serts, such as the Namib Desert, they require only 
very low amounts of liquid water to reach optimal 
photosynthesis (Lange et al., 1994) and, for exam-
ple, fog can be used as a water source for thallus 

rehydration (Lange et al., 2006). In addition dewfall 
can also be a primary controlling factor for activa-
tion as shown for lichen communities in the Negev 
Desert under natural conditions (Veste et al., 2001).

BSCs not only occur in warm or hot deserts, 
but are also major components of vegetation in 
cold regions like the Arctic (Liengen, 1999; Hans-
en, 2003; Breen and Levesque, 2008; Yoshitake et 
al., 2010, Williams et al., 2014) or the Antarctic 
(Green and Broady, 2003; Colesie et al., 2014). 
BSCs also occur, but are much less studied, in 
high alpine areas all over the world—for example, 
equatorial Andes (Pérez, 1997); Olympic Moun-
tains, Washington, U.S.A. (Gold et al., 2001); and 
Austrian Alps (Türk and Gärtner, 2003; Peer et 
al., 2010; Zheng et al. 2014). The polar and alpine 

A B S T R A C T

Biological soil crusts (BSCs) are small-scale communities of lichens, mosses, algae, and 
cyanobacteria that cover much of the surface area in regions where vascular plant growth 
is restricted due to harsh environmental conditions, such as perpetually ice-free areas in 
terrestrial Antarctic environments and alpine areas above the tree line. To our knowledge, 
none of the available studies provides a direct Antarctic-alpine comparison of BSC activ-
ity periods and the water use, both key traits to understand their physiological behavior 
and therefore related growth and fitness. Here, activity patterns and water relations were 
studied at two sites, one in continental Antarctica (Garwood Valley 78°S) and one in the 
High Alps of Austria (Hochtor, Großglockner 2350m). BSCs in continental Antarctica 
were only rarely active, and if so, then during melt after snowfalls and by fog. In the Aus-
trian Alps, BSCs were continuously active and additionally activated by rainfall, fog, and 
dew. Consequently, high alpine BSCs can be expected to have much higher photosyn-
thetic productivity supporting higher growth rates than the same functional vegetation 
unit has in continental Antarctica.
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habitats have several features in common: they be-
gin where trees disappear from the vegetation, are 
commonly stated to have a mean temperature of 
the warmest month below around 10 °C (Körner, 
1998), and are characterized by cold temperatures 
and snowfall in winter. Besides these general en-
vironmental similarities (Billings, 1973), there are 
also biological details underlining analogy. There 
is an especially interesting subset of lichens, the 
circumboreal–high mountains–circumpolar li-
chens, which are found not only in both polar 
regions, but also in the alpine environments of the 
temperate regions. This group contains some of 
the better-known lichens such as Xanthoria elegans, 
Usnea sphacelata, or Pseudephebe miniscula (Øvs-
tedal and Smith, 2001). In addition to those li-
chens, there are also representatives of the algal 
functional group in BSCs that are underlining the 
link between these environmentally similar, but 
geographically very distant systems. Phylogenetic 
and biogeographic analyses have demonstrated 
that the dominant algae in culture-independent 
surveys of soil samples from the Dry Valleys, Ant-
arctica, and the high Himalaya were from the same 
clade (Schmidt et al., 2011).

It is to be expected that organisms growing in 
these areas share similar ecophysiological features 
enabling them to survive under the harsh con-
ditions. In the same context, Green (2008) poses 
the question as to what selection is occurring so 
that only a small group of lichens can occupy the 
more extreme areas. As the most likely environ-
mentally controlled parameter, the author suggests 
changes in the length of the active time of the 
lichens mainly influenced by local water avail-
ability. Such differences in water availability have 
already been described to have crucial effects on 
recovery of continental Antarctic lichens (Schlen-
sog et al., 2004) and overall active time (Schlensog 
et al., 2013). Schroeter et al. (2010) and Raggio 
et al. (2015) described activity periods of lichens 
in Antarctica using qualitative chlorophyll fluo-
rescence and found that temperature conditions 
during activity are not very different between sites 
in continental and maritime Antarctica, while the 
total amount of active days differed significantly. 
Published quantitative in situ measurements of 
Antarctic lichens and mosses are focused on the 
photosynthetic response to different light (Schro-

