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ABSTRACT—To investigate the role of estrogen in the serial-sex changing fish Trimma okinawae, we iso-
lated complementary DNAs encoding two distinct cytochrome P450 aromatase isoforms from adult ovary
and brain (termed P450aromA and P450aromB, respectively). Sequence and phylogenic analyses showed
that the goby P450arom forms belong to two separate CYP19 subfamilies. Transient expression of these
cDNAs in HEK293 cells caused conversion of exogenous testosterone to estradiol-173. RT-PCR showed
that P450aromA was expressed in the brain, spleen, testis and ovary. P450aromB was expressed in the
brain, liver, testis and ovary. In situ hybridization studies showed that P450aromA mRNA, but not
P450aromB mRNA, was present in both ovary and testis. Positive signals were restricted to granulosa cells
of vitellogenic follicles and interstitial cells of mature testis. Ovarian expression of both P450arom genes
during the spawning cycle was examined by quantitative real-time RT-PCR. P450aromA transcripts
increased during vitellogenesis and decreased prior to spawning. In contrast, P450aromB transcripts were
barely detectable and did not correlate with ovarian development. These findings suggest that P450aromA,
but not P450aromB, is involved in regulating ovarian vitellogenesis in goby.
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change of the largest female in the harem. If placed with a

INTRODUCTION .
larger male, the once dominant male reverts to a female.

Despite numerous endocrine studies on sex change in
teleosts, no general mechanisms mediating sex change
have emerged. The gobiid fish, Trimma okinawae, pos-
sesses ovarian and testicular tissues simultaneously in its
gonad. Furthermore, T. okinawae is able to change sex
repeatedly in both directions depending on its social sur-
roundings (Sunobe and Nakazono, 1993; Kuwamura et al.,
1993). A dominant male controls a harem of several
females. Removal of this dominant male results in sex
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Almost all sequential sex-changing fish either protogynous
or protandrous reversibly change sex in one direction. As
sex change in both directions can be socially manipulated,
T. okinawae provides an excellent animal model to elucidate
the mechanisms of male to female and female to male sex
change.

Steroid hormones produced by gonads play crucial
roles in ovarian function, sex differentiation and sexual mat-
uration and behavior in vertebrates in general (Fostier et al.,
1983; Maclusky and Naftolin, 1981; Wilson et al., 1981). In
hermaphrodite fishes, estrogen plays a particularly impor-
tant role in natural and experimentally-induced sex change
(Chang et al., 1998; Fostier et al., 1993; Hunter et al., 1983).
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Our concern is the physiological role of estrogen in serial-
sex changing gobiid fish, T. okinawae. Estrogens are syn-
thesized in the gonads and brain by an enzymatic step using
testosterone as a substrate. The terminal enzyme in the ste-
roidogenic pathway is cytochrome P450 aromatase
(P450arom).

To investigate the role of estrogen in a serial-sex
changing gonad, we focused on P450arom. As a first step,
we isolated and characterized P450arom cDNAs from goby.
Subsequently, localization of P450arom in the gonad was
observed by in situ hybridization. Additionally, changes in
P450arom expression were examined during the natural
ovarian cycle using real-time quantitative RT-PCR.

MATERIALS AND METHODS

Experimental animals

Animals were collected from their natural habitat at
Makurazaki, Kagoshima Prefecture, Japan and then kept in the lab-
oratory. Fish were maintained under constant conditions (seawater
at 27°C, 14L: 10D) in indoor tanks. Fish were fed commercial pellet
and brine shrimp. Sex was determined by genital papillae (Sunobe
and Nakazono, 1993; Grober and Sunobe 1996). Mature female
and male fish were transferred to glass aquaria and reared under
the above condition. The normal spawning cycle (~4 days) was
seen with no evidence of sex change. In this study, samples were
obtained after spawning to prevent contamination with sex-chang-
ing samples.

Sample collection and RNA extraction

Adult fish were sedated in an ice bath and sacrificed by decap-
itation. Following removal, majority of the gonad was frozen in liquid
nitrogen and stored at —80°C. The remaining gonadal fragment was
fixed in 4% paraformaldehyde in 0.1M phosphate buffer for approx-
imately 14 hours. After dehydration and paraffin embedding,
gonads were sectioned at 5 um. Total RNA was extracted from fro-
zen tissues using the RNeasy mini kit with the RNase-free DNase
set (Qiagen) according to manufacturer’s protocols.

Oligonucleotides

Oligonucleotides used as PCR primers are shown in Table 1.
The degenerate primers of A-dn-Fw and -Rev were against highly
conserved regions of the aromatase I-helix and heme-binding
domains. Another degenerate primer pair (B-dn-Fw and -Rev) was
designed on against highly conserved regions of P450aromB cDNA
from channel catfish (AF417239), goldfish (U18974), zebrafish
(NM_131642), Nile tilapia (AF295761) and rainbow trout
(AJ311937). Gene-specific primers were synthesized based on our
sequences. Primers actin-Fw and actin-Rev were selected on the
goby p-actin cDNA sequence.

Cloning of goby aromatase cDNAs

Goby aromatase was cloned first by generating a partial cDNA
by reverse transcriptional-polymerase chain reaction (RT-PCR)
using degenerate primers. Following the amplifications of the 5'-
and 3'-cDNA ends by rapid amplification of cDNA ends (RACE), a
cDNA encoding the complete coding region was obtained by a sin-
gle RT-PCR reaction.

