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Abstract
Rhytidoponera violacea (Forel) (Hymenoptera: Formicidae) is a keystone seed disperser in 

Kwongan heathland habitats of southwestern Australia. Like many myrmecochorous ants, little is 

known about the basic biology of this species. In this study various aspects of the biology of R.

violacea were examined and the researchers evaluated how these characteristics may influence 

seed dispersal. R. violacea nesting habits (relatively shallow nests), foraging behavior (scramble 

competitor and lax food selection criteria), and other life history characteristics complement their 

role as a mutualist that interacts with the seeds of many plant species.
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Introduction

Plant-animal mutualisms typically involve 

interactions that include numerous partner 

species (Pellmyr and Thompson 1996; 

Hoeksema and Bruna 2000; Stanton 2003). A 

single plant species, for example, may 

produce seeds that can be dispersed by tens or 

even hundreds of animal species (Howe and 

Smallwood 1982; Gaddy 1986; Garrido et al. 

2002). However, recent work has shown that 

even in superficially diffuse seed-dispersal

mutualisms, dispersal may depend 

disproportionately on a few or even just a 

single species (Boulay et al. 2007; Gove et al. 

2007; Zelikova et al. 2008; Ness et al. in 

press). The biology of such “keystone 

dispersers” can have ramifying consequences 

for plant fitness and evolution, but also more 

generally for the habitats they occur within.

Myrmecochory, the dispersal of seeds by ants, 

is a common and relatively well studied 

animal-plant mutualism (Beattie 1985; Bond 

et al. 1991; Bronstein et al. 2006). It has 

evolved many times and is geographically 

widespread (Giladi 2006; Dunn et al. 2007; 

Lengyel et al. 2009). In this mutualism, ants 

are enticed to disperse seeds by the presence 

of elaiosomes, lipid-rich seed appendages that 

are functionally analogous to fruits (Hughes et 

al. 1994; Fischer et al. 2008). Elaiosomes are 

eaten by the ant mutualists after bringing the 

seeds back to their nest, leaving the seeds 

unharmed. Seeds are then placed in a refuse 

dump within the nest or taken out of the nest 

and discarded. Ants receive nutrients from the 

interaction, while plants may benefit in two 

distinct ways. First, a plant’s propagules are 

dispersed away from the parent plant, either in 

space or time. Second, seeds may be placed in 

a location that further favors germination 

and/or establishment (see Beattie 1985, Giladi 

2006, and Rico-Gray and Olivera 2007 for 

reviews of myrmecochory and its potential 

advantages).

Similar to seed dispersal mutualisms more 

generally, myrmecochory has typically been 

viewed as a diffuse mutualism. However,

recent work suggests that at least in two of the 

regions where myrmecochory is common, 

eastern North America (Ness et al. in press; 

Zelikova et al. 2008) and southwestern 

Australia (Gove et al. 2007; McCoy 2008), 

seed dispersal is dominated by a single genus 

or species of ant. In both cases, the particular 

ant species disperses the seeds of tens or, in 

the case of southwestern Australia, hundreds 

of plant species. In this context, the life 

history of these keystone ants becomes 

important for understanding seed dispersal 

and the dynamics of local communities.

Perhaps because of their relative ease of study 

(when compared to, for example, tracking 

frugivorous birds; Westcott and Devon 2000),

many studies have examined the interactions 

between ants and the seeds they disperse 

(Berg 1975; Beattie 1985; Bond et al. 1991; 

Boulay et al. 2007). Much of this work has 

examined specific aspects of how ants interact 

with seeds, such as dispersal distances 

(Gomez and Espadaler 1998; Whitney 2002; 

Ness et al. 2004), foraging behavior (Hughes 

et al. 1994; Gorb and Gorb 1999, 2000), and 

relationships between diaspore morphology 

and ant workers (Berg 1975; Hughes and 

Westoby 1992a; Rodgerson 1998; Garrido et 

al. 2002; Ness et al. 2004). With some 

important exceptions (e.g. Culver and Beattie 

1978; Christian and Stanton 2004; Giladi 

2006; Ness et al. in press), the potential 

relationships among ant life history traits, 

colony level characteristics, and how these 

may influence seed dispersal have not yet 
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been investigated as thoroughly. Knowing 

how a particular ant species will collect 

elaiosome-bearing seeds and over what 

distance they may move them, is relatively 

incomplete information. Nesting chamber 

depths, the location of refuse middens 

(including discarded seeds that have been 

stripped of their elaiosome), and how often 

nests are abandoned can also influence 

myrmecochory-related benefits for plants. 

