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ABSTRACT

 

—We conducted a quantitative analysis of geographic color variation in two species of dung
beetles: 

 

Geotrupes auratus

 

 and 

 

G. laevistriatus

 

. The reflectance of the dorsal surfaces was measured from
300 to 700 nm using a spectrophotometer. The reflectance curves for both beetles were bimodal; there
were two distinct peaks, namely, the 

 

α

 

 peak, between 400 and 700 nm, and the 

 

β

 

 peak at around 300
nm. A stepwise discriminant analysis indicated that geographic color variation in 

 

Geotrupes 

 

beetles was
primarily characterized by a shift of the 

 

α

 

 peak. Using beetles from three locations, we compared the wave-
length (nm) of the 

 

α

 

 peak (

 

λ

 

max(

 

α

 

)) and its reflectance intensity (R(

 

α

 

)) to investigate sex and population
differences. Intraspecific geographic variation in coloration was effectively detected by discriminant analy-
sis of spectral reflectance curves. Our results showed that 

 

G. auratus

 

 and 

 

G. laevistriatus

 

 had similar col-
oration within each sampling location. Our study also revealed hidden sex differences in R(

 

α

 

); R(

 

α

 

) of
males were significantly higher than those of females in both species. Since the dorsal surface of the bee-
tles shows remarkable color variation, and coloration can be assessed objectively using reflectance spec-
tra, 

 

Geotrupes

 

 beetles may be good model organisms to investigate geographic color variation.

 

Key words:

 

dung beetle, reflectance spectra, geographic color rariation, color measurement, sexdifference

 

INTRODUCTION

 

As with many other morphological traits, animals can
show dramatic geographic variation in coloration. Many dif-
ferent selective pressures, including thermoregulation,
intraspecific communication, and predator avoidance, could
generate this variation in color (Endler, 1978). Although
researchers have long been interested in geographic color
variation as a possible consequence of adaptation to local
environments, the quantification and classification of the col-
oration of animals has been dependent on human percep-
tion. However, it is now recognized that using human vision
to evaluate coloration could lead to erroneous conclusions
(Bennent 

 

et al.,

 

 1994). If receivers of color stimuli, such as
predators or individuals of the opposite sex, influence the
evolution of coloration, we need to understand receiver
visual perception. Many studies have shown that color
vision among many taxa can be considerably different from

that of humans in both the range of visible wavelengths and
the mode of color information processing (Menzel and Back-
haus, 1991; Jacobs, 1992; Brandt and Vorobyev, 1997;
Vorobyev 

 

et al.,

 

 1998). Recently, mathematical models based
on the physiological and psychophysical knowledge of ani-
mal vision have been developed and used for quantitative
analysis of ‘apparent (observer-perceived) color’ (Vorobyev

 

et al.,

 

 1998; Cuthill 

 

et al.,

 

 1999; Vorobyev & Menzel, 1999;
Sumner and Mollon, 2000; Vorobyev 

 

et al.,

 

 2001). The
results of these studies strongly suggest that we should not
reduce spectral information to human standards, since such
a reduction could result in a loss of critical color information.
Therefore, objective methods for assessing color patterns
are required, and should encompass the entire wavelength
range of the receiver (Cuthill 

 

et al.,

 

 1999).
Another difficulty in evaluating animal coloration is that

it often involves complex patterns. We usually do not have
exact knowledge of which color components or combina-
tions of color are ecologically important. Consequently,
many researchers are still obliged to describe and catego-
rize the color patterns of animals subjectively. Hence, stud-
ies of the evolution of geographic color variation in animals
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could benefit from the spectral information of an organism
that has a simple, ideally monochromatic, coloration.

For the reasons mentioned above, some coleopteran
insects may be good model subjects. Harris (1991) des-
cribed color variation in the sand-burrowing beetle

 

Chaerodes trachyscelides 

 

by using indices calculated by the
CIELab system (CIE, 1978). He revealed that variation in
the color of 

 

Chaerodes

 

 beetles matched the color of the
sand of their resident beach. However, he only compared
variation in the lightness component of the color.