Described briefly as above, one microgram of total RNA from
ovary was reverse transcribed using an oligo(dT) primer and Super-
script Il reverse transcriptase (Gibco-BRL) according to manufac-
turer’s instructions. PCR was performed using degenerate primers
(A-dn-Fw and -Rev, B-dn-Fw and -Rev) designed from highly con-
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served regions of known P450arom sequences. RT-PCR cycle con-
ditions were 25 cycles, with 94°C 1 min, 55°C 1 min, 72°C 1.5 min.
The amplicons were T-A ligated to pGEM-T-easy vector (Promega,
Madison, WI, USA) and sequenced.

Based on the sequence information of the presumptive aro-
matase cDNA amplicon, rapid amplification of cDNA ends (RACE)
procedures were performed to isolate the 5 and 3’ ends of the
cDNA (SMART cDNA library construction Kit; Clontech). In each
RACE procedure, the initial PCR amplification was followed by a
nested amplification. Gene-specific primer sets (GSP series) in
combination with adaptor primers were used, respectively, for 5’-
and 3-RACE. RACE PCR cycling conditions were 35 cycles with
94°C 30 sec, 64°C or 56°C 40 sec, 70°C 120 sec.

The complete open reading frames (ORF) of the goby
P450aromA and B were generated from ovarian RNA by RT-PCR
with primers targeting the untranslated portions immediately
upstream (AORF-Fw and BORF-Fw) and downstream of the ORF
(AORF-Rev and BORF-Rev). The resulting PCR products were
subcloned into pBluescript Il KS- (Stratagene, LadJolla, CA, USA)
designated gfAA/pBlue and gfAB/pBlue and sequenced in both
directions.

DNA sequencing analysis

The resulting plasmid DNA was purified by the alkaline lysis
method (Sambrook and Russell, 2001). Sequencing was performed
for both strands with an Applied Biosystem model 377 sequencer
after labeling with dye terminator cycle sequencing kit (Applied Bio-
systems, Foster city, CA, USA) using vector and gene-specific prim-
ers. Sequence analysis was performed using DNASIS software
(Hitachi Co, Ltd., Tokyo. Japan). Alignment of multiple protein
sequence was performed using ClustalW multiple sequence align-
ment program and homology value (percent of amino acid
sequence identity) was calculated by pair wise alignment. The phy-
logenetic tree was constructed using the Neighbor-joining method
(Saitou and Nei, 1987) and viewed with TREE-view (Ver. 1.8). Pro-
gram settings are detailed in the figure legend.

Transient expression in HEK293 cells

The cDNA inserts from goby gfAA/pBlue and gfAB/pBlue were
subcloned into a cytomegalovirus expression vector (pcDNA3.1+,
Invitrogen) at the EcoRI-Xhol restriction site and designated gfAA/
pc and gfAB/pc. These clones were sequenced to confirm that the
cDNA was inserted in the sense orientation. HEK293 cells were
plated onto 6 cm tissue culture dish (Corning, Japan) in 4 ml Dul-
becco’s modified Eagle’s medium (Nissui Pharmaceutical Co. Ltd.,
Tokyo, Japan) containing 10%(W/V) fetal calf serum (JRK, Japan)
under 5% CO» until 80% confluent. One microgram of purified
recombinant expression vector was transfected into HEK293 cells
using TfxTM-50 reagent (Promega) according to the suppliers pro-
tocol, followed by incubation at 37°C for 2 hours in 4 ml culture
medium. The cells were then cultured for an additional 12 hours.
After adding testosterone at a final concentration of 10 ng/ml
(Sigma Chemical Co., St Louis, MO, USA), the plates were incu-
bated for 48 hours. Culture medium and cells were separated by
centrifugation at 1000 r.p.m. for 10 min and supernatant was stored
at —80°C until assay. To measure levels of estrogen produced by
HEK293 cells, the culture medium was extracted twice with diethyl
ether and evaporated by vacuum centrifugation. The amount of
estradiol-17 was measured using an estradiol enzyme immuno
assay kit (Cayman, USA). According to the supplier's information,
the cross-reaction for testosterone is 0.1%.

Tissue expression of the goby aromatase genes

Tissue distribution of goby aromatases was examined by RT-
PCR as follows: single-stranded cDNA was synthesized using Omni-
script reverse transcriptase (Qiagen) from 0.25 pg of oligo(dT)-
primed total RNA isolated from various tissues. PCR analysis of



Two Aromatase Genes in Goby 419

Table 1. Primer sets used for RT-PCR, 5" and 3’-RACE and real-time quantified RT-PCR for
sequence and expression analysis of goby P450 aromtase A and B