With little of this type of data available, it 

remains difficult to gauge how well we truly 

understand the ecological or evolutionary 

dynamics of ant-mediated seed dispersal.

This study examined the biology of the 

keystone ant mutualist Rhytidoponera

violacea (Forel) (Hymenoptera: Formicidae).

In areas where R. violacea is found, it appears 

to be the dominant ant responsible for seed 

dispersal (Majer 1984; Gove et al. 2007; 

McCoy 2008). Despite its importance, the 

basic biology of this species has been largely 

unexamined. The demography and nesting 

biology of R. violacea were studied to 

determine the size of their colonies and to 

examine the physical structure of their nests. 

Aspects of their foraging behavior were also 

investigated. Traits found that were salient to 

seed dispersal and seed fate are discussed in 

terms of their potential influence on this ant’s 

mutualistic plant partners. 

Materials and Methods

Study species

Ants of the genus Rhytidoponera are 

distributed throughout Australia and are 

important seed dispersers in all regions of the 

continent yet studied (Berg 1975; Majer 1982, 

1984; Hughes and Westoby 1992a, 1992b; 

Gove et al. 2007). A recent revision of the 

genus (Reichel 2003) shows the species R.

violacea as having a large range within 

aaaaaaaaaaa

Figure 1. Distribution of Rhytidoponera violacea. Collections records are from the Australian National Insect Collection 
database. The boundary of the Geraldton Sandplains, found along the central western coast, is outlined and the circled star 
shows the approximate location of Eneabba. High quality figures are available online.
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western Australia (Figure 1). Within its range, 

R. violacea is patchily distributed. At least in 

the Geraldton Sandplains and perhaps more 

generally, its abundance is greatest in sites 3 

to 15 years after a fire (McCoy 2008). 

Relatively little is known about the biology of 

R. violacea (Searle 1978), except for what can 

be inferred from other Rhytidoponera species 

(Haskins and Haskins 1979; Ward 1981a; 

Pamilo et al. 1985; Thomas 2003).

Study Area

Research was conducted in the Geraldton 

Sandplains, a large area situated along the 

mid-west coast of western Australia. The 

study area was near the site that first led to the 

region being recognized as a global 

biodiversity hotspot (Lamont et al. 1977), a 

distinction based on the high degree of plant 

endemism and high species turnover. A large 

proportion of the plant species in the area 

produce myrmecochorous seeds. 

The Eneabba landscape is a mosaic of natural 

Kwongan heathland and developed farmland. 

The vegetation in natural areas varies as a 

consequence of subtle differences in local 

topographic position, soil type, and fire 

history (Hnatiuk and Hopkins 1981). Fire 

intervals can range from a few to more than 

30 years, with the height and density of the 

vegetation being influenced by the time since 

the last fire (Westcott 2004; McCoy 2008). 

R. violacea was studied at two multi-hectare

plots located just north of Eneabba and on 

opposite sides of the Brand Highway (29˚ 37' 

33" S, 115˚ 12' 59" E). Both areas contained 

native Kwongan Heathland, but varied in the 

time since their last fire. The plot east of the 

highway (S1) was burned roughly nine 

months prior to the study. The ground was 

dominated by open sandy areas with small 

unburnt islands of vegetation. Many plants in 

the burnt area were beginning to generate new 

growth. The second plot (S5) was located 

west of the highway and was last burned in 

2002, five years before sampling. This 

vegetation covered more than half of the 

ground surface and in some areas was more 

than a meter tall. 

Foraging metrics between the two sites, as 

detailed below, were compared using t-tests.

Data are reported as means ± SE. 