eter et al., 2012) and water availability conditions 
(Kappen and Breuer, 1991). In a long-term study 
on the physiological response of the fruticose li-
chen Usnea sphacelata it was shown that both fac-
tors can influence daily activity patterns (Kappen 
et al., 1991). Additional studies cover short time 
periods (Sancho et al., 1997; Kappen and Redon, 
1987; Kappen, 1990, 2000) or refer more to dif-
ferences in snow resistance between higher plants 
and lichens (Kappen, 1993) than to possible wa-
ter sources and activity periods within the lichens. 
Contributions to the knowledge about photosyn-
thetic activity of alpine lichens have been made by 
Lange (1965), Heber et al. (2000), Reiter and Türk 
(2000a, 2000b), and Reiter et al. (2006). However, 
detailed knowledge about lichen activity under 
natural conditions is, to our knowledge, rare (e.g., 
Reiter et al., 2008). The authors focus on rock 
inhabiting species (Brodoa atrofusca and Xanthoria 
elegans) and additionally compared the alpine and 
maritime Antarctic environments using standard 
meteorological data, showing much higher pre-
cipitation and light in the Alps and much more 
stable conditions in maritime Antarctica.

To our knowledge, none of the available stud-
ies compares in situ activity periods and water 
use from BSCs in polar regions with those from 
high alpine regions. In this study, we aimed to de-
termine general activity patterns and the in situ 
sources for thallus hydration activating positive 
net photosynthesis of BSCs from these regions. As 
possible water sources we suggest snow, rain, fog, 
dewfall, and soil water, which have all been de-
scribed to influence BSC photosynthesis (Lange, 
2003a). Understanding these features may be a 
step toward understanding of the physiological 
capacity of BSCs in Antarctic and alpine habitats, 
both regions suggested to be particularly vulner-
able (Robinson et al., 2003; Theurillat, 1995) in 
recent climate change scenarios (http://www.
ipcc.ch).

MaterIal and Methods

Activity patterns (chlorophyll fluorescence 
and CO

2
 exchange), microclimate, and modes of 

hydration were studied at two different sites, one 
in continental Antarctica and one in the Euro-
pean Alps.
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Site Descriptions
Site Garwood (Continental Antarctica)

The research site was in Garwood Valley, Dry 
Valleys region, Southern Victoria Land (78°2′S, 
164°7′E) and measurements were made for 29 
days from 14 December 2009 until 18 Janu-
ary 2010. The valley is dominated by outcrops 
of granites and gneisses, together with amphi-
bolites, marble, and dolomites. This location is 
characterized as a cold desert with mean tem-
peratures of about –4.2 °C in summer and –21 
°C in winter. The amount of precipitation is 
around 50 mm rain equivalent each year and 
falls as snow. BSCs have a mean coverage of 
3.3% and are composed of all functional groups 
of photoautotrophic cryptogams (lichens, moss-
es, green algae, and cyanobacteria). The domi-
nating chlorolichens are Lecanora expectans Darb. 
and Caloplaca darbishirei (Hoffm.) Th. Fr. (Cole-
sie et al., 2014).

Site Hochtor (Austrian Alps)

The second research site was in the Austrian 
Alps at Hochtor in the National Park Hohe Tau-
ern, Austria (47°05′N, 12°50′E), and measurements 
took place for 10 days from 25 July until 3 August 
2012 during the snow-free period. The elevation of 
the study sites ranged from 2500 to 2600 m, mean 
precipitation is 2000 mm, and mean air temperature 
ranges from −10 to −8 °C in January to 2 to 4 °C 
in July. Seventy to eighty percent of the precipitation 
falls as snow and snow cover lasts 270 to 300 days 
(Auer et al., 2002). This site has siliceous and calcare-
ous bedrocks with the siliceous situated within the 
Brennkogel formation (B1 and B2) and the calcare-
ous within the Seidlwinkl Triassic formation (Plat-
tenkar, Schareck). BSCs cover a major proportion 
of the local vegetation and are composed of a large 
variety of different species from all functional groups 
(Peer et al., 2010; Zheng et al., 2014).