Primer Name Sequence Nucleotide Position
A-dn-Fw 5-CARTGYGTGCTGGAGATGGTGATYGCG-3 972 — 998
A-dn-Rev 5-CGYTACTTCCAGCCMTTYGGT-3 774 — 754
B-dn-Fw 5-AAAGCTCTTACTGGACCMGGYCTSCAG-3’ 346 — 372
B-dn-Rev 5-CTGGCCATGCGCTTCATYCCRCGA-3’ 1536 — 1513
A-3GSP1 5-ATACAGAACTCAGACCTGCCTCA-3’ 1113 — 1135
A-3GSP2 5-GTGATGGAGAGCTTCATAAACGA-3’ 1143 — 1165
A-5GSP1 5-GAGGGGTATTTTTCTCGAAGTTT-3 1350 — 1328
A-5GSP2 5-AAGTTTTCCAGGCTGAACTCATT-3 1333 — 1311
A-5GSP3 5-CGCGATCACCATCTCCAACAC-3 998 — 978
A-5GSP4 5-GTTGTCCAGTTTGTCGGCCTG-3 905 — 885
B-3GSP1 5-CGACCTTGACTTTGCAACAGAGCTGATTT-3 873 — 901
B-3GSP2 5-GCTGTTTTAGGGGAAGATGGAGCTGAAA-3 1063 — 1090
B-5GSP1 5-GTATTCAGTTTTATGCATCAGGCCGGTGT-3 1269 — 1241
B-5GSP2 5-TTATGCATCAGGCCGGTGTTGAGAATAAT-3 1259 — 1231
A-ORF-Fw 5-GAAAGCGCCATGACGAGCCAG-3 39 =~ 59
A-ORF-Rev 5-CGCGTTTGACGTCATGCACAAAC-3 1703 — 1681
B-ORF-Fw 5-CTCTACAACACAACATCTGGACAAC-3 16 — 38
B-ORF-Rev 5-GAATGCTTATGTACAGCGTATAC-3 1602 — 1580
ART-Fw 5-TAAGCGACACATACAGAACTCAGAC-3 1103 — 1127
ART-Rev 5-TCATGCACAAACTTTAAAAGATCAA-3 1691 — 1667
BRT-Fw 5-CTCTACAACACAACATCTGGACAAC-3 549 — 573
BRT-Rev 5-ATAATAAACGAAGCAGACAAGTTGGA-3’ 869 — 844
RP-A-Fw 5-GCGACACATACAGAACTCAG-3 1106 — 1125
RP-A-Rev 5-GTTGTAGCCGTCGATGACGTC-3’ 1241 — 1221
RP-B-Fw 5-CGTCAGAGAACGTCCGACAG-3’ 926 — 945
RP-B-Rev 5-TATGCATTCTTCCACTGCAG-3 1047 — 1028
actin-Fw 5-TTCTACAACGAGCTGCGTGTG-3
actin-Rev 5-TGTCAGGATCTTCATGAGGTA-3’

both P450aroms (primers ART-Fw and -Rev, BRT-Fw and -Reyv,
respectively) and S-actin (primers actin-Fw and -Rev) was carried
out with the following cycle conditions: 30 cycles at 92°C for 30 sec,
55°C for 30 sec, and 72°C for 1 min. Ten-microliter aliquots of the
PCR reactions were analyzed electrophoretically and the amplicons
were visualized on UV transilluminator.

In situ hybridization analysis

Gonadal sections were hybridized with digoxygenin (DIG)-
labelled goby P450aroms cRNA probe overnight at 58°C in hybrid-
ization buffer. Sense and antisense probes were labeled using stan-
dard transcription reactions and a DIG-labeling nucleotide mix
(Boehringer Mannheim, Tokyo, Japan). Hybridization signals were
detected with alkaline phosphatase-conjugate antibody according to
manufacturer’s protocol (Boehringer). Sections were incubated for
2 hours at room temperature with DIG antibody. After incubation
sections were incubated with NBT/BCIP substrate (Boehringer) for
detection of alkaline phosphatase activity.
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Real-time quantitative RT-PCR

Abundance of goby aromatase transcript was determined as a
measure of gene expression in ovary during the spawning cycle by
real-time quantitative RT-PCR analysis (rtg-PCR) method using
TagMan technology published elsewhere (Perkin Elmer Applied
Biosystems, 1997; Heid et al., 1996). Samples were reverse tran-
scribed from 500 ng of total RNA in a 20-ul reaction volume using
random hexamer primers and Omniscript reverse transcriptase
(Qiagen). Standard copy number of both P450arom genes was esti-
mated based on molecular weight and absorbance of gfAA/pBlue
and gfAB/pBlue plasmid. Two sets of primer RP-A-Fw and -Reyv,
RP-B-Fw and -Rev (P450aromA, B respectively) were designed
according to Primer Express software (version 1.5, PE Applied Bio-
systems). The dilution templates for each of triplicate were tested
in 25-ul of PCR mixture containing 2X SYBER Green master mix
(PE Applied Biosystems) and 0.3 uM (in final concentration) of each
primer. The PCR profile was as follows: one initial denaturation at
95°C for 15 min, 45 cycles of denaturation at 94°C for 15 sec,
annealing at 52°C (both genes) for 15 sec, and extension at 72°C
for 30 sec and final extension at 60°C for 5 min, followed by the dis-
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sociation curve analysis. The PCR amplifications and fluorescent
detection were performed with ABI Prism Sequence Detector 7000.
DNA contamination was checked by performing a control reaction
in which there was no reverse transcribed RNA.

RESULTS

Isolation of two goby P450arom cDNAs
P450aromA
The degenerate RT-PCR generated an amplicon of the