Diet

A keystone ant species can play a 

disproportionate role in shaping plant 

communities by dispersing the seeds of a 

diverse collection of plant species. R. violacea

appears to disperse most of the individual 

seeds of all of the ant-dispersed plant species 

that have been studied across the Eneabba 

landscape (Gove et al. 2007). In a pilot study, 

in which smoke-water was used to stimulate 

germination of seeds found in 14 R. violacea 

nests, 15 plant species germinated (RR Dunn, 

personal observation). Control treatments, 

consisting of soil taken near each colony, 

resulted in the germination of only four plant 

species all of which produce wind-dispersed

seeds. While these results are consistent with 

many plant species potentially realizing 

substantial benefits from seed dispersal by R.

violacea, the reverse need not be true. 

Elaiosomes may comprise only a minor 

portion of the diet of most seed-dispersing

ants (Majer 1982; Bono and Heithaus 2002; 

but see Morales and Heithaus 1998). Thus, an 

important first step towards assessing the role 

elaiosomes play in the diet of R. violacea is to 

simply know what their workers collect when 

they forage. 

To determine the composition of the items 

retrieved, R. violacea foragers were sampled 

as they returned to the nest. During the spring 
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and summer R. violacea forage during a 

morning period, stop foraging during the heat 

of midday, and forage again in the late 

afternoon and early evening (JD Majer, 

unpublished data). Foragers were therefore

sampled from 7:00 to 10:00 and from 17:00 to 

19:00 in both sites during November 2007. 

By watching for ants near the nest entrance, 

foragers could be observed and captured as 

they returned to the nest. R. violacea is a 

member of the subfamily Ectatomminae,

which cannot store large quantities of liquid in 

their crop (Eisner 1957). It was assumed that 

liquid resources were collected at a negligible 

rate and that workers that returned to the nest 

without an object in their mandibles were 

unsuccessful foragers. Workers observed 

carrying an object were aspirated into a vial. 

The foraged material was separated from the 

ant, saved, and the forager returned to the 

capture location. Foraged items were later 

examined and assigned to one of the following 

six categories: 1) insects, live or dead insects 

and insect parts; 2) pieces of plant material, 

primarily flower parts and leaf fragments; 3) 

inert, small clumps of sand, charcoal, etc.; 4) 

plant seeds; 5) a combination: fragmented 

parts of two classes, such as an insect part and 

piece of plant that were stuck together; or, 6) 

unknown, items that were unclassifiable as 

either plant or insect material.

A total of 36 nests (18 in each site) were 

sampled, with each colony being sampled for 

30 minutes. Sampling foragers from a nest for 

this amount of time produced no detectable 

changes in a colony’s foraging dynamics.

Foraging Distance 

Seed-dispersal distances are primarily a 

function of how far ants forage. The average 

foraging distance for colonies was found by 

following randomly encountered ants back to 

the nest. Individual ants were located by 

standing in place and scanning any open 

sandy areas in a roughly circular area (in an 

approximate radius of 3 m). If no ants were 

found after a few minutes, a new search was 

done 10 m from the previous patch. When an 

ant was located, it was offered a small piece 

of sweetened oats. These foragers would 

readily pick up the oats and run back to the 

nest with this food. The distance from the 

initial location of the forager to the nest 

entrance was measured to the nearest 5 cm. 

Foragers were sampled at both study sites in 

December 2007.

Disposal of Seed Proxies

Studies of seed dispersal have generally 

quantified distances from where a seed is 

picked up to the nest entrance where a seed is 

taken. However, seeds can also be thrown out 

of the nest once their elaiosomes are eaten. R.

violacea workers had been observed exiting 

their nests carrying objects that they 

subsequently dropped (D Lubertazzi, personal 

observation). A complete understanding of 

seed dispersal distances, as well as seed fate, 

has to include knowing how far workers will 

forage, and also how, and at what distance, 

objects are discarded away from the nest 

(Hughes and Westoby 1992b).

To test how far refuse can be carried, 10 pink 

beads (2.5 mm diameter) were dropped into 

the nest entrances of marked colonies during 

the late afternoon. These nests were revisited 

two afternoons later and the ground around 

the nest methodically searched for beads. The 

search included all the area within a 10 m 

radius of the nest entrance. The distance from 

each bead to the nest entrance was recorded to 

the nearest 5 cm. This same bead searching 

protocol was then repeated the following day. 

Fourteen nests were sampled in plot S1 and 15 

nests sampled in plot S5. 
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It was assumed that all of the beads not 

located remained in the nests, and the colonies 

were not excavated to confirm their fate. It is 

likely that some beads were removed and not 

found since our search was thorough, but not 

exhaustive. The probability of not finding a 

discarded bead increased with distance from 

the nest entrance (the search area increases

multiplicatively with the square of the radius). 