MIcroclIMate MeasureMents

Site Garwood
General climate conditions (relative humid-

ity, solar radiation, temperature) were simulta-
neously logged during the whole measuring 

period at a sampling interval of 5 minutes by 
an automatic weather station (AWS) located 
close to the measuring tent. Air temperature 
and relative humidity were measured 1 m above 
ground, and solar radiation at 3 m above ground 
(http://nztabs.ictar.aq/science-weather.php). 
Data are generously given by nzTABS (http://
nztabs.ictar.aq).

Site Hochtor

General climate conditions (photosynthetic ac-
tive radiation [PAR], temperature) were logged 
simultaneously with each gas exchange measure-
ment using the sensor technology of the gas ex-
change device itself.

Sampling
Site Garwood

Samples of two lichen-dominated soil crusts 
were collected on 8 December 2009 (one addi-
tional sample was taken on 16 December 2009) 
and placed in 4.7 cm2 CO

2
 inert small plastic 

bowls maintaining their natural arrangement. 
When not being measured, the samples were 
placed nearby on the ground similar to their 
natural exposure.

Site Hochtor

Three samples of lichen-dominated soil crusts 
(Psora decipiens) were collected on 24 July 2012 and 
treated in the same way as in Garwood Valley.

Chlorophyll Fluorescence of PS II
Site Garwood

The activity status of the crusts was monitored 
twice a day by Chl

a
 fluorescence using pulse am-

plitude modulated fluorometer (IMAGING-PAM; 
H. Walz, Effeltrich, Germany). Maximum quan-
tum yield of photosystem II (PSII) (Fv/Fm) was 
measured according to Bilger et al. (1995). Addi-
tional activity measurements were made whenever 
the local climate suggested potential activity in the 
BSC (snowfall, snowmelt, fog) and CO

2
 exchange 

measurements were made whenever the photosyn-
thetic yield values were higher than 0.2.
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Site Hochtor

Here, samples always appeared wet and active, 
and this indication was supported by overall wet 
weather conditions, so no prior check for activity 
using Chl

a
 fluorescence measurements were neces-

sary and CO
2
 exchange measurements were made 

continuously every day.

CO
2
-Gas Exchange

Site Garwood

Whenever chlorophyll fluorescence measure-
ments indicated activity, CO

2
 gas-exchange was 

measured and quantified simultaneously with a 
portable CO

2
/H

2
O gas exchange system (HCM-

1000; Walz, Effeltrich, Germany) under ambient 
conditions. After each measurement of photosyn-
thesis in the light, the cuvette was covered with a 
black sheet in order to obtain dark respiration rates. 
The measuring period was from 14 December 
2009 until 18 January 2010, with one week inter-
ruption from 1 January to 8 January.

Site Hochtor

Gas exchange measurements at Site Hochtor 
were made every day starting in the morning be-
fore dawn and ending in the evening after sunset. 
Measurements were made with a portable CO

2
/

H
2
O gas exchange system (GFS 3000; Walz, Effel-

trich, Germany) under ambient conditions. At least 
two measurements were made in complete dark-
ness (before dawn and late evening) in order to ob-
tain dark respiration values. The measuring period 
lasted for two weeks and all possible water sources 
(rain, fog, dewfall, water vapor, snow, and soil hu-
midity) occurred at least once. Water content of 
the samples was calculated by weighing after each 
measurement and determining the dry weight after 
the end of the measurements (3 days over silica gel).

Lichen Rhizine Water Uptake
Water uptake by the lichen (Psora decipiens) via 

the rhizines was investigated in the laboratory us-
ing randomly collected samples from Site Hochtor. 
First the lichens were cleaned and all the adher-
ing sand was carefully removed. Samples were then 
sectioned vertically to produce one clean edge. The 

samples were then arranged so that the ends of the 
rhizines were immersed in water stained with blue 
ink and the water uptake was documented using 
a video camera (Canon EOS 50D). The speed of 
water uptake into the algal layer was then calcu-
lated. No equivalent experiments were made for 
the Caloplaca species from Garwood Valley, because 
they lacked rhizines.