gobyA oo MISQSVADVLVDS TSHNATGLEAPGI SVATRTLALLLCVAL TAWSRTEKKNKASA PG PWF CLGLGPLLTYVRFLWTGIGTASNYYNHKYGDIVRVWINGEETLVLS 106
gobyB e ] MENLLRPLTINSMVVNSLSEVSGVLFFLL LI LT TIAWSRVHS - SOMPGPHFLFGLGPLLSY TREVIWIG IGTACNYYNNKYGK T VRVWISGEETLITS 96
zebrafishA MAGDLLQPCG- -MKPVRLGEAVVDLLIQRAHNGTERACDNACGATATTLLLLLCLLI ATRHHRPHKSHI PGPSFFFGLGPTVSY CRETWSGIGTASNYYNSKYGDIVRVWINGEETLILN 118
zebrafishB coooomoo o MMEHVVKDAVNIGAVVQGTLLLL TGTLML ILLHR TFGVKNWRNQSAL PGRGRWLGLGPVLSY SRFLWMG TGTACNYYNEKYGS LARVWINGEETVILS 98
tilapiaA =~ ----- MDLISACEQAMNFVGLDAVVARSLCDLKCHPIDG ISMATRTLILLVCLLLVANSHTDKK - - - IVPGPSFCLGLGPLLSYLRFIWTGIGTASNYYNNKYGDIVRVWINGEETLILS 112
tilapiaB = —ememmemmmmm e MLPVEELTAGPMVADRASEVTAVLLLLLI LTI LFTTWRORKOSHI FGPFFLAGLGPI LSY SRETWSGIGTACNYYNNKYGS IVRVWINGEETLILS 96
goldfishA MAGELLQPCG- -MKQVHLGEAVLELLMOGEHNSS YGACDNVCGAMATLL LLLLCLLLAT RHHWIEKDHVPGPCF LLGLGPLLSYCRLIWSG IGTASNYYNSKYGDIVRVWINGEETLILS 118
QoldfishB o] MEEVLKGTVNFAAAVOVTLMALTGTLLLILLHR I FTAKNWRNQSGVPGPGWLLGLGPIMSY SRFLWMG IGSACNYYNEKYGSTARVWISGEETFILS 97
catfishA MARHVFPMCERTRKPVHFSETVME TLL REARNGTDFRYENFR -G ITLL LLL CLVLLLTVRNRHEKKCS T FGPSFCLGLGPLMSYCRF TWMG IGTASNYYNEKYGIMVRVWISGEETLVLS - 119
catfishB = emmm o] MELQNVSDVMAVMEGRGLCVISALLFLLLLTSLTAYNRRNKSTLPGPYWLLGLGPILSYSRFLWIGIGTASNY YNKKYGCMIRVWICGEKTLILS 95
human oo MVLEMLNPIHYNITSIVPEAMPAATMPVLLLTGLFLL VWNYEGTSSI FGPGY C(MGIGPLISHGRFLWMG IGSACNYYNRVYGEFMRVWISGEETLIIS 98
*kk H * ** * *** * ek kK ok : **ti—_**.*...‘

gobyA RASAVNHVLKSSNY TSRFGSKLGLGYLGMHESGY IFNNNVDLWKKT RAY FSKAL TGPGLOCAVGVCVSSTLRHLEET KAGKSGSHOVLGOVDILRLI RETVVIVSNRLYLDVPVNEKELL, 226
gobyB KSSVVYHILRSSHYTARFGSKDGLETVAMBGKGT IFNSDVPLIWKKVR IF FSKALTGRGLORTVS ICVDS TTCHLIONLHEMTS - - - - PSGHVDALNLLRAIMINI SNKLFLGVPLNGKQLL 212
zebrafishA RSSAVYHVLRKSLYTSRFGSKLGLQCTGVMHEQGI IFNSNVALWKKVRAF YAKALTGPGLQRTME ICTTS TNSHLIDLSQ- - - - LTDAQGQLDILNLLRCIVVDVSNRLFIGVPLNEHDLL 234
zebrafishB KSSAVYHVLKSNNY TCRFASAKGLQCIGMFERGI IENSN TAKWKKVRTYFTKALTGPGLOKSVEVCVSATNRQLDVLQEFTD- - - - ASGHVDVLNLLRC IVVDVSNRLFLRIPLNEKELL ~ 214
tilapiah RSSAVHHVLKNGNY TSRFGSIQGLSYLGMNERGT TENNNVTLIWKKI RTY FAKALTGPNLOQTVDVCVSS IQAHLDHI DS - - - - - - - = LGHVDVLNLIRCTVLDISNRLFINVPLNEKELM 224
tilapiaB RSSEVYHVLRSAHY TSRFGSKKGLECTGMYGNGI TFNSDVLLIWKKVRTYFSKALTGRGLORTVGICVSS TAKHLINLQDMID- - - - PSGHVDALNLIRAIVLDISNRLFLRVPLNEKDFL 212
goldfisha RSSAVYHVLRKSLYTSRFGSKLGLQCIGVHEQGI IENSNVALWKKVRTF YAKALTGPGLQRTLE ICTTSTNTHLINLSH - - - -LMDARGQVDILNLLRCTVVDISNRLFIGVPLNEHDLL 234
goldfishB KSSAVYHVLKSNNY TGRFASKKGLOCIGMFEQGT IFNSNMALWKKVRTY FTKALTGRGLOKSVDVCVSATNKOLNVLQEFTD- - - - HSGHVDVLNLLRCIVVDVSNRLFLRIPLNEKDLL 213
catfishA RPSAVYHVLKHSQYTSRFGSKLGLQCIGMHEQGT TFNSNVTLWRKVRTYFAKALTGRALORTLE ICTMS TNTHLDGLSR - - - - LTDAQGHVDVLNLLRCIVVDISNRLFLDVPLNEQNLL 235
catfishB KGSAVYHVLKSSNYVARFASRSGLRCIGMDEQGL TFNSN I PLWKKLRTYFAKAL TGPGLCR TVGVCVHATNKHLDVLCEFMD- - - - SSGHVDALNFLRCIVVDVSNRLFIRIPINEKDLL 211
humart KSSSMFH IMKHNHY SSRFGSKLGLOCTGMHEEKGT TFNNN PELIWKTTRPF FMKALSGPGLVRMYTVCAES LKTHL DRLEEVTN- - - - ESGYVIVLTLIRRVMLDTSNTLFIRIPLDESATV 214

:*:*::: * *** *k :** ****: *..*::******:::* : .*_* *:**:** T: ****:*::