In light of these considerations the sampling 

provided conservative estimates of the 

average distance beads were carried.

Nesting Ecology and Demography

Seed dispersal can be influenced by colony 

demography (e.g., how many workers are in a 

colony and how many of those individuals 

forage) and the location where seeds may be 

abandoned and buried. Whole nests were 

excavated to determine the size of colonies 

(number of individuals) and the shape and size 

of R. violacea nests. Twenty-two nests were 

sampled at S5 and two nests were excavated 

from S1.

In the sandplains, R. violacea usually build 

their nest chambers under and within root 

masses of a number of different plant species 

(e.g., Daviesia spp. or species of 

Restionaceae). Excavating nests necessarily 

included removing clods of soil, root clumps, 

and woody roots that were part of the nest’s 

structure. The ants and these materials were 

collected both by hand and with a plastic grain 

scoop and placed into the top of a series of 

stacked sieves. Once a nest was excavated, the 

coarser material was separated out and the 

remaining contents (ants, brood, sand, and 

some detritus) were placed into a plastic wash 

bin. These were later brought to the field lab 

and the ants were allowed to move into 

artificial nests. On the following day the 

number of workers, pupae, and larvae were 

tallied for each nest by counting the contents 

of the artificial nesting chamber and any 

individuals remaining in the bin.

Two other types of samples were collected to 

complement the nest excavation data. Plaster 

castes were made by pouring dental plaster 

into a colony's nest entrance. The plaster was 

allowed to harden for a few days and then dug 

from the ground, cleaned, measured, and 

photographed. The arrangement of the 

chambers and the overall size of complete 

nests could easily be ascertained from these 

castes. The size and number of nest entrances 

from 14 nests were also recorded.

Results

Diet

A total of 185 successful foragers were

sampled from 36 colonies. The average 

number of successful foragers returning to the 

nest over a 30-minute period was 5 ± 0.5 

(range = 1 - 14, n = 36). While the numbers of 

unsuccessful foragers that returned to the nest 

were not systematically recorded (collecting

and processing successful foragers took 

precedence during sampling), there were 

typically between 10 to 15 return trips to the 

nest during 30 minutes of sampling, 

suggesting that approximately 30 – 50% of 

foraging bouts are successful. No difference

was detected in the number of successful 

foragers observed per nest in the two plots (t34

= 1.34, p = 0.19). 

The percentage of different categories of 

foraged items was similar between the two 

plots hence the data from the two locations 

were pooled (Figure 2). The majority of items 

captured (65%) were insects (either whole 

individuals or insect parts). Plant parts were 

more commonly collected (17%) than seeds 

(5%). In a few cases, foragers were observed 
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subduing live insect prey that was then 

brought back to the nest. In addition, some 

insects (e.g., non-conspecific ants, small 

beetles, and termites) were often found to be 

alive when they were collected from the 

foragers.

Foraging Distance

The average foraging distance from the nest 

was 3.5 ± 2.2 m (Figure 3), with a maximum 

distance of 10.4 m. No difference was 

observed in the average foraging distance 

between the two sites (t50 = -1.34, p = 0.18). 

These distances are similar to those previously 

observed in the same study region for R.

violacea carrying seeds back to the nest (Gove 

et al. 2007; McCoy 2008).

Disposal of Seed Proxies

More than half of all the beads (150/290) were 

found outside of the nests. On average these 

beads were located a quarter of a meter away 

from the nest entrance (mean = 24 ± 0.04 cm, 

n = 150 beads). A total of 61 of 140 beads 

were found from the 14 nests in S1 (mean 

distance from entrance = 43 ± 9.9 cm, n = 61 

beads) and 89 of 150 beads were found from 

15 nests in S5 (mean distance from entrance = 

11 ± 2.4 cm, n = 89 beads).

Nest Demography

The average number of workers in a colony 

was 190 ± 23.5 (range = 47 - 474, n = 22). All 

of the colonies excavated contained pupae 

(mean = 83 ± 13.4, range = 2 - 293) and many 

contained larvae (mean = 22 ± 3.8, range = 0 -

85). Small larvae (< 3 mm) and eggs were 

either uncommon or entirely absent. A total of 

seven males were collected from two colonies.