results

Activity Patterns and Photosynthesis
Site Garwood

Activation of the BSC was easily detectable by 
chlorophyll fluorescence (Fig. 1), and BSCs were ac-
tive for 34% of the days during total measuring period 
(Table 1). BSCs were reactivated on five occasions af-
ter snowfall events and on five occasions during foggy 
conditions (Table 1). Highest CO

2
 uptake was meas-

ured on days following snowfall events (Fig. 2), and the 
longer a snowfall event lasted (accumulating snow), 
the longer was the resulting activity period during the 
following melting periods. One snowfall event from 
21 to 23 December 2009 resulted in two consecutive 
active days with positive net photosynthesis. On 16 
December 2009 fog and very cloudy conditions led 
to activity (Fig. 1), but at lower values than by snow-
melt, as indicated by both measuring methods (Figs. 1 
and 2). On days with sunshine or only scattered cloud 
cover, no activity was measured either with chloro-
phyll fluorescence or with gas exchange (Fig. 1, first 
row; Fig. 2). Activity was not obviously correlated 
with temperature (graph not shown).

Site Hochtor

BSCs were active on every day during the meas-
uring period (Table 1), and hydration was by foggy 
conditions on 4 days and by dew and rain on 3 days 
each (Table 1). Highest CO

2
 uptake rates took place 

while the samples dried out after a rainfall event (Fig. 
3), indicating that net photosynthesis was depressed 
at high thallus water contents (Fig. 4). The duration 
of rain had no influence on the maximum net pho-
tosynthesis and rates after one day of rain (26 July 
2012) were similar to those after a long rain period 
(28 to 31 July 2012). During the rain events net pho-
tosynthesis was low while respiration rates were at 
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their highest. The samples were also activated during 
misty and foggy conditions (25 July 2012), by hail 
during a thunderstorm (28 July 2012) and by dewfall 
(28 July and 1 August 2012, Fig. 3). The samples were 
inactive for only two short periods of clear sky and 
strong radiation (morning of 27 July and afternoon 
of 1 August 2012, Fig. 3).

Water Uptake via Lichen Rhizines
During the first minutes after immersion, only 

the rhizines were hydrated (Fig. 5), but the water 
(blue staining) reached the algal layer of the lichen 
after 17 minutes and could also be seen in the me-
dulla after about 3 hours.

dIscussIon

The present study shows the summer activity 
patterns of Antarctic and alpine lichen communi-

ties in BSCs under near-natural conditions. In the 
Austrian Alps, activity was almost continuous over 
the entire two weeks of measurements, whereas 
Antarctic BSCs were only active on 10 days over 
the 29 day measurement period. BSCs in continen-
tal Antarctica were activated by melt after snowfalls 
and by fog, whereas BSCs in the Austrian Alps were 
additionally activated by rainfall, fog, and dew.

Snow and Rain as Reactivating Water 
Sources

Snowfall is the most obvious water supply for 
the monitored organisms in continental Antarc-
tic cold deserts even in summer. Under the low 
humidity and cold conditions in these habitats, 
especially in winter, snow mainly sublimes in-
stead of melts, which limits water availability. 
However, in summer there were rare events 
when temperature was high enough and so-

FIGURE 1.  (A) Photograph of one original sample placed in 4.7 cm² CO
2
 inert small plastic bowls while 

maintaining their natural arrangement. (B) Close-up of the same sample. The measured biological soil crust 
(BSC) is a conglomerate of several lichen thalli [Lecanora expectans Darb. and Caloplaca darbishirei (Hoffm.) Th. Fr.]. 
(C) False color chlorophyll fluorescence images of the effective quantum yield (Y) of photosystem II distribution 
over three 4.7 cm² samples from continental Antarctica (Site Garwood), obtained using an Imaging Pulse 
Amplitude Modulated Fluorometer (PAM) (Walz GmbH, Effeltrich, Germany). Yield intensity is color coded 
covering a range from 0.0–1, with red indicating very low values and violet high values. Each column represents 
one individual sample. First row: a typical day without activity; second row: a typical activity pattern after short 
snowfall event; third row: activity pattern during the melting event after three days of continuous snow fall. Red 
flags indicate Yield values at a chosen area of interest in the picture. Dates are given as dd.mm.yyyy.
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TABLE 1

Comparison of the water sources used for thallus reactivation in situ. Given are the numbers of reactivation 
events, the total measuring period, and the total days with activity (plus the percentage of the days with activity 

per total measuring period).