1

gobyA HKTHMYFDTWOTVL IKPDI YFKLYWIHN- KHKSAAKELQODATEELVOQKRR IMEQADKLD- NINFAAEL T FAQNHGEL SAONVR QSVLEMV IAAPDTLS LTLLFMLLLL VELQLL 344
gobyB KKTHNYFETWQTVL IKPST FSRMGWLYN - KHKKSGQELQDET QDLLEVKKKI INEADKLDDDLDFATEL IFACNNGELS ENVRQCVLEMVIAAPDTLS ISFFFMLLLLKNPAVEECIL 331
zebrafisha QK THKYFDTWQTVL IKPDVYFRLDWLHK - KHKRDAQELQDAT TALI EQKKVQLAHAEKLD- HL DFTAEL TFAQSHGELSHENVRQCVLEMV IAAPDTLS ISLFFMLLLL VELKIL 352
zebrafishB IKTHRYFSTWOTVL IQPDI FFKLDFVYR- KYHL AAKEL QDEMGKLVEQKRQATNNTEKLD- EMDFATEL TFACNHDELS WDVRQCVLEMVIAAPDTLS ISLFFMLLLLKNSAVEEQIV 332
tilapiahA LKIQKYFHTWODVL IKPDI YFKFRWIHH- REKTATQELQODAT KRLVDQKRKNMEQADKLD- NINFTAEL T FAQNHGELS AENVTQCVLEMVIAAPDTLSLSLFFMLLLLKNFHVEPQLL 342
tilapiaB TKTHNYFDTWQTVL IKPDI FEKVGWLYN - KHKRARQRL QDAMESL.LEVKKKMIHEAEKLDDEI DFATEL TFACNHGELSADNVROCVLEMVIAAPDTI SISLFFMLMLLKJNFATELQLY 331
goldfisha QKTHKYFDTWQTVL IKPDVYFRLAWNLHGKHKRDAQELQDATAALT EQKRVOLTRAEKFD- QLDFTGEL TFAQSHGELS QCVLEMI TAAPDTLS ISLEFMLLLLKNFDVELKIL 353
goldfishB IKTHRYFSTWOAVL IQPDVFFRINFVYK- KYHI AAKELQDEMGKLVEQKRQATNNMEKLD- ETDFATEL IFACNHDELS WDVRQCVLEMVIAAPDTLS ISLEFMLLLLKNSVVEEQIV 331
catfisha FKTHRYFETWOTVL IKPDFYFRLKWLHD- KHRNAAQEL HDAT EDLI BQKRTELQQAEKLD- NLNFTEEL TFAQSHGELT! OCVLEMVIAAPDTTSISVFFMLLLLKNAEVERRIL 353
catfishB VKIHKYFDTWOTVL IQPDI FFHLAWMYK- KHHOAAKEL OFFMGR LVEFKRKA TNGMEKL G- ETDFATEL I FACDHGEMSHDDVR QCVLEMVIAAPDTLS ISLFFMLVLLKKPEVEQCIL 329
human VKIQGYFDAWOALL TKPDI FFKISWLYK- KYEKSVKDLKDATEVLIAFKRRR IS TEEKL EECMDFATEL ILAEKRGDL! OCILEMLIAAPDIMSVSLFFMLFLIAHPNVEEATT 333

Kk oKk kk okkok oL srkrcor ¥ ko Helt} PRy WER oK rrr ¥ ok pwdkgkdokdkk ko akdR Ky wy oF o

11 HI

gobyA REIDAVIGKRHICNSDLPQLQVMESFINESLRFYPVWDFS DV IDGYNVPKETNI T ~ TEFFLKPNEFSLDNFEKNTEPRR - YFQRFGSGPRNCVGKEVEMVMMERTL. 462
gobyB EEMNAVLGEDGAEN TKHONLKVLEKFI YESMRFHPVVD DN IDDLKIKKGTNI ILNTG ~ TEYFPHPNEFTLDNFDKTVPNR - YFOHFGCGPRSCVGKHIAMVMMKRTL 449
zebrafishA CEMDSVLAGQOSLOHSHLSKLQILESFINESLRFHPVVD DV IEGYNVKKGINI T - SEFFSKPNQFSLDNFQKNVPSR - FFOHFGSGPRSCVGKHIZAMVMMKSIL 470
zebrafishB QEIQSQIGSRDVESADL QKINVLERFIKESLRYHPVVDEF IMRQSLHODY IDGYRVAKGTNLILN IGRVHK - TEF FKKENEF SLENFENTVPSR - YFOHFGCGPRACVGKHIAMVMIKATL 450
tilapiaA CEIDAVVGERQLONCDLHKLOVMESFI YECLSFHPVVDF T 4001 IEGYRISKGTNI T - TEFFLKGNQFNLEHFENNVPRPPTFQHFGSGPRACIGKHMAMUMMKSIL 461
tilapiaB EEMNTTLNEKDVEN IDYQSLKVMESF INESLRFHPVVD) DNDFAGTK IKKGTNI ILNTGLVMHK - TEFFPKPEEFNFINFEKTVPNR - YFQHFGOGPRSCVGKHIAMVMMEKAIL 449
goldfishA QOEMNAVLAGRSLCHSHLSGLHILESF INESLRFHPVVD] ODVIEGYEVKKGINI I - SEFFPKPNEF SLONFQKNVPSR- FFQHFGSGPRSCVCKHIAMVMMKSIL 471
goldfishB OETIQSQIGERDVESADLOKLNVLERFIKESLRFHPVVDF IMRRALHLDE IDGYRVAKGTNLILNIGRVHK- SEFFOKPNEFNLENFENTVPSR - YPOHFGOGPRACVGKHIAMVMIKATL 449
catfisha TE THTVLGD TELQHSHLSQLHVLECF INEALRFHFVVDF! TEGFRVPRGTNI T - SEFYPKPADFSLDNFNKPVPSR - FRFOHFGSGPRSCVGKHIAMVMMKAVL 471
catfishB QEMRNVLGGREVEPAELQKLTVMESF I KESLRFHPVVDF IMRRALIJDDF TEGYRVAKGTNT ILN IGRLHKSAEFFPKANEFSLENFENNVPSR - FFOFFGCGPRACVGKHIAMVMMKAVL 448
human KEIQTVIGERDIKIDDIQKLKVMENFT YESMRYQPVVDL) RODV IDGYPVKKGTNI TLNIGRMHR - LEFFPKPNEFTLENFAKNVPYR - YFORFGFGPRGCAGKYTAMVMMKATL 451