Nest architecture

All the excavated nests were located under 

plants. The nests were either supported in part 

by a large mass of roots from a plant or, less 

Figure 2. The proportional representation of food items being brought back to the nest by returning Rhytidoponera violacea
foragers. See methods section for an explanation of the classes. Photo by Benoit Guenard. High quality figures are available 
online.
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commonly, incorporated a larger root of a 

shrub into their structure (Figure 4). The mean 

(n = 14) size of the nest entrance was 4.0 ± 

0.58 cm (longest axis) by 2.1 ± 0.29 cm 

(perpendicular to widest axis). The number of 

nest openings varied (9 nests with 1 opening, 

3 nests with 2 openings, 1 nest with 3 

openings, and 1 nest with 4 openings). When 

present, multiple nest openings were located 

within a few centimeters of one another and 

coalesced into a single chamber or tunnel 1 - 2 

cm below ground. A mound of nest spoil was 

found around most, but not all, nest entrances. 

Mounds were typically oval in shape, 

approximately centered on the nest opening, 

and often obscured by the stems and shoots of 

the vegetation of the overlaying plant. The 

average longest axis width of a mound was 

21.0 ± 1 cm, the width perpendicular to the 

longest axis averaged 15.7 ± 1.4 cm, and the 

average mound height was 5.4 ± 0.7 cm.

Nests were centered under nest entrances and 

had an average depth of 23.0 ± 1.6 cm (N = 19 

nests). The upper portion of the nest (the first 

4 to 5 cm below ground) was a collection of 

small chambers, side by side, that were often 

supported by many fine roots. These chambers 

were between 1 and 2 cm deep and 

collectively filled an area from 5 to 10 cm in 

diameter.

A number of distinctive chambers were 

located below this area and were found at 

depths ranging from 8 - 43 cm. The sides of 

these chambers had an average width of 4.3 ± 

0.6 cm, an average height of 1.6 ± 0.2 cm, and 

were roughly ovoid in shape. These were 

connected to the central shaft at one side of 

their longest axis, but were not directly 

connected to any other chambers. Each 

chamber was offset in a vertical plane from 

any chambers that were directly above or 

below.

Figure 3. Histogram showing the foraging-distance distribution for 52 randomly encountered Rhytidoponera violacea foragers.
High quality figures are available online.
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Discussion

For myrmecochorous seed dispersal to be 

successful for a plant, elaiosome-bearing

seeds must be picked up by ants, carried to the 

nest, and then discarded somewhere where 

germination is possible or even favored.  Each 

of these steps is influenced by the biology of 

the seed-dispersing ants, characteristics that in 

nearly every case remain enigmatic or simply 

unstudied. Here biological features of an ant 

that has the potential to disperse the seeds of 

thousands of plant species in western 

aaaaaaaaa

Australia are documented. In the following 

sections particular aspects of the biology of R.

violacea and how each of these characteristics 

can influence the fate of myrmecochorous 

seeds are discussed.

Foraging

The first step in dispersal is the removal of 

seeds by the ants (which is a function of the 

foraging behavior of the ants), the spatial 

distribution of nests, and the number of 

workers from a colony that forage. The results 

of this study suggest that R. violacea do not 

Figure 4. A cast of a typical nest of Rhytidoponera violacea. The nest is relatively shallow, with the bottom chamber reaching a 
depth of 25cm. The proportion of seeds within a nest is shown on the right (n = 6 nests, Dunn et al. 2008). Note that seeds 
are concentrated near the ground surface and at the deepest nest chambers. The area between the two dashed lines indicates 
the greatest depth to which a “typical” fire is likely to warm the soil sufficiently to trigger the germination of seeds. High 
quality figures are available online.
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specifically search for seeds. Workers instead 

scavenge for any available food in a process 

that will sometimes, but only seasonally, yield 

seeds. During the foraging component of the 

study (just before seed maturation, as a result 

of a late seed set in 2007), the researchers 

found that insects and insect parts were the 

most common items retrieved by foragers. If 

the survey had been repeated later in the 

season, more seeds being retrieved by R.

violacea (Gove et al. 2007) would 

undoubtedly have been found.  Nonetheless, 

the point remains that much of R. violacea

foraging, perhaps throughout most of the year, 

is for items other than seeds. What was 

regarded as collection ‘errors’, where foragers 

collected plant parts and small clumps of sand 

(Figure 2), accounted for a quarter of all 

seemingly successful foraging trips. R.

violacea is either not careful in discriminating 

between food and non-food items or it may 

also be foraging for resources that are used for 

other purposes besides food. We suspect the 

former, as a particular use (e.g., nest 

structures) for non-food material during nest 

excavations could not be identified. 