Water  
source Hochtor

Hoher  
Sonnblick*

Garwood  
Valley

Garwood  
Valley**

Casey  
Station***

Botany  
Bay****

Snow — — 5

Rain 3 1 —

Fog 4 9 5

Dew 3 1 —

Measuring 
period (d) 10 14 29 4 months 2 months 2 Years

Days with 
activity (d) 10 (100%) 11 (78%) 10 (34%) 1.7%† 27% 4.6%†

*Data from Reiter et al. (2008).
**Data from Raggio et al. (2015).
***Data from Kappen et al. (1991).
****Data from Schroeter et al. (2010).
†Percentage of total active hours.

FIGURE 2.  Net CO
2
-exchange (positive values), dark respiration (negative values, upper panel) and corresponding 

microclimatic conditions (temperature, solar radiation and relative Humidity, second, third, and lower panels, 
respectively) from Antarctic BSCs (Site Garwood). Measured from 14.12.2009 until 18.01.2010 with 8 days 
without gas-exchange measurements between 02.01.2010 and 08.01.2010 (measuring break is indicated with a 
dark bar). CO

2
 exchange (net and dark respiration) is expressed on a surface area basis. Gray bar highlight snow 

events. Vertical lines delineate the weeks.
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lar radiation strong enough to generate some 
snowmelt and we found that snowmelt initi-
ated BSC activity on 50% of the total active 

FIGURE 3.  Net photosynthesis and respiration (upper row) with corresponding microclimatic conditions 
(temperature, photosynthetic active radiation (PAR), and water content of the sample, second, third, and bottom 
rows, respectively) of alpine BSCs (Site Hochtor). Measured from 25.07.2012 until 03.08.2012. CO

2
-exchange 

is expressed on a surface area basis. Gray bars delineate rain events, and vertical lines separate individual days.

FIGURE 4.  The response of net photosynthesis (vertical 
axis) to thallus water content (horizontal axis) for BSC 
from Site Hochtor; all data points from in situ CO

2
 

exchange measurements are plotted.

days and resulted in a positive net photosynthe-
sis for a brief time at, or close to the time, the 
snow disappeared. This agrees with a study by 
Kappen et al. (1998) who showed the crustose 
lichen Buellia frigida to be activated briefly by 
melt from the retreating margin of a snowbank. 
Pannewitz et al. (2003) showed that the major-
ity of activity by lichens did not occur under 
the snow due to cold temperatures, but over the 
period when the snow finally melted, although 
the reactivation process itself may be a species 
(growth location) specific pattern. Schroeter et 
al. (2010) found that the overall activity of Um-
bilicaria aprina was strongly related to snowfall at 
Botany Bay. In contrast to the Antarctic BSCs, 
snow was not an important source of water for 
BSCs in the high alpine region, at least during 
the summer measuring period. Snowmelt may, 
however, be an important water source during 
the major melting periods following the win-
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ter and can also occasionally occur in summer. 
From personal observations at our Soil Crust 
International Project (SCIN) investigation site 
(2012–2015; see Büdel et al., 2014) at Hoch-
tor in 2600 m altitude, we know that the BSCs 
there remain under a thick (>40 cm) snow cover 
extending from the first snow falls, commenc-
ing in late September to mid-October until 
snowmelt at the end of June (Roman Türk and 
Thomas Peer, University of Salzburg, personal 
communication).

Rain never occurs at Site Garwood but, during 
the summer period it is the major source of water 
for thallus hydration in the high alpine region. The 
major activity period and the highest maximum net 
photosynthesis values in the Alps were reached after 
rainfall events in a manner equivalent to meltwater 
hydration after snowfall in continental Antarctica. 
The brief period of high net photosynthetic rates 
during drying after a rainfall event indicates that net 
photosynthesis was depressed at the high thallus wa-
ter contents that occurred during and immediately 
after rain events (Fig. 4). Oversaturation with water 
is a well-described phenomenon severely limiting 
photosynthetic CO

2
 exchange in lichens by increas-

ing CO
2
 diffusion resistance (Lange et al., 1993). 