*: : : . * * L S **** *::*.*: : : :***:*** d* 11 *:: : :*.: :* : .* Fkkkk kik **::**** *::*
gobyA VTLLSQYSVCPHEGVTLELLPQINDLSQOVVEEKDTP - - - LTMNFLERNRAANRVH- - - —- 515
gobyB VTLLSRYTVCPHOGCTISN IRQINDLSQQPVEDEHS - LAMRE T PRHNTEN - 498
zebrafishA VALLSRFSVCPMKACTVEN TPQTNNLSQQPVEEPSSLSVOLILRNTL - - = = === == === == 517
zebrafishB VIMLSRFTVCFRHGCTTSTIKOMNNLSMOPVEEDPDCLAMRE TPRACNSNGETADNRTSKE 511
tilapiaA VILLSQYSVCTHEGPILDCLEQINNLSOOPVEHQQAETEHT HVMRFLPROGS SOOTLKDPNL 522
tilapiaB VTLLSRYTVCPHQGCTLSS IKYTNNLSQQPVEDEHS - LAMRF TPRTK- ~ = = == == === ==~ 495
goldfishA VTLLSRFSVCPVKGCTVDS TPQINDLSQOPVEEPSSLSVOLILRNAL - - - - - = - =~ - = - 518
goldfishB VTLLSRFIVCPRHGCTVST IKYINNLSMPVEEDFDSLAMRF TPRAQNT CGDPHLGEKTEE 510
catfishA IMVLSRFSVCPEESCTVEN IAHINDLSQQPVEDKHTLSVRF T PRNTHTRNRKA- - - - - - - - 524
catfishB VIVLSQYTVCPQRGCTVST IRQTNNLSQQPTEEDTQSLAMRE TPRKRSPDKQ- - =~ ==~ == 500
human VTLLRRFHVKTLOGQCVES IQKTHDLSLHPDETKNVLEMIFTPRNSDRCLEH - - ~ - - - = == 503

S I T T T

Fig. 1. Alignment of P450arom amino acid sequences. ClustalW multiple sequence alignment was used to compare the goby P450aromA

and B, with P450arom forms derived from zebrafish A and B, Nile tilapia A and B, goldfish A and B, catfish A and B and human. Amino acids
identical to those in other species are indicated by asterisks (*). Colon (:) indicates conserved substitution and dot (.) indicates semi-conserved
substitution. Regions of high sequence homology are boxed and indicated by Roman numerals: I-helix (I); aromatase-specific conserved

region (Il); heme-binding region (ll1).
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Two Aromatase Genes in Goby

expected size (401 bp) from ovary. Ten clones of this ampl-
icon were sequenced and all of the nucleotide sequences
were P450aromA. A single set of nested 3’ RACE reactions
using sense primers 3GP1 and 3GP2 in combination with
adapter primers amplified the entire 3’ terminus of cDNA
(including the poly-A tail). On the other hand, a nested 5’
RACE reaction using the antisense primers 5GP1 and 5GP2
stopped short of the translation start codon. Therefore, a
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421

second 5’RACE using primers 5GP3 and 5GP4 was con-
ducted to amplify the remainder of the 5’ end and a portion
of the untranslated region. Goby P450aromA cDNA con-
tained 2126 nucleotides with a putative 1545 bp open read-
ing frame (ORF) and polyadenylation signal, ATTAAA,
located 30 bp upstream of the poly (A)* tail. This cDNA

encoded a 515-amino acid protein with a calculated molec-
ular mass of 58 KDa.
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Fig. 2. Evolutionary relationships of the known CYP19 proteins. Phylogenic tree was constructed using the neighbor-joining method. Com-
parisons were made to amino acid sequence of zebrafish A (AF226620) and B (NM_131642), catfish A (S75715) and B(AF417239), rainbow
trout A (1806325A) and B (CAC84574), goldfish A (AB009336) and B (U18974), medaka A (D82968), Nile tilapia A (U72071) and B
(AF295761), European sea bass A (AJ311177), Japanese flounder A (AB017182), red seabream (AB051290), stingray (AAF04617), Xenopus

(BAA90529), human (P11511), and chicken (J04047). The values are bootstrap probabilities estimated by 1000 replications. Horizontal line
indicates genetic distance. A, P450aromA; B, P450aromB.
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P450aromB

The initial RT-PCR using the degenerate primers ampli-
fied a partial cDNA of the expected size (1038 bp) from
ovary. Seventeen clones of this amplicon were sequenced
and the nucleotide sequence of all clones was P450aromB.
RT-PCR of brain mRNA also generated P450aromB ampli-
cons. The RACE procedures led to the isolation of the 5’
and 3’ ends of the cDNA covering the ORF and untranslated
region. Specific RT-PCR to generate a full-length clone
using primer BRT-Fw and -Rev amplified a single amplicon.
The nucleotide sequence of this clone was identical to that
of RACE clones. The goby P450aromB cDNA contained
1790 nucleotides with a putative 1494 bp ORF. A putative
polyadenylation signal is located 28 bp upstream of the poly-
A tail. This cDNA encodes 498-amino acid protein with a
calculated molecular mass of 57 KDa.

Sequence comparisons

Fig. 1 shows the deduced amino acid sequence of the
two goby aromatase aligned with other reported P450arom
forms of zebrafishA (AF226620); zebrafishB (NM_131642);
Nile tilapiaA (U72071); Nile tilapiaB (AF295761); goldfishA
(AB009336); goldfishB (U18974); catfishA (S75715); cat-
fishB (AF417239) and human (P11511). Goby P450aromA
was more closely related (60-73.5% identity) to isoform A of
other teleosts than isoform B (58-68% identity). The two
aromatases of goby shared only 55.8% overall identity.
Identity to human aromatase is even lower (48, 51% respec-
tively). Fig. 1 also depicts that putative functional domains,
including the I-helix, the aromatase-specific region, and the
heme-binding regions are highly conserved among verte-
brates. Phylogenic analysis of the full-length goby
P450aromA and B with other reported aromatases indicated

P450aromA
564 bp

P450aromB pm
295 bp |

B -actin

327bphe kK & R Fk

that the teleost aromatases clearly segregated into
P450aromA and B branches (Fig. 2). Goby P450aromA and
B are grouped in teleost P450aromA and B branch, respec-
tively.

Transient expression of P450arom cDNAs in HEK293
cells

Fig. 3 shows the production of estradiol-17f3 in HEK293
cells transfected with both gfAA/pc and gfAB/pc constructs
using testosterone as substrate. Estradiol-17 was con-
verted from testosterone in a linear fashion over 48 h of
incubation. These results confirmed that goby cDNA
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Fig. 3. Expression of functional P450aromA and B isozymes in
nonsteroidogenic HEK293 cells, which were transiently transfected
with pcDNA3.1+ P450aromA (a), P450aromB (@) and mock con-
struct (#). Estradiol production was measured at 12, 24 and 48
hours after incubation.

Fig. 4. RT-PCR analysis of tissue distribution patterns of goby P450aromA and B and f-actin. The positive control consists of a product

amplified from the plasmid DNA.
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encoded P450aromA and B.

Tissue distribution pattern of P450aromA and B

Goby P450aromA was distributed in brain, spleen,
ovary and testis. No signal could be detected in the liver and
kidney (Fig. 4). P450aromB was expressed in brain, liver,
ovary and testis. In contrast to P450aromA, P450aromB was
undetectable in the spleen (Fig. 4). The expression of -
actin (Fig. 4) indicated the functional integrity of the cDNA
template.

In situ hybridization of gonadal tissue

P450aromA transcripts were found in both cell layers of
the ovarian follicle. In previtellogenic follicles, signals were
seen only in the thecal cells (Fig. 5; Al and Bl). In vitello-
genic follicles, signals were more abundant in the granulosa
cells, as compared to the thecal cells (Fig. 5; Cl, DI and El).
P450aromA transcripts were also detected in interstitial cells
of testis (Fig. 5; Fl). Sense probes for P450aromA showed
no signal (Fig. 5; AllI=FIl). In contrast to P450aromA,
P450aromB mRNA was not detected in either testis or ovary
(data not shown).
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Fig. 5. In situ hybridization signals showing the presence of
P450aromA transcripts in ovarian follicles (arrowheads, Al-El) and
testis (FI). Sense probes as control (All-Fll) are shown. Bars indi-
cate 20 um.
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Quantitative analysis of P450aromA and B transcripts in
ovarian follicles

Expression levels of P450aromA and B mRNA during
the spawning cycle were examined (Fig. 6). Both forms
(P450aromA and B) were detected in the ovary; however,
P450aromA transcripts were at least more than 100-fold
greater than P450aromB transcripts. P450aromA transcript
levels changed markedly with progression of oocyte growth.
Maximum levels of P450aromA transcripts were detected
during late vitellogenesis on Day 3. Thereafter, levels
sharply declined with maturation on Day 4. In contrast, the
levels of P450aromB did not change during oocyte develop-
ment.

X103
4.

(copies/ng total RNA)
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<= Spawning

P450aromatase transcripts

| | [}
1 2 3 4 Day
~a——CEarly-vitellogenesis————s
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| ate-vitellogenesis =m—e
e PO st-vitellogenesis

Fig. 6. Expression of P450aromA (@) and B (M) transcripts in
ovary during the spawning cycle. Abundance of the transcripts was
measured by real-time quantitative RT-PCR.

DISCUSSION

Most teleosts have at least two CYP19 genes
(P450arom), which encode structurally and functionally dis-
tinct P450arom isozymes in ovary (CYP19a/P450aromA)
and brain (CYP19b/P450aromB) (Callard and Tchoudakova,
1997; Chiang et al., 2001; Gelinas et al., 1998; Kwon et al.,
2001). In this study, we isolated two forms of the aromatase
cDNA from the goby, T. okinawae. Sequence comparison
and phylogenic analysis indicate that two isoforms of fish
P450arom are orthologs of the previously identified mam-
malian and avian aromatase and members of paralogous
clades within teleost A- and B-lineages. The A- and B-iso-
forms of goby are only about 58% identical, indicating a long
evolutionary history as separate genes.

In addition to sequence analysis, the ability to catalyze
the transformation of androgen to estrogen was checked in
HEK293 cells transfected with two CYP19 genes. We con-
firmed that both isoforms have aromatization ability as is the
case with goldfish (Tchoudakova et al., 1998) and zebrafish
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(Chiang et al., 2001).

The non-quantitative RT-PCR analysis of aromatase
expression in various adult tissues of T. okinawae revealed
that P450aromA expressed in spleen and P450aromB in
liver similar to other species; Japanese flounder (Kitano et
al.,, 1999), Nile tilapia (Kwon et al., 2001) and human fetus
(Price et al., 1992) in spleen whereas Xenopus (Miyashita et
al., 2000), Nile tilapia (Kown et al, 2001) and human
(Harada et al., 1993; Toda et al., 1994; also review by Sim-
pson et al, 2002) in liver. These results suggest that the
spleen and liver are capable of producing estrogen from pre-
cursors. However, the potential function of locally-produced
steroids in these organs remain unknown. Our RT-PCR
analysis also detected both P450arom transcripts in testis,
ovary and brain. The overlapping expression of both forms
in gonads and brain is consistent with the results obtained
in zebrafish (Kishida and Callard, 2001; Trant et al., 2001),
Nile tilapia (Kwon et al., 2001) and rainbow trout (Valle et
al.,, 2002). The expression of aromatase gene in brain sug-
gests an important role for sexual behavior (Matsumoto et
al., 2003) and development of the central nervous system
(Maclusky et al., 1981). Changes in the expression of both
forms of P450arom genes in brain during sex change in T.
okinawae is of particular interest.

Our in situ hybridization studies determined the cellular
location of P450arom within the goby ovarian tissues. The
most abundant transcripts for P450aromA could be seen in
the granulosa cells of mid- and late-vitellogenesis and weak
signals were seen in thecal cells throughout vitellogenesis.
Aromatase activity was reported to be present in ovarian fol-
licles of several teleosts including Nile tilapia (Chang et al.,
1997), amago salmon (Young et al, 1983) and medaka
(Fukada et al., 1996). However, these studies did not exam-
ine which type of aromatase is localized in ovarian follicles.
Thus, the present study was the first to show that A-type of
aromatase, but not B-type, is localized in granulosa cells in
teleosts.

Real-time quantitative RT-PCR revealed that P450aromB
transcripts were very low in ovary and showed no marked
changes during ovarian development. The low levels of
P450aromB transcripts may explain why our in situ hybrid-
ization did not detect the transcripts in ovary. In fact, using
the same probes, we were able to detect P450aromB tran-
scripts in brain (unpublished data). In any case, the expres-
sion profile of P450aromB during the spawning cycle sug-
gests that this form of P450arom does not play a major role
in regulating ovarian development.

The present study clearly showed the differential
expression of two forms of P450arom transcripts in ovary.
The amounts of P450aromA transcripts increased signifi-
cantly during vitellogenesis and declined during late/post
vitellogenesis. In contrast, P450aromB transcripts were very
low (RT-PCR) or hardly detectable (in situ hybridization)
throughout vitellogenesis. Study of the 5-flanking region of
both P450arom genes may help to determine the mecha-
nism of this tissue-specific expression. We recently showed
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that in the Nile tilapia, Oreochromis niloticus, the expression
of P450aromA and Ad4BP/SF-1 increased in parallel with
ovarian growth (Yoshiura et al., 2003). These findings sug-
gest that the form of P450arom responsible for estrogen
synthesis during vitellogenesis is P450aromA, and Ad4BP/
SF-1 plays an important role in regulating the expression
pattern of P450aromA gene in ovarian follicles. It was also
shown that in mammals, decrease in P450arom transcripts
in granulosa cells was associated with a reduction in the
mRNA of SF-1 (Fitzpatrick et al., 1997). Further studies are
required to analyze the role of Ad4BP/SF-1 in relation to
ovarian development and also with reference to P450arom
in T. okinawae.

Surprisingly, our in situ hybridization analysis revealed
that P450aromA transcripts could be detected in the intersti-
tial cells of mature testis. Expression of aromatase in the
testis agrees with earlier findings in dogfish (Callard et al.,
1985), channel catfish (Trant et al, 1997), rainbow trout
(Belvedere et al.,, 1998), European sea bass (Valle et al.,
2002) and Atlantic stingray (ljiri et al., 2000). However, the
situation between these species and T. okinawae in terms
of the mode of gonadal formation is different. T. okinawae is
unique in having both ovary and testis regardless of sexual
phase (Sunobe and Nakazono, 1997). The functional signif-
icance of P450aromB in the testis of the sex changing goby
remains to be studied. In mammals, estrogens have recently
been shown to play a physiological role in the regulation of
spermatogenesis (see a review by Carreau et al., 2003).
The expression profiles of P450aromA in the testis during
the spermatogenesis as well as sex change need to be
determined. It is also important to determine whether
expressions of ovarian and testicular P450aromA genes are
regulated by a similar or different mechanism.

In summary, we cloned, sequenced and characterized
two P450arom cDNAs from T. okinawae. P450aromA tran-
scripts, but not P450aromB, exhibited distinct changes dur-
ing ovarian development, suggesting an important role for
P450aromA in the synthesis of estrogen during active vitel-
logenesis. These cDNA probes will be useful for future stud-
ies on the roles of aromatase in gonadal development and
even sex behavior during the serial-sex change in Trimma
okinawae.
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