Here, we report the geographic color variation of two
dung beetles: 

 

Geotrupes auratus

 

 Motsch and 

 

G. laevistria-
tus

 

 Motsch. These two species range throughout most of the
Japanese islands, feeding on the dung of mammals. These

 

Geotrupes

 

 beetles may be good models for studying geo-
graphic color variation, as they show remarkable geographic
color variation and have nearly monochromatic elytra. Pre-
liminary geographic color variation in these two beetles has
been described in an early study (Mizuno, 1964), which
identified five color types for 

 

G. auratus

 

 and two color types
for 

 

G. laevistriatus

 

. Judgment of coloration, however, was
based on human visual perception. In this paper, we attempt
to establish an objective method for quantifying the colora-
tion of monochromatic dung beetles. For this purpose, we
calculated several variables from the reflectance spectra of
the dorsal surface (elytra) of the beetles, and then isolated
the parameter that most effectively characterized the geo-
graphic variation in the coloration. To our knowledge, this is
the first study to evaluate the color of beetles objectively and
examine geographic differences statistically.

 

MATERIALS AND METHODS

 

We chose three sampling sites (Arashiyama, Otowayama and
Nara Park; Fig. 1) where distinct color types (red, green and indigo,
respectively) of 

 

Geotrupes auratus

 

 have been observed (Mizuno,
1964). We collected male and female 

 

G. auratus

 

 and 

 

G. laevistria-

 

Fig. 1.

 

Map of central Japan showing the positions of the sites
from which samples were collected.

 

Fig. 2.

 

Representative reflectance spectra of the dorsal surface of two species of dung beetle. Variables extracted from the spectral data (81
points from 300 to 700 nm in 5-nm increments) include 

 

α

 

 and 

 

β

 

 peak wavelength (

 

λ

 

max(

 

α

 

) and 

 

λ

 

max(

 

β

 

), respectively), reflectance intensity
(R(

 

α

 

) and R(

 

β

 

), respectively), mean intensity, and minimum intensity (MIN).
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 Dung Beetles

 

tus

 

 with baited traps using the dung of horses. We also collected
the beetles from the dung of unknown mammals found at the study
sites. The sampling was conducted from early May to mid August
2001. We measured total body length and thorax width in the labo-
ratory.

We measured the reflectance spectra of the dorsal surface of
beetles with a Shimadzu spectrophotometer UV-240, which mea-
sures wavelength with an accuracy of 0.3 nm. In our analyses, we
used the reflectance data in the range from 300 to 700 nm, in 5-nm
increments. We used a deuterium light source with the spectropho-
tometer, and barium sulfate (Merck) as a white standard. Since the
coloration of the beetles appears to be of structural origin, it should
change according to the viewing angle. In this study, the measure-
ment angle of reflectance was perpendicular to the dorsal surface.
In addition, there appears to be color variation among different parts
of the body. Therefore, we only measured the coloration of the dor-
sal surface (elytra), which occupies the largest part of the body,
although other parts, such as the underside and legs of the beetles
also show geographic color variation (Watanabe, personal observa-
tion).

Before measuring all the samples, we conducted pilot studies
and found that spectra are usually bi-modal within the measured
wavelength range (see Fig. 2 for representative spectra), with a
peak (

 

α

 

 peak) within the range of human visual sensitivity (400–700
nm), and another peak (

 

β

 

 peak) near 300 nm. Although most 

 

β

 

peaks are not real peaks (they show the upper limit of an increasing
phase toward the shortest wavelength measured), we treat them as
such for convenience.

Six variables were obtained from the reflectance spectra: the
wavelength corresponding to the 

 

α

 

 and 

 

β

 

 peaks (

 

λ

 

max(

 

α

 

) and

 

λ

 

max(

 

β

 

), respectively), the reflectance intensity of the 

 

α

 

 and 

 

β

 

peaks (R(

 

α

 

) and R(

 

β

 

), respectively), as well as the mean and min-
imum reflectance (Fig. 2). The mean reflectance was calculated as
the average reflectance of the entire spectrum measured in 5-nm
increments (300–700 nm; n=81). The minimum reflectance (MIN)
was the minimum value of the reflectance intensity. We used these
parameters to examine sexual and geographic differences in color-
ation within each species. These variables were not normally dis-
tributed; consequently, we used a nonparametric statistical test for
our analyses. In an attempt to discriminate between collection sites
based on color variation, we used a canonical discriminant analysis,
which included all six color parameters. To determine the order of
effectiveness of these variables in discriminating between collection
sites, we adopted a stepwise method for the discriminant analysis.