Our past and present results suggest R.

violacea, although a keystone seed disperser 

from the plant’s perspective, is not an obligate 

elaiosome specialist. R. violacea is a 

generalist forager that makes quick rather than 

careful choices as to what it picks up, and then 

hurriedly brings back to the nest. Such 

foraging is a scramble, rather than an 

interference, competition strategy, which fits 

well with the propensity of R. violacea to 

avoid interspecific encounters with other ants 

(D Lubertazzi, personal observation). Since it 

is relatively cheap to forage (Nielsen 1997), 

but potentially dangerous to fight over food, 

such an approach may be successful for 

behaviorally subordinate ants like R. violacea.

Re-dispersal

In a generalized model of myrmecochory 

(e.g., Beattie and Culver 1982), seeds may be 

deposited by ants in nutrient-enriched garbage 

piles inside their nests. In practice, seeds can 

also be disposed of by workers removing them 

from the nest (re-dispersed). We found that R.

violacea regularly move seed-like refuse 

outside their nest with some beads being 

discarded more than 2 m from the nest 

entrance. Seeds brought into the nest, once 

stripped of their elaiosome, may be discarded 

just as the beads were (often seeds are 

discarded within 12 hours of being collected, 

A Gove, personal observation). Secondary re-

dispersal can be influenced by the size and 

shape of a diaspore after its elaiosome has 

been removed. Round and smooth diaspores, 

for example, may remain buried at higher 

rates than those that contain surfaces and 

structures that the ants can easily grasp with 

their mandibles (Gomez et al. 2005).

Assuming re-dispersal is random in its 

direction relative to the initial dispersal event, 

it may increase total seed-dispersal distance, 

but reduce the probability that seeds enjoy the 

benefits that come from being deposited 

within the nest. Yet there can also be benefits 

available to being ejected from the nest. Some 

re-dispersed beads became buried in the 

mound of nest spoil, and any seeds suffering 

this fate may still avoid mortality from fire 

and/or the harsh conditions during the long 

inter-fire interval. Removed seeds are also not 

all aggregated within the nest, which 

potentially lessens competition between 

germinating seedlings.

Nest demography

Two studies have recently found that activity 

and abundance of Rhytidoponera foragers in 

general (Gove et al. 2007), and R. violacea in

particular (McCoy 2008), are the best 
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predictors of the rate of seed dispersal in this 

study region and more generally. The 

abundance of Rhytidoponera foragers is a 

function of colony densities and nest 

demography. R. violacea colonies were small 

(mean of 190 workers) and foragers had a 

relatively small foraging range, such that high 

densities of R. violacea can only occur where 

colonies are dense. One consequence of the 

small nest size is that seeds from even a single

plant may be distributed to multiple nests 

(Gove et al. 2007; RR Dunn, personal 

observation). This stands in contrast to the 

fate of seeds collected by Australian meat ants 

(Iridomyrmex purpureus species group),

which have a large foraging range and colony

size. These seed-collecting Iridomyrmex

species are likely to concentrate seeds in and 

around a single nest that is located in the 

middle of a large foraging area (Whitney

2002). Colony size, with its implications for 

nesting biology and foraging dynamics, can 

play a key role in how ants provide mutualism 

benefits to their partners. Plant distribution 

patterns, seedling competition, and gene-flow

can all be influenced by species-specific

patterns of ant dispersal and re-dispersal of 

seeds.