This phenomenon can be more easily detected 
with quantitative gas exchange measurements than 
with chlorophyll fluorescence measurements (Lange 
et al., 1996), a fact confirming the method applied 
here. Optimal thallus water content and maximum 
photosynthesis rates can only be found during the 
following drying (Lange, 2003b). When rain fell at 
night, there were high rates of respiration and the 
same pattern of net photosynthesis occurred after 
dawn during the early morning.

Fog as a Reactivating Water Source
In addition to thallus hydration by snow and 

rain, reactivation by fog can also be an important 
ecological feature under arid conditions with re-
stricted moisture supply (Lange et al., 1986). A 
characteristic brief peak of photosynthetic activity 
after sunrise following nocturnal moistening by fog 
is well described and documented for the multi-
branched, fruticose lichen Teloschistes capensis in the 
Namib fog desert by Lange et al. (2006) and for 
other soil crust lichens as described by Lange et 
al. (1994). This typical response pattern is also re-
ported from arid and semiarid desert habitats (Kap-
pen, 1988), from mediterranean habitats (Lange et 
al., 1985), and under temperate conditions (e.g., 
Lange, 2003b). In this study, the BSCs from Antarc-
tica were reactivated (50% of the total reactivation 
events) in very foggy conditions, corresponding 
with results found for Usnea sphacelata having most 
efficient photosynthesis when the sky is overcast 
(Kappen et al., 1991). In the High Alps, fog was the 
main water source reactivating BSCs on 4 out of 10 
days with activity (Table 1). Here, fog not only re-
activated the lichens, but also led to ongoing activ-
ity during continuing foggy conditions over several 
days. Due to the lower light availability during such 
events, the net photosynthesis was generally lower 
than during drying events after rainfall or snow-
melt, respectively.

Dew as a Reactivating Water Source
Also dewfall is known as an important water 

source for reactivation of BSC (Lange et al., 1994). 
The importance of dewfall for Antarctic endolith-
ic cryptogams was shown by Büdel et al. (2008), 

FIGURE 5.  Water uptake over the rhizines of Psora decipiens. Time after first immersion into ink water is 
indicated underneath each picture (hh:mm:ss).
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who found that rock surface temperature fell be-
low the dew point of the air, and water (rime) was 
deposited inside the rock pores, which then re-
activated endolithic cyanobacteria as temperatures 
rose in the morning. Dew never reactivated the 
BSCs at the Antarctic site, and this contrasts with 
BSCs from the High Alps where dewfall reactivat-
ed BSCs on 30% of the total reactivation events. 
Typically, nocturnal hydration by dew caused dark 
respiration, which was followed after sunrise by a 
short period of positive net photosynthesis that 
continued until metabolic inactivation from des-
iccation.

Influences of Soil Water Content on 
Lichen Activity

Soil water content measurements were initially 
not a part of this study because, in continental Ant-
arctica the cold climatic conditions mean the soil 
water is mostly frozen and therefore considered 
not to be available. Additionally, studies from the 
Brown Hills suggest a very low amount of soil wa-
ter, around 2% rising to about 4.5% when the snow 
was present and declining again as soon as the snow 
had disappeared. This increase in soil water content 
probably reflected a transfer of water vapor, rather 
than the formation of liquid water, as soil tem-
peratures were always below 0 °C (Colesie et al., 
2014). Taking this into consideration, a reactivation 
of BSC lichens by soil moisture itself seems very 
unlikely for Antarctic BSCs. A comparative experi-
ment, such as water uptake via lichen rhizines, is not 
possible because of the lack of rhizines in Caloplaca 
darbishirei. We suggest there is a very different situa-
tion in the high alpine site where soil water content 
is significantly higher. It is known that a substantial 
lichen crust cover establishes with moderate snow 
cover along a snow-cover–soil-moisture gradient 
along mountain ridges in Colorado (Flock, 1978). 
We suggest that soil water also influences the activ-
ity of high alpine BSC through a transfer of liquid 
water from the soil to the lichen. For Psora decipiens, 
we were able to show that water can be transferred 
via rhizines into the algal layer (Fig. 5). This feature 
opens an additional source of water for thallus hy-
dration to the lichens and may offer new insights 
into the ecology of Psora decipiens–dominated BSC 
from other habitats as well.

The Alpine-Nival Environment 
in Comparison with Continental 
Antarctica

Reiter et al. (2008) compared the alpine and 
maritime Antarctic environments using standard 
meteorological data and suggested the main differ-
ences to be the much higher precipitation and light 
in the Alps and much more stable conditions in the 
maritime Antarctic. The comparison made in the 
present study benefits from measurements of in situ 
activity and microclimate data from BSCs at the al-
pine and Antarctic sites and allows a more informed 
comparison.

The most obvious difference during summer be-
tween the two sites is the overall active time itself. 
Lichens in the Austrian Alps seem to be active on 
most days, while those from continental Antarctica 
rarely show any activity (Table 1). The difference 
is probably much greater if we include the winter 
period. Lichens in continental Antarctica are inac-
tive over about 8 months of the winter (Schroeter 
et al., 2010).

Reactivation during foggy and very cloudy con-
ditions seems to be a common feature for BSCs in 
both ecosystems, where it caused 50% of the reacti-
vation events in Garwood Valley, 40% at the Hoch-
tor, and 64% at the Hoher Sonnblick (Reiter et al., 
2008; Table 1). These conditions always coincided 
with low light availability and therefore resulted in 
low, but positive net photosynthesis. Reiter et al. 
(2008) categorized these days as Type 1 days, and 
those were days when the lichens were wet all day 
and had some of their least productive periods, as 
photosynthesis was severely depressed by high wa-
ter content in addition to low light availability.

The two sites differed in activation by snow, 
which only occurred at Site Garwood and where it 
caused 50% of the reactivation events. On the other 
hand, dewfall as water source for thallus hydration 
occured in the Alps but not in continental Antarc-
tica, where the lack of contact with cold subsurface 
does not promote dewfall events in BSCs.

Some shortcomings in the sampling and meas-
uring design have to be considered when evaluat-
ing the data. Due to external factors such as equip-
ment availability in the field, the climatic data of 
this study were taken with different devices. The 
data available from the Antarctic site were origi-
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nally taken for overall climatic description of the 
valley conditions with energy sensors, so that light 
is reported in W m–1. Recalculations from W m–2 
to PAR in µE m–2 s cannot be easily done, due to 
the wavelength specific information given in PAR. 
Additionally, rH was not available for site Hochtor. 
In order to avoid rapid drying of the sample during 
the measurement, rH inside the cuvette was regu-
lated at 85%.

General Conclusions
For the BSCs examined in this study, there are 

two obvious features that are shared. First, carbon 
gain is highest at both locations on those days when 
the thalli are drying out and are able to photosyn-
thesize for at least a short time at near-optimal or 
optimal water content. Second, under foggy con-
ditions the lichens are active but the maximal net 
photosynthesis values are low. Other than snow/
rain or fog, no other sources for thallus hydration 
could be shown for BSCs in continental Antarctica. 
However, in the High Alps, BSC apparently ben-
efited from dewfall and soil water.

Taking these results into account we suggest that 
high alpine BSC can be expected to have much 
higher photosynthetic productivity than the same 
functional unit in continental Antarctica. This sug-
gestion is also supported by the much higher maxi-
mal photosynthetic rates under optimal conditions 
for BSC in the Alps. Both of these effects, the lower 
maximum net photosynthesis rates and restricted 
active time, would contribute to the lower growth 
rate for Antarctic BSC.

Knowledge about BSC performance in the 
cold may be suitable for modeling of lichen car-
bon budgets in continental Antarctica. Studies like 
Schroeter et al. (2011) provide excellent informa-
tion about lichen activity over several years meas-
ured with chlorophyll fluorescence. Such infor-
mation could now be combined with quantitative 
carbon fixation and thus be a baseline for measur-
ing growth in one of the harshest and least accessi-
ble regions of the world. Our comparison between 
alpine and continental Antarctic sites fits well to the 
results from Sancho et al. (2007) and Raggio et al. 
(2015) showing significant differences in growth 
rates and active time exist between the warm and 
moist maritime Antarctic sites and the dry and cold 
Dry Valleys.
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