 

RESULTS

General Patterns

 

There was no significant difference in total body length

(TL) and thorax width (TW) between sexes within a popula-
tion (Table 1). When pooling males and females, there was
no significant difference in TL and TW among the three pop-
ulations of 

 

Geotrupes auratus

 

 (Kruskal-Wallis test; H=1.674,
p=0.4330 for TL; H=2.529, p=0.2824 for TW). In contrast, TL
and TW of 

 

G. laevistriatus

 

 were significantly different among
the three populations (Kruskal-Wallis test; H=26.541,
p<0.0001 for TL; H=24.974, p<0.0001 for TW). Nonparamet-
ric multiple comparison tests (Dunn, 1964) revealed that
both TL and TW of 

 

G. laevistriatus

 

 collected at Otowayama
were significantly larger than those from the other two sites
(TL: Arashiyama vs. Otowayama, Q=3.04, p<0.01; Arash-
iyama vs. Nara Park, Q=1.60, n.s.; Otowayama vs. Nara
Park, Q=5.02, p<0.001, TW: Arashiyama vs. Otowayama,
Q=2.93, p<0.05; Arashiyama vs. Nara Park, Q=1.60, n.s.;
Otowayama vs. Nara Park, Q=4.88, p<0.001).

We found two different types of spectra that character-
ize the reflectance spectra of each species (Fig. 3; A–F:
averaged data are shown in 10-nm increments). All the
spectra measured were bimodal, with a reflectance peak
between 400 and 700 nm (

 

α

 

 peak), and another peak near
300 nm (

 

β

 

 peak). The 

 

α

 

 peak of 

 

G. auratus

 

 corresponds to
the maximum intensity of the spectra (Fig. 3; A–C), but that
of 

 

G. laevistriatus

 

 is moderate, and lower than the 

 

β

 

 peak
(Fig. 3; D–F). Since most 

 

β

 

 peaks are not real peaks, as
mentioned in the methods, we focused on the wavelength
(

 

λ

 

max(

 

α

 

)) and reflectance intensity of the 

 

α

 

 peak (R(

 

α

 

)) in
the following analyses.

 

Sex differences

 

There were highly significant differences in the mean
reflectance of spectra of 

 

G. auratus

 

 (Table 2); males
showed overall higher reflectance than females. Males of 

 

G.
laevistriatus

 

 also showed higher mean reflectance than
females, except at the Otowayama site (Table 2). There
were no significant differences in the minimum reflectance
of spectra (MIN), except in 

 

G. auratus

 

 at the Otowayama
site (Table 2).

There were no significant differences in 

 

λ

 

max(

 

α

 

)
between sexes within a population (Table 3). On the other
hand, the reflectance intensities of males were significantly
higher than those of females in each species (Table 3). We

 

Table 1.

 

Sampling sites, total body length (mm) and thorax width (mm) of the Geotrupes beetles.  There was no significant difference
between sexes within a population.  Sample numbers are in parentheses.

Species Sex
Total body length (Mean

 

±

 

SD mm) Thorax width (Mean

 

±

 

SD mm)

Arashiyama Otowayama Nara Park Arashiyama Otowayama Nara Park

 

Geotrupes auratus

 

Male 17.8

 

±

 

1.0 (18) 17.5

 

±

 

1.1 (26) 17.6

 

±

 

1.1 (42) 10.2

 

±

 

0.6 (18) 9.9

 

±

 

1.4 (26) 1.0

 

±

 

0.7 (42)

Female 18.6

 

±

 

1.2 ( 9) 17.4

 

±

 

0.7 (30) 17.5

 

±

 

2.0 (47) 10.4

 

±

 

0.6 ( 9) 10.0

 

±

 

0.7 (30) 10.0

 

±

 

0.6 (47)

Mann-Whiteny test
z=–1.44 z=–0.624 z=–0.600 z=–0.772 z=–0.608 z=–0.012

p=0.1498 p=0.5323 p=0.5485 p=0.4403 p=0.5432 p=0.9902

 

G. laevistriatus

 

Male 16.6

 

±

 

1.2 (16) 17.7

 

±

 

0.9 (23) 16.5

 

±

 

0.9 (24) 9.3

 

±

 

0.7 (16) 10.0

 

±

 

0.6 (23) 9.3

 

±

 

1.0 (24)

Female 16.9

 

±

 

1.0 (14) 17.6

 

±

 

0.9 (27) 16.3

 

±

 

1.1 (12) 9.6

 

±

 

0.6 (14) 9.9

 

±

 

0.5 (27) 9.0

 

±

 

0.7 (12)

Mann-Whiteny test
z=–0.561 z=–0.535 z=–0.621 z=–1.102 z=–0.662 z=–0.235

p=0.5746 p=0.5924 p=0.5347 p=0.2706 p=0.5080 p=0.8143
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Fig. 3.