Nest architecture

The architecture of an ant nest can influence 

where dispersed seeds are placed in the soil 

profile (at least those seeds which are not re-

dispersed), which, in turn, affects the 

probability that a seed may germinate in the 

next fire or persist in the soil through several 

fire intervals (Figure 4). Nests of R. violacea

are relatively shallow and typically have a 

mound with a single entrance. Nest 

construction appears to follow a simple 

template; a collection of small interconnected 

chambers just under the ground surface, a 

single main shaft leading down from the 

central ground entrance, and a series of three 

to five progressively deeper chambers. While 

it is possible to build deeper (e.g., > 1m in 

depth for Melophorus spp.) and more long 

lasting nests in the sandplains, R. violacea

seems to favor a nest-building strategy that 

limits extensive construction and 

maintenance. Our observations of nest 

migrations in the field, and other studies 

documenting nest movements by 

Rhytidoponera (Searle 1978; Ward 1981b; 

Thomas 2002) also suggest that they can, and 

will, readily move their nests to a new 

location. If colonies periodically move to a 

new nest then the seeds they disperse can be 

buried in a wider range of locations. This 

could, like having many small colonies, 

reduce plant sibling-competition and increase 

gene-flow.

Chambers at and near the surface of nests of 

R. violacea are well positioned for the 

germination of seeds. Fire cues for 

germination can penetrate at least as deep as 

12 cm in hot fires (McCoy 2008), but 

germination cues are likely to vary in their 

depth between fires and between patches 

within fires. Germination is likely to be 

optimized for plants when seeds are buried at 

a range of depths (as occurs in R. violacea

nests) such that in any given fire at least some 

seeds will germinate (McCoy 2008). 

Movement of nests by R. violacea may yield 

similar effects to those that result from burial 

at a variety of depths. Seeds from a single 

plant scattered among patches of soil are 

likely to have different fates with regard to 

fire timing and intensity. Where R. violacea is 

present, a single myrmecochorous plant may 

have seeds dispersed to different underground 

depths and locations over the course of a 

number of years, with the consequence that 

even an extremely hot fire will not kill all 

seeds and even a relatively cool fire will 

trigger the germination of some seeds.
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Seeds that are at the bottom of nests may 

remain dormant across many fires, since the 

longevity of fire-adapted seeds can be tens 

and even hundreds of years (McCoy 2008).

The occasional deep burial of seeds (Figure 4)

increases the probability that for any cohort of 

seeds, some individuals disperse across 

several fires and hence through time. Such 

dispersal through time may reduce the

probability of local extinction of ant-dispersed

lineages. Lower local extinction rates for ant-

dispersed plants than for plants dispersed by 

other means might account, in part, for two 

surprising findings for ant-dispersed plants. 

First, Gove et al. (2009) found that ant-

dispersed plant species do not necessarily 

have smaller geographic ranges than related 

species with other dispersal modes, despite 

short average dispersal distances. Second, 

Lengyel et al. (2009) found that ant-dispersed

plant lineages have more rapid net

diversification rates (speciation or extinction) 

than do lineages with other dispersal modes.

Both of these patterns could be explained if 

ant-dispersed plants have reduced local 

extinction rates relative to other plants.

Conclusion

R. violacea possess numerous traits that 

complement their role as seed dispersers for 

many plant species. Foragers are omnivorous 

and favor loose discrimination in determining 

what is, or is not, food. When they find a 

potential food item (e.g. an eliaosome-bearing

seed) they quickly bring it back to their nest. 

It can also be beneficial for plant fitness that 

R. violacea nests are relatively shallow and 

this species possesses life history attributes of 

an r-strategy species (i.e., living in small 

colonies (low biomass), maintaining relatively 

ephemeral nests (short nest “life”), and 

occurring in high nesting densities (weed-like

populations)). With these traits, foragers can 

be available to interact with a plant’s 

diaspores across a large area, and the seeds 

they transport may be carried to and buried in 

many favorable locations.

While ant assemblages often include many 

omnivorous scavenging ant species that co-

occur, such ants can differ greatly in their 

biology and hence how they affect any seeds 

they collect. Aphaenogaster rudis, a keystone 

seed disperser in eastern North America, 

shares many traits with R. violacea including 

small and shallow nests, occasionally high 

local densities, and rapid and relatively 

indiscriminate discovery of food (Zelikova et

al. 2008, Ness et al. in press). Whether the 

seed dispersing ants in other regions where 

myrmecochory is common, such as the 

temperate forests of Asia, Europe, and the 

Fynbos of South Africa, possess similar traits 

deserves further study.
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