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ABSTRACT 
 
Amante, C.J. and Eakins, B.W., 2016. Accuracy of interpolated bathymetry in digital elevation models. In: Brock, 
J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, 
Models, and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 123–133. Coconut Creek 
(Florida), ISSN 0749-0208. 
 
Digital elevation models (DEMs) are used to model numerous coastal processes, including tsunamis, contaminant 
dispersal, and erosion. In the bathymetric realm, the distance between measurements typically increases farther from 
shore (i.e., deeper water), such that gridding interpolation to build a bathymetric DEM is often across large distances. 
This study examined the accuracy of interpolation in bathymetric DEMs using three common interpolation 
techniques: inverse distance weighting, spline, and triangulation. The goal was to examine the relationship between 
interpolation accuracy and cell sampling density, distance to the nearest depth measurement, and terrain 
characteristics. Kachemak Bay, Alaska, was chosen as the study area due to its heterogeneous terrain. A split-sample 
method was developed to randomly separate depth measurements to be used for interpolation from those used to 
quantify interpolation accuracy. Results show that the accuracy of the three evaluated interpolation techniques 
decreases (i) at smaller cell sampling densities, (ii) as the distance to the nearest measurement increases, and (iii) in 
areas of high slope and curvature. Spline was found to be the most accurate technique, though all techniques have 
approximately equivalent accuracy at large cell sampling densities and shorter interpolation distances. From these 
analyses, predictive equations were derived, for each interpolation technique, of the cell-level uncertainty introduced 
into bathymetric DEMs, as a function of the cell sampling density and interpolation distance. These equations permit 
the quantification of cell-level interpolation uncertainty in DEMs and, in turn, will aid in propagating that uncertainty 
into the modeling of coastal processes that utilize DEMs. 
 
ADDITIONAL INDEX WORDS: Interpolation, spline, inverse distance weighting, triangulation, cell sampling 
density, cell-level uncertainty equations, DEMs.  

 
           INTRODUCTION 

The oceans are truly Earth’s last great unknown (Smith and 
Marks, 2014). Surprisingly, the surfaces of Mars, Venus, and the 
Earth’s moon are mapped at a higher spatial resolution than the 
seafloor (Smith, 2004), as individual depth measurements of the 
Earth’s ocean can have data gaps of hundreds of kilometers 
(Smith and Sandwell, 1997). Bathymetric digital elevation 
models (DEMs) are continuous representations of the seafloor 
that are derived from depth measurements and are commonly 
stored in a raster data format comprised of a matrix of square 
cells, with each cell representing the average depth of the area 
contained within that cell.  

The National Oceanic and Atmospheric Administration’s 
(NOAA) National Geophysical Data Center (NGDC) develops 
such bathymetric DEMs, as well as bathymetric models that are 
integrated with topography in the coastal zone, to support the 
modeling of tsunami propagation and coastal inundation (Eakins 
and Taylor, 2010). In order for the integrated bathymetric-
topographic DEMs to retain high spatial resolution in the coastal 
zone to support detailed inundation mapping, interpolation 
across large distances is typically required between sparse 
bathymetric measurements. Such extreme interpolation fills data 
gaps in the models that might cause instabilities in tsunami 

modeling runs (i.e., avoids null depth values). 
The accuracy of modeling coastal processes, such as tsunami 

propagation and inundation, is partly dependent on the accuracy 
of the DEM, which in turn is dependent on the accuracy of the 
depth measurements. As a result, uncertainty in the depth 
measurements propagates into uncertainty in the DEM, and into 
the modeling of such processes. A detailed description of depth 
measurement uncertainty is provided in Hare, Eakins, and 
Amante (2011). However, the low spatial resolution of many 
bathymetric surveys, especially those predating the use of 
modern survey technologies (e.g., multibeam sonar), requires 
interpolation to estimate areas of unknown depths to develop the 
continuous representation of the seafloor. Consequently, the 
accuracy of modeling such coastal processes is also partly 
dependent on the accuracy of the interpolation technique. 

The accuracy of an interpolation technique itself refers to the 
agreement of interpolated values to known or accepted values. 
However, interpolation techniques are typically used in areas 
without measured depths; consequently, the interpolation 
accuracy cannot be rigorously quantified. The lack of 
knowledge about interpolation deviations from known or 
accepted values within such data gaps represents the uncertainty 
introduced into DEMs by interpolation techniques (Wechsler, 
2007). This study quantified the accuracy of various 
interpolation techniques, using measured depths that are 
withheld from interpolation and subsequently used to quantify 
the interpolation accuracy. These depth measurements were 
considered the known or accepted values, despite any 
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uncertainty of the measurements themselves, as previously 
mentioned. Predictive equations of cell-level interpolation 
uncertainty were then derived from the quantification of 
interpolation deviations from the measured depths. 

 
Background 

This research builds on numerous previous studies that 
investigated the accuracy of interpolation techniques used to 
develop DEMs (e.g., Aguilar et al., 2005; Akkala, 
Devabhaktuni, and Kumar, 2010; Ali, 2004; Anderson, 
Thompson, and Austin, 2005; Burrough and McDonnell, 1998; 
Carlisle, 2005; Chaplot et al., 2006; Declercq, 1996; Desmet, 
1997; Erdogan, 2009, 2010; Fisher and Tate, 2006; Guo et al., 
2010; Li and Heap, 2008; MacEachren and Davidson, 1987; 
Smith, Holland, and Longley, 2005). Studies have found that the 
accuracy of all interpolation techniques is related to the 
sampling density and distribution of measurements (Aguilar et 
al., 2005; Anderson, Thompson, and Austin, 2005; Chaplot et 
al., 2006; Erdogan, 2009, 2010; Guo et al., 2010; MacEachren 
and Davidson, 1987). In these previous studies, sampling density 
referred to either a percentage of original measurements 
(Aguilar et al., 2005; Anderson, Thompson, and Austin, 2005; 
Guo et al., 2010; MacEachren and Davidson, 1987) or a count of 
measurements per area (Chaplot et al., 2006; Erdogan, 2009, 
2010). In this study, cell sampling density is defined as the 
percentage of the total number of cells in a DEM constrained by 
depth measurements at a given cell size. Previous studies have 
also found that the accuracy of all interpolation techniques is 
related to terrain characteristics (Aguilar et al., 2005; Carlisle, 
2005; Erdogan, 2009, 2010; Guo et al., 2010).  

While almost all previous studies focus on the accuracy of 
interpolation techniques in developing DEMs from dense 
topographic data, this research is unique in that it addresses the 
accuracy of interpolation techniques used to develop 
bathymetric DEMs from sparse depth measurements. The 
morphology of the seafloor differs from the morphology of land 
above sea level because of differences in natural processes 
including sedimentation and erosion. The differences between 
topographic and bathymetric DEMs regarding the cell sampling 
density, subsequent interpolation distances, and in terrain 
characteristics, make it worthwhile to specifically assess the 
accuracy of interpolation techniques in developing bathymetric 
DEMs. Furthermore, this research addresses the current lack of 
literature on predictive equations of cell-level interpolation 
uncertainty.  

 
Interpolation 

Interpolation is a mathematical process of predicting 
unknown values, such as ocean depths, using surrounding 
measured values (Burrough and McDonnell, 1998). Several 
different interpolation techniques exist for creating DEMs, and 
all techniques are based on the same assumption: that 
bathymetry is spatially autocorrelated. The notion of spatial 
autocorrelation is largely attributed to Tobler’s 1st Law of 
Geography, “Everything is related to everything else, but near 
things are more related than distant things” (Tobler, 1970). That 
is, the depth at one location is more similar to depths nearby 
than the depths far away. However, the different mathematical 
algorithms used in each interpolation technique produce 

divergent DEMs, even when developed from the same source 
data (Aguilar et al., 2005; Ali, 2004; Declercq, 1996; Erdogan, 
2009).  

Interpolation techniques can be classified into general groups 
based on the assumptions and features used to estimate the 
depths of unknown areas using surrounding known 
measurements. Interpolation techniques can be classified as any 
combination of geostatistical or deterministic, local or global, 
and exact or inexact (Li and Heap, 2008). Geostatistical 
techniques, such as kriging, use both mathematical and 
statistical functions to estimate depths, while deterministic 
techniques, such as spline, IDW, and triangulation, use the 
measurements directly and only mathematical functions to 
predict unknown values (Childs, 2004). Local techniques use a 
subset of measurements surrounding the location to be predicted 
and global techniques use all available measurements (Burrough 
and McDonnell, 1998). Last, exact interpolators always honor 
the measurements by creating a surface that has the same values 
at the locations of measurements, in contrast to inexact 
interpolators, which are not constrained by the measurement 
values at those locations (Burrough and McDonnell, 1998). The 
interpolation technique should be chosen based on the 
measurement uncertainty, cell sampling density, cell sampling 
distribution, terrain characteristics, and computational resources. 
More specifically, each interpolation technique has particular 
mathematical constraints for predicting unknown values.  
 
Study Area 

The bathymetry of Kachemak Bay, Alaska (Figure 1) was 
used to quantify the accuracy of the interpolation techniques. 
Kachemak Bay was chosen because of its varying terrain that 
ranges from areas of constant depths to areas of rapidly 
changing depths, and because of the availability of high-
resolution bathymetric data. An area of the bay with 
heterogeneous terrain was chosen in order to evaluate the effect 
of terrain on interpolation accuracy, with the initial assumption 
that interpolation accuracy would decrease in areas of high 
terrain slope and curvature. Kachemak Bay is fed by glacial 
runoff, and the area surveyed has a variety of glacial sediments 
covered by a layer of sand that produces several types of 
bedforms and changes in depths (Bouma et al., 1980). 

 
METHODS 

This study evaluated the accuracy of three common 
deterministic, local, exact interpolation techniques—inverse 
distance weighting (IDW), spline, and triangulation—in 
developing bathymetric DEMs of Kachemak Bay, Alaska. The 
overarching goal of the study was to examine the relationship 
between interpolation accuracy and the (i) cell sampling density, 
(ii) distance to the nearest depth measurement, and (iii) terrain 
characteristics, specifically the slope and curvature. These three 
deterministic techniques were analyzed in this study because 
unlike geostatistical techniques such as kriging, deterministic 
techniques do not provide an assessment of uncertainty along 
with the predicted values (Li and Heap, 2008). The accuracy of 
the three interpolation techniques was analyzed in this study 
using the Environmental Systems Research Institute (ESRI) 
ArcGIS 10.0 software (ESRI, 2010a). 
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Figure 1. Kachemak Bay, AK (derived from DEM of Friday et al., 
2010). The red box in the bay outlines the study area (see Figure 2). 

 
 

Interpolation Techniques 
IDW predicts unknown values using a linearly weighted 

combination of sample points (Liu et al., 2007). The weight is a 
function of inverse distance and is raised to a user-defined 
mathematical power that controls the significance of known 
measurements based on their distance from the location to be 
predicted. A larger power results in distant measurements 
having less influence on the interpolated values, which produces 
a less smoothed surface. The number of measurements used for 
prediction can also be defined, with more depths resulting in 
smoother surfaces and more similar to global interpolation. 

There are numerous types of spline interpolation, including 
thin plate spline, regularized spline, and spline with tension. 
Regularized spline was evaluated in this study. The regularized 
technique creates a smooth, gradually changing surface and 
allows for interpolated values outside the range of the 
measurement values (ESRI, 2010b). A user can further fine-tune 
this spline interpolation technique by the number of points and a 
weight parameter. The greater the number of points specified, 
the greater the influence of distant points, and the smoother the 
interpolated surface. For regularized spline, a greater weight 
results in a smoother surface (ESRI, 2010b). 

The third technique evaluated is a vector representation of 
terrain: triangulation. Triangulation creates triangular irregular 
networks (TINs) by forming triangles between depth 
measurements. In this study, the Delaunay triangulation 
technique was evaluated. This technique ensures that no 
measurements lie within the interior of any of the circumcircles 
of the triangles in the network, while also maximizing the 
smallest interior angle of all triangles to avoid long, thin 
triangles (Soucy and Laurendeau, 1996).   
 
 

Terrain Characteristics 
The terrain characteristics—specifically the slope and 

curvature—were used to assess the ability of each of the three 
previously described interpolation techniques to accurately 
represent heterogeneous terrain. The slope (also referred to as 
gradient) represents the maximum rate of change of depths, 
commonly in a three by three cell moving window (Burrough 
and McDonnell, 1998). A greater slope (units in degrees) 
corresponds to steeper surfaces. Curvature is the rate of change 
of the slope. There are three types of curvature: profile, plan, 
and total curvature. Profile and plan curvatures are the 
curvatures on a line formed by the intersection of a plane and the 
terrain surface. The curvature of a line is the reciprocal of the 
radius of curvature, so a gradually changing curve has a small 
curvature, while a tight curve has a large curvature (Galant and 
Wilson, 2000). The total curvature represents the curvature of 
the surface itself, not the curvature of a line across the surface in 
a given direction (Galant and Wilson, 2000). A positive total 
curvature value represents an upwardly convex surface, while a 
negative total curvature value represents an upwardly concave 
surface. A curvature value of zero represents an area of constant 
slope. Both the slope and the total curvature were used to 
characterize the relationship between interpolation accuracy and 
terrain characteristics for each interpolation technique, and the 
sign and strength of these relationships were quantified by 
calculating the Spearman’s rank correlation coefficient 
(Spearman, 1904). 
 
Data 

Kachemak Bay, Alaska, was surveyed in 2008 with high-
resolution multibeam swath sonar as part of the NOAA 
Hydropalooza project. One of the surveys, H11934, spans the 
entire study area and was downloaded from NGDC’s National 
Ocean Service (NOS) Hydrographic Data Base in Bathymetric 
Attributed Grid (BAG) format (Brennan et al., 2005). This BAG 
had a 4 m cell size and was referenced to UTM Zone 5 North 
and mean lower low water. It was converted to XYZ (eastings, 
northings, depth) format, and then averaged at a 10-m by 10-m 
cell size raster. This averaging ensured that every cell in the 
measured bathymetry raster (Figure 2A) had at least one 
contributing survey depth measurement, i.e., no values from 
interpolation. This 10-m cell size raster will be referred to as the 
measured depth raster. Slope and curvature rasters were derived 
from this measured depth raster (Figure 2B and C). 
 
Accuracy Assessment 

There are numerous methods to assess the accuracy of 
interpolation techniques. One approach is to quantify the 
differences between the interpolated surface and a higher 
resolution independent dataset (Chang and Tsai, 1991; Erdogan, 
2009; Fisher and Tate, 2006; Robinson and Metternicht, 2005). 
This is often not possible due to the time and monetary 
resources needed to collect the independent dataset. 
Furthermore, it makes little sense to develop a DEM using 
interpolation and sparse measurements if a higher resolution 
DEM is available. 
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Figure 2. The measured depths (A), slope (B), and curvature (C) used in this study. The measured depth raster, at a 10-m cell size, was the source of all 
split-sample depths used for interpolation and subsequent accuracy evaluation. The slope and curvature rasters were derived from the measured depth 
raster in order to analyze the effect of heterogeneous terrain on interpolation accuracy. The pixilation evident in the curvature raster (C) reflects 
amplification of fine-scale noise in the measured depth raster and original survey. 

 
  
More often, cross-validation and split-sample methodologies 

are used to determine the accuracy of interpolation techniques. 
The most common form of cross-validation is the “leave one 
technique” (Erdogan, 2009). This method consists of omitting 
one depth measurement prior to using an interpolation 
technique; the difference between the interpolated depth and the 
omitted measured depth is then calculated. This process is 
repeated so that all depth measurements are omitted once. The 
differences between interpolated depths and omitted depths are 
then aggregated and an indication of the accuracy of the 
interpolation technique is provided by a global, non-spatial 
statistic, such as mean absolute error (MAE) or root mean 
square error (RMSE).  

A split-sample methodology uses the same method as cross-
validation, except that a split-sample method randomly omits a 
percentage of depth measurements and calculates the 
differences between the omitted depths and depths interpolated 
using the retained depths. The split-sample method is often used 
to assess changes in the accuracy of an interpolation technique 
when using various sampling densities (Declerq, 1996; Erdogan, 
2009; Smith, Holland, and Longley, 2005). A split-sample 
method was used in this research to simulate sparse bathymetric 
datasets due to an interest in interpolating across many cells. 
The method splits depths randomly at cell sampling densities of 
1%, 5%, 10%, 25%, and 50% (Figure 3). The Kachemak Bay 
measured depth raster (Figure 2A) was the source for all depths 
used for interpolation and evaluation. 
 
Implementation of Split-Sample Methodology 

The split-sample methodology was implemented 200 times, 
for each technique, at each of the five cell sampling densities. 
During each split-sample routine, the retained depths were 
gridded using the specified interpolation technique, and the 
resulting interpolated raster was compared, on a cell-by-cell 
basis, to the measured depth raster to quantify the interpolation 
deviation. For each cell, the Euclidean distance to the nearest 

measurement was calculated—measured in map units (meters) 
but converted to raster cell units by dividing by the cell size (10 
m). The interpolation deviations were then statistically 
compared, on a cell-to-cell basis, to the distances to the nearest 
measurement, as well as the slope and curvature rasters. The cell 
comparisons were aggregated, at each of the five cell sampling 
densities, and used to assess the relationships between these 
variables. They were also used to develop predictive equations 
of interpolation uncertainty, using ordinary least squares (OLS) 
linear regression, which may be applicable in other areas with 
sparse depth measurements. 

Numerous steps were taken to limit bias in the analysis. First, 
reasonable parameters for each interpolation technique were 
identified, as inappropriate parameters can cause significant 
artifacts in the interpolated surface, especially with IDW 
(Akkala, Devabhaktuni, and Kumar, 2010; Burrough and 
McDonnell, 1998) and spline interpolation (Cebecauer, 
Hofierka, and Suri, 2002; Mitasova and Mitas, 1993). Numerous 
combinations of the interpolation parameters were evaluated 
using a brute-force methodology. The parameters for each 
interpolation technique that resulted in the lowest median 
percent deviation for the entire study area were identified and 
then used in all subsequent analyses. The parameters for IDW 
were “Power” of 2 and a “Variable Search Radius” of 8 points. 
The parameters for spline were regularized “Spline Type,” a 
“Weight” of 1, and 100 “Number of Points.” The triangulation 
parameter used in analysis was a linear interpolation “Raster 
Conversion Method.” Each TIN vector representation of the 
Kachemak Bay seafloor was converted to a 10-m cell size raster 
for direct comparison to the other two interpolation techniques. 
There can be loss of accuracy when converting a TIN to a raster 
format, but a comprehensive evaluation of such loss was outside 
of the scope of this research and was assumed to be negligible. 
In general, the raster better represents the TIN surface as the cell 
size decreases (ESRI, 2010c).  
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Figure 3. Flowchart depicting the split-sample method for quantifying 
interpolation deviations. (A) The original data, averaged to have exactly 
one depth value per grid cell, are randomly split by a fixed percentage 
(e.g., 50%) into training (“retained”) and test (“omitted”) data. (B) An 
interpolation technique (e.g., spline) is applied to the training data to 
build an interpolated DEM (interpolated cells represented by hollow 
squares). (C) The interpolated DEM is compared to the test data to 
quantify the interpolation deviations (represented by filled squares). 
Steps (A) to (C) are repeated for each interpolation technique at a 
consistent split-percentage to account for spatial bathymetric variability 
(i.e., randomness producing different training and test data). The 
interpolation technique is run iteratively using different split-percentages 
to evaluate the change in magnitude of interpolation deviations of the 
chosen interpolation technique at various cell sampling densities. 

 
 

Depth measurements along the border of the study area were 
used to guide bathymetric interpolation and minimize edge 
effects during analysis. The area of analysis was also restricted 
to a subset of the original study area by 12 cells (120 m) on each 
side. This ensured that the edge of the area of analysis had a 
range of distances to the nearest measurement without biasing  
 

 

 
 
Figure 4. An example of the distance to the nearest depth measurement 
raster. The data “buffer” of depth measurements along the border of the 
study area guided interpolation across the region of analysis outlined by 
the inner box (map shown at 30-m cell size for visualization purposes). 

 
 

toward depths along the outermost border of the study area 
(Figure 4). This subset area used for analysis also ensured slope 
and curvature values were accurate by having a full three by 
three window for calculation. 

The deviations of the interpolated depths were quantified as 
percent deviations by dividing the deviation by the original 
measured depth. Tsunami modeling requires more accurate, 
higher resolution DEMs in shallow waters near-shore than in 
deeper waters off-shore (Titov et al., 2003). Normalizing the 
deviation by the measured depth balances the importance of 
interpolation accuracy for both shallow and deep waters. 
Furthermore, this normalization allows for the predictive 
equations of interpolation uncertainty developed from the 
percent deviations to be used irrespective of water depth.  

To isolate the effect of terrain on interpolation deviations, the 
distance to the nearest measurement needed to be similar for 
every raster cell in the study area. The split-sample method was 
a random process; therefore, the median distance to the nearest 
measurement for every cell wasn’t exactly the same, but instead 
showed a Gaussian distribution. For example, after aggregating 
200 iterations of the split-sample method at the 1% cell 
sampling density, the median distance to the nearest 
measurement for each cell ranged from 4.3 to 5.7 cells, with a 
median distance of 5 cells. With a similar median distance to the 
nearest measurement, variability in the interpolation deviations 
could be attributed to the terrain characteristics. Interpolation 
median percent deviation maps were created from the 
aggregation of 200 split-sample routines at each cell sampling 
density to address the inadequacy of global, non-spatial 
measures of accuracy by visualizing clusters of high and low 
accuracy resulting from varying terrain characteristics. 
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RESULTS 
Results show that the accuracy of the three evaluated 

interpolation techniques decreases (i) at smaller cell sampling 
densities, (ii) as the distance to the nearest measurement 
increases, and (iii) in areas of high slope and curvature. Spline 
was found to be the most accurate interpolation technique, 
though all techniques have approximately equivalent accuracy at 
large cell sampling densities and shorter interpolation distances. 
From these analyses, predictive equations were derived, for each 
interpolation technique, of the cell-level uncertainty introduced 
into bathymetric DEMs, as a function of the cell sampling 
density and interpolation distance. 

 
Influence of Cell Sampling Density on Interpolation 
Deviations 

The largest differences in absolute median percent deviation 
between the three interpolation techniques occurred when using 
a 1% cell sampling density. The median value from the 
aggregation of the absolute median percent deviations after 200 
split-sample routines when using a 1% cell sampling density 
was 0.27% for spline, 0.78% for IDW, and 0.39% for 
triangulation. As the cell sampling density increased, the median 
distance to the nearest measurement decreased, and the accuracy 
of all interpolation techniques increased (Figure 5).  

 
Influence of Terrain on Interpolation Deviations 

The interpolation median percent deviation maps created from 
the aggregation of 200 split-sample routines illustrate the non-
stationarity of interpolation deviations from the measured 
depths, which is the result of heterogeneous terrain with varying 
slope and curvature (Figure 6). In areas of flat terrain (low slope 
and low curvature), the deviations for interpolation techniques 
were small, whereas the interpolation deviations were larger in 
areas of high slope and curvature. A negative median percent 
deviation indicated that the interpolated depths were shallower 
than the measured depths, and a positive median percent 
deviation indicated that the interpolated depths were deeper than 
the measured depths. The median percent deviation maps also 
visually illustrate that spline interpolation is the most accurate of 
the three evaluated techniques (Figure 6). 

All interpolation techniques show a similar pattern of 
deviations that is strongly associated with the terrain. When 
visually comparing the median percent deviation maps in Figure 
6 to the slope and curvature rasters of the study area shown in 
Figure 2B and C, it is evident that the interpolation deviations 
for all techniques are positively correlated with both slope and 
curvature. The Spearman’s rank correlation coefficient between 
the absolute median percent deviation and the slope using the 
1% cell sampling density was 0.46 for IDW, 0.26 for spline, and 
0.42 for triangulation, and all correlations were statistically 
significant with P-values less than 0.001. The Spearman’s rank 
correlation coefficient between the median percent deviation and 
the curvature at the 1% cell sampling density was 0.44 for IDW, 
0.56 for spline, and 0.49 for triangulation, and all correlations 
were statistically significant with P-values less than 0.001. The 
influence of terrain slope and curvature on the differences 
between the interpolated depths and the measured depth raster 
can be illustrated by extracting a profile across the south-central 
portion of the original study area (Figure 7D).   

 

 
 
Figure 5. Absolute median percent deviation as a function of cell 
sampling density for the entire study area. The largest differences in 
absolute median percent deviation between the three interpolation 
techniques occurred when using a 1% cell sampling density. As the cell 
sampling density increased, the median distance to the nearest 
measurement decreased, and the accuracy of all interpolation techniques 
increased. 

 
 
Predictive Equations of Cell-level Interpolation Uncertainty 

Predictive equations of cell-level interpolation uncertainty 
were derived from the quantification of interpolation deviations 
from the measured depths. Figure 8 shows the relationship 
between the absolute median percent deviation and the distance 
to the nearest measurement at the various cell sampling densities 
(1%, 5%, 10%, 25%, and 50%) with best-fit OLS regression 
lines (Table 1). The relationship between these variables 
diverges from the stable linear trend when the statistical sample 
size becomes small (less than ~300 counts). At smaller sample 
sizes, the absolute median percent deviation may be biased by 
the local terrain effects rather than being representative of the 
median slope and curvature across the entire study area. Those 
statistically insignificant results due to low sample size were 
eliminated prior to deriving the best-fit linear regression 
equations (Table 1). The y-intercepts of the regression equations 
are zero as all three techniques are exact interpolators. 

 
DISCUSSION 

These results support previous studies that investigated the 
accuracy of interpolation techniques in relationship to the 
sampling density (Aguilar et al., 2005; Anderson, Thompson, 
and Austin, 2005; Chaplot et al., 2006; Erdogan, 2009, 2010; 
Guo et al., 2010; MacEachren and Davidson, 1987) and terrain 
characteristics (Aguilar et al., 2005; Carlisle, 2005; Erdogan, 
2009, 2010; Guo et al., 2010). Previous research focused on 
topographic DEMs, and this study indicates that the accuracy of 
interpolating bathymetric DEMs produces similar results in spite 
of the different terrain characteristics. This study advances 
previous research by implementing the split-sample method 200 
times and aggregating the interpolation deviations to show a 
clear relationship between interpolation deviations and terrain 
characteristics that was not biased by the distance to the nearest 
measurement. Furthermore, use of a data “buffer” around the 
study area, as shown in Figure 4, minimized edge effects in the 
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Figure 6. The median percent deviation after 200 IDW (A), spline (B), and triangulation (C) interpolation routines using a random 1% cell sampling 
density. A negative median percent deviation indicated that the interpolated depths were shallower than the measured depths, and a positive median 
percent deviation indicated that the interpolated depths were deeper than the measured depths. IDW and triangulation resulted in larger deviations from 
measured depths, especially in areas of high slope and curvature. Spline resulted in smaller deviations, with its largest deviations in areas of high 
curvature. See Figure 7 for a more detailed figure on the influence of terrain on interpolation deviations. 

 
 

 
 
Figure 7. The influence of terrain on the differences between the median interpolated depths and the original measured depth raster after 200 iterations 
using a random 1% cell sampling density. A profile across the south-central portion of the original study area is represented by the black line 
overlaying the color images of the measured depths (A), the slope (B), and curvature (C) derived from the measured depths. (D) shows the profile and 
the differences between the interpolation techniques in representing areas of high slope (dashed arrow) and high curvature (solid arrow). IDW and 
triangulation produced local maxima that are “pulled” down compared to the measured depths and local minima that are “pulled” up compared to the 
measured depths, and spline can produce “overshoots” near areas of high curvature.  
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Table 1. Regression equations* for predicting cell-level interpolation percent uncertainty in other areas of sparse depth measurements. The equations 
predict the cell-level interpolation percent uncertainty (y) as a function of distance to the nearest measurement (x), in cell units, at various cell 
sampling densities. 
 

Interpolation Technique Cell Sampling  
Density (%) 

Regression 
Equation 

R2 

 
P-value 

IDW 50 y = 0.0848x 0.9933 p = 0.003 
 25 y = 0.0976x 0.9919 p < 0.001 
 10 y = 0.109x 0.9878 p < 0.001 
 5 y = 0.1162x 0.9837 p < 0.001 
 1 y = 0.156x 0.9940 p < 0.001 
Spline 50 y = 0.0306x 0.9934 p = 0.003 
 25 y = 0.0259x 0.9777 p < 0.001 
 10 y = 0.0302x 0.9936 p < 0.001 
 5 y = 0.0354x 0.9971 p < 0.001 
 1 y = 0.0642x 0.9989 p < 0.001 
Triangulation 50 y = 0.0429x 0.9995 p < 0.001 
 25 y = 0.0453x 0.9979 p < 0.001 
 10 y = 0.0565x 0.9973 p < 0.001 
 5 y = 0.0599x 0.9979 p < 0.001 
 1 y = 0.0867x 0.9992 p < 0.001 

* These equations shown in Table 1 (and depicted in Figure 8) do not have a y-intercept as all three interpolation techniques are exact interpolators and 
there is therefore no interpolation uncertainty for a cell at the location of a depth measurement. 

 
interpolated DEMs. The buffer also minimized the influence of 
border measurements when deriving predictive equations of 
cell-level interpolation uncertainty.  
 
Influence of Terrain on Interpolation Deviations 

Guo et al. (2010) established that interpolation deviations 
were correlated with the elevation coefficient of variation of the 
terrain, but indicated that more research was needed to identify 
the specific terrain variables, such as slope or curvature, that will 
have the greatest effect on interpolation accuracy. Research 
indicates that the deviations for each interpolation technique are 
positively correlated with both slope and curvature and that 
there are also differences with the strength of the correlations for 
each technique. The Spearman’s rank correlation coefficients 
indicate that deviations for all three interpolation techniques are 
most strongly correlated with curvature. Deviations with spline 
interpolation are especially correlated with curvature as the 
spline-interpolated surface exhibits “overshoots” near areas of 
high curvature due to its minimum curvature algorithm (Figure 
7D). The Spearman’s rank correlation coefficients also indicate 
that deviations for all three interpolation techniques are 
correlated with slope, although spline deviations exhibit a lower 
correlation coefficient than both IDW and triangulation. Both 
IDW and triangulation are linear-weighted algorithms and are 
less accurate near areas of high slope, as local bathymetric 
maxima and minima cannot be represented unless they have 
been directly measured. Accordingly, local maxima are “pulled” 
down and local minima are “pulled” up by surrounding 
measurements with both IDW and triangulation interpolation 
techniques (Figure 7D).   

Erdogan (2010) modeled interpolation deviations with slope 
and curvature as the independent variables at various sampling 
densities with both OLS and a local regression technique—
geographically weighted regression (GWR). Erdogan (2010) 
used these regression techniques as exploratory tools to assess 

the relationship between interpolation deviations and terrain 
variability, and to assess the differences between the regression 
techniques in modeling the non-stationary magnitude of 
interpolation deviations that result from heterogeneous terrain. 
These comparative regression analyses were not performed in 
this study, though this may be worthy of further investigation.   
 
Predictive Equations of Cell-level Interpolation Uncertainty 

The predictive equations of cell-level interpolation 
uncertainty based on the cell sampling density and distance to 
the nearest measurement (Table 1) all show linear trends in 
Figure 8, but the slope of the regression line decreases with 
larger cell sampling densities. The differences in the slope of the 
line indicate that it is not only the distance to the nearest 
measurement to an unconstrained cell that determines the 
accuracy of the interpolated cell, but that the accuracy is also 
related to the cell sampling density. Even if the distance to the 
nearest measurement is the same when using different cell 
sampling densities, the distance to the next nearest 
measurements that are also used for interpolation will likely be 
closer at larger cell sampling densities. These closer depths that 
are also used for interpolation are more similar to the unknown 
depth to be interpolated according to Tobler’s 1st Law of 
Geography (Tobler, 1970), resulting in smaller interpolation 
deviations at larger cell sampling densities.  

More specifically, the effect of cell sampling densities is 
evident when comparing the median percent deviations for a 
given interpolation technique at a specific distance to the nearest 
measurement for the various cell sampling densities. For 
example, the median percent deviation at a distance of one cell 
to the nearest measurement decreases with increasing cell 
sampling density. For IDW, the median percent deviation at a 
one cell distance away from a depth measurement is 0.28%, 
0.22%, 0.19%, 0.14%, and 0.1% at 1%, 5%, 10%, 25%, and 
50% cell sampling density, respectively. Spline and 
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Figure 8. Relationship between the absolute median percent deviation 
and the distance to the nearest measurement at the 1%, 5%, 10%, 25%, 
and 50% cell sampling densities shown by the best-fit OLS regression 
lines for IDW (A), spline (B), and triangulation (C). For each 
interpolation technique, the smallest cell sampling density (1%) resulted 
in the highest slope and highest