 

Reflectance spectra of the dorsal surface of beetles. Figs. illustrate the mean and standard deviation in 10-nm increments for all the
samples at each sampling site.

 

Table 2.

 

Sexual differences in elytrons reflectance spectra.  Sample numbers are in parentheses.

Species Sex
Mean reflectance (average

 

±

 

SD) Minimum reflectance (average

 

±

 

SD)

Arashiyama Otowayama Nara Park Arashiyama Otowayama Nara Park

 

Geotrupes auratus

 

Male 8.7

 

±

 

0.5 (18) 8.4

 

±

 

0.5 (26) 7.3

 

±

 

0.3 (42) 5.2

 

±

 

0.6 (18) 3.6

 

±

 

0.3 (26) 4.3

 

±

 

0.3 (42)

Female 8.0

 

±

 

0.3 ( 9) 7.9

 

±

 

0.6 (30) 7.0

 

±

 

0.3 (47) 5.1

 

±

 

0.5 ( 9) 4.0

 

±

 

0.4 (30) 4.2

 

±

 

0.2 (47)

Mann-Whiteny test
z=–3.240 z=–3.138 z=–4.107 z=–0.129 z=–3.894 z=–1.622

p=0.0012 p=0.0017 p<0.0001 p=0.8977 p<0.0001 p=0.1049

 

G. laevistriatus Male 6.5±0.3 (16) 6.4±0.3 (23) 6.3±0.3 (24) 5.2±0.5 (16) 5.0±0.3 (23) 4.9±0.4 (24)

Female 6.2±0.2 (14) 6.3±0.3 (27) 6.1±0.2 (12) 4.9±0.5 (14) 5.1±0.3 (27) 4.8±0.3 (12)

Mann-Whiteny test
z=-2.785 z=–0.895 z=–2.248 z=–1.413 z=–1.392 z=–0.185

p=0.0053 p=0.3706 p=0.0246 p=0.1575 p=0.1640 p=0.8536
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also examined whether R(α) was related to the body length
of males and females. However, no significant correlations
were observed (data not shown).

Population comparisons
Since there were no significant differences in λmax(α)

between the sexes, we compared the λmax(α) of different
populations using combined (male and female) data. Fig. 4
shows the distribution of λmax(α). Distributions of λmax(α)
were significantly different among populations (Kruskal-Wal-
lis test; H=140.310, p<0.0001 in G. auratus; H=59.966,

p<0.0001 in G. laevistriatus). Multiple comparison tests
revealed significant differences among the three populations
of G. auratus: Arashiyama vs. Otowayama, Q=3.57, p<0.01;
Arashiyama vs. Nara Park, Q=10.41, p<0.001; Otowayama
vs. Nara Park, Q=8.51, p<0.001. The λmax(α) of G. laevis-
triatus also differed significantly among two of the popula-
tions: Arashiyama vs. Otowayama, Q=6.08, p<0.001; Arash-
iyama vs. Nara Park, Q=7.44, p<0.001; Otowayama vs.
Nara Park, Q=2.00, p>0.10 (not significant). The λmax(α) of
G. laevistriatus was more variable than that of G. auratus at
all three sites (at Arashiyama, coefficient of variation

Table 3. The λmax(α) (nm) and reflectance intensity (%) of α peaks with distinct of sex.  Sample numbers are in parentheses.

Species Sex
λmax(α) (Average±S.D.) Reflectance efficiency (Average±S.D.)

Arashiyama Otowayama Nara Park Arashiyama Otowayama Nara Park

Geotrupes auratus Male 611.4±14.3 (18) 541.6±16.3 (26) 476.4±16.6 (42) 14.7±1.5 (18) 16.1±1.3 (26) 12.4±1.3 (42)

Female 616.9± 9.7 ( 9) 540.3±13.9 (30) 474.5±14.5 (47) 12.1±1.2 ( 9) 13.6±1.9 (30) 11.0±0.9 (47)

Mann-Whiteny test
z=–1.34 z=–0.420 z=-0.169 z=–3.527 z=–4.699 z=–5.396

p=0.1797 p=0.6747 p=0.8660 p=0.0004 p<0.0001 p<0.0001

G. laevistriatus Male 632.4±45.0 (16) 536.0±35.2 (23) 507.2±63.2 (24) 6.8±0.6 (16) 7.0±0.5 (23) 7.1±0.4 (24)

Female 659.6±30.2 (14) 538.3±52.6 (27) 502.5±63.7 (12) 6.3±0.5 (14) 6.7±0.5 (27) 6.6±0.5 (12)

Mann-Whiteny test
z=–1.581 z=–0.565 z=-0.235 z=–2.058 z=–2.443 z=–2.886

p=0.1139 p=0.5720 p=0.8140 p=0.0396 p=0.0146 p=0.0039

Fig. 4. Histogram of the distribution of λmax(α) measured on the dorsal surface of G. auratus and G. laevistriatus. Data are categorized
using 25 nm bins.
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Fig. 5. The canonical discriminant scores CAN1 and CAN2 of the dorsal surface spectra of G. auratus (a) and G. laevistriatus (b). Discrimi-
nant analyses were conducted for each sex, since some variables showed sex differences.

Table 4. Parameters in the canonical discriminant analysis using stepwise method.
(a)  Stepwise improvements of discrimination

G. auratus (male) G. auratus (female) G. laevistriatus (male) G. laevistriatus (female) 

Step#1 Variable Wilks’ λ Step Variable Wilks’ λ Step Variable Wilks’ λ Step Variable Wilks’ λ

1 λmax(α) 0.082 1 λmax(α) 0.078 1 λmax(α) 0.494 1 λmax(α) 0.415

2 λmax(β) 0.022 2 λmax(β) 0.017 2 R(β) 0.359 2 λmax(β) 0.299

3 MIN 0.014 3 MIN 0.013 3 R(β) 0.251

4 R(β) 0.011

#1:  Variables are additionally entered into the model if probability of F value is smaller than 0.05.

(b) Canonical discriminant analysis

G. auratus (male) G. auratus (female) G. laevistriatus (male) G. laevistriatus (female)

Variable CAN1 CAN2 Variable CAN1 CAN2 Variable CAN1 CAN2 Variable  CAN1 CAN2

Wilks’ λ 0.011 0.230 0.013 0.237 0.359 0.788 0.251 0.902

χ2(P) 364.1‡ 119.6‡ 357.7‡ 118.2‡ 61.0‡ 14.1† 67.7‡ 5.0 (ns)

Eigenvalue(%) 19.1(85.1) 3.3(14.9) 17.5(84.5) 3.2(15.5) 1.2(81.7) 0.3(18.3) 2.6(96.0) 0.1(4.0)

Standardized canonical discriminant coefficients

λmax(α) 0.669 0.421 λmax(α) 0.670 –0.799 λmax(α) 1.066 0.087 λmax(α) –1.140 0.216

λmax(β) 0.612 –0.278 λmax(β) 0.571 0.786 R(β) –0.460 0.966 λmax(β) 0.795 0.517

MIN 0.333 –0.588 MIN 0.402 0.349 R(β) 0.382 0.864

R(β) –0.029 0.527

‡: P<0.0001, †: P<0.001, ns: not significant (P>0.05).
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(CV)=2.1 in G. auratus and 6.6 in G. laevistriatus; at Oto-
wayama, CV=2.8 in G. auratus and 8.4 in G. laevistriatus;
and at Nara Park, CV=3.2 in G. auratus and 12.4 in G. lae-
vistriatus).

The differences in the shapes of the spectra were sum-
marized by canonical discriminant analysis (Fig. 5a, 5b;
Table 4a, 4b). A stepwise discriminant analysis of variance
in the entire dataset (six variables) reduced the number of
discriminating variables to 4 for male G. auratus, 3 for
female G. auratus, 2 for male G. laevistriatus, and 3 for
female G. laevistriatus (significance associated with Wilks’
λ, p<0.05; Table 4a). Analyses revealed that λmax(α) was
the most efficient parameter for discriminating between
sampling sites in both species (Table 4a). This analysis was
able to discriminate between sampling sites for both male
and female G. auratus clearly (Wilks’ λ=0.011 for males;
Wilks’ λ=0.013 for females). Although λmax(β) had a large
effect on CAN1 scores in the final model (Table 4b), a dis-
criminant function analysis using only λmax(α) was more
effective at discriminating between sampling sites (Wilks’ λ=
0.082 for males; Wilks’ λ=0.078 for females). In comparison,
discrimination analyses between sampling sites for male
and female G. laevistriatus showed relatively poorer perfor-
mance (Wilks’ λ=0.359 for males; Wilks’ λ=0.251 for
females). The canonical scores of samples from Oto-
wayama and Nara Park largely overlapped, although sam-
ples from Arashiyama could be clearly discriminated from
those from the other two sites (Fig. 5b). The CAN1 scores
for G. laevistriatus were highly dependent on λmax(α)
(Table 4b), and the frequency distributions of λmax(α) of G.
laevistriatus from Otowayama and Nara Park actually
shared a wide wavelength range (Fig. 4).

DISCUSSION

Our study demonstrates that reflectance spectra are
useful for describing the monochromatic color of the dorsal
surface of two dung beetle species, Geotrupes auratus and
G. laevistriatus. Furthermore, we show that geographic color
variation in each species is well characterized by the shift of
α peaks. Since structural colors in the Geotrupes beetles
seem to be produced by a multilayer reflector, the α peak of
reflectance may depend on the thickness of the layers in a
stack (Parker et al., 1998). Therefore, it seems appropriate
to use λmax(α) as an index for evaluating color variation in
Geotrupes beetles. Our analyses of λmax(α) also revealed
hidden (imperceptible by humans) sexual dichromatism in
both beetles; the reflectance intensity of males was signifi-
cantly higher than that of females at λmax(α). Through
objective spectral measurements, we may find hidden sex-
ual dichromatism in many other species.

Recently, Favila et al. (2000) clearly demonstrated that
cuticular color in a Scarabaeinae beetle (Canthon cyanellus
cyanellus LeConte) is genetically controlled. If the coloration
of G. auratus and G. laevistriatus is also genetically con-
trolled, we should pay more attention to the frequency dis-

tribution of λmax(α) of a population. Coefficients of variation
in λmax show that the coloration of G. auratus is more uni-
form than that of G. laevistriatus in all three populations.
Furthermore, the frequency distributions of λmax(α) in G.
laevistriatus largely overlap between the different sites. Dif-
ferences in the degree of variation within a population may
be explained by the differing levels of gene flow between the
two beetle species. Habitats of G. auratus to be restricted to
localized areas where wild mammals are more abundant,
while G. laevistriatus are observed more widely, even in iso-
lated green spaces within cities (Mizuno, 1964). Therefore,
gene flow among G. auratus populations seems to be more
restricted than in G. laevistriatus. Differences in the strength
of selective pressures may also explain the differences in
the degree of geographic variation within each species if the
coloration of the beetles is determined by natural or sexual
selection; selective pressures may be greater on G. auratus
than on G. laevistriatus in a specific area. To understand
these patterns of geographic variation, we need to deter-
mine the selective forces acting on the coloration, the level
of gene flow between populations, and the interaction
between these two selective pressures.

Interestingly, our results show that G. auratus and G.
laevistriatus share similar coloration in each habitat.
Although the coloration of G. laevistriatus appears dull to
human observers, spectral analyses reveal that the α peaks
of G. laevistriatus shift in the same direction as those of G.
auratus. Additional populations should be surveyed to
understand the patterns in geographic color variation in
these two dung beetles.

Geographic color variation in G. auratus and G. laevis-
triatus does not appear to be maintained by thermoregula-
tion, since coloration does not vary with latitude (Mizuno,
1964). Alternatively, coloration might serve a function in
intraspecific communication, since there are sex differences
in the reflectance intensity of the α peak. However, an
intraspecific signal function does not explain the similarity of
the coloration between the two Geotrupes beetles at each
site. If the dung beetles are unpalatable to predatory ani-
mals, and the coloration functions as a warning signal, the
color similarities between the two beetle species might be
explained by Müllerian mimicry, since they share the same
resources (the dung of mammals) and are frequently
observed together in the same habitat. Studies of the diurnal
activity of the beetles revealed that G. auratus and G. lae-
vistriatus activities peak in the daytime (Sasayama et al.,
1984). Therefore, their coloration may act as warning sig-
nals for visual diurnal predators, such as birds. Pluot-Sigwalt
(1982, 1984) has demonstrated that some African dung
beetles in the tribe Gymnopleurini have exceptionally
numerous pygidial glands that generally secrete repellent
substances. The bright color of these beetles may be inter-
preted as warning colors (Camberfort, 1991). To our knowl-
edge, however, there is no evidence demonstrating the
unpalatability of the two Geotrupes dung beetles.

In conclusion, our quantitative analysis effectively eval-
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uated the coloration of two dung beetles: G. auratus and G.
laevistriatus. Using the objective index, λmax, we can com-
pare the geographic color variation of the beetles quantita-
tively. We found coloration similarity between G. auratus
and G. laevistriatus within sampling locations, and also hid-
den sex differences in the reflectance intensity of the bee-
tles. The Geotrupes beetles may be an ideal model system
for investigating causal factors of geographic variation in
animal color patterns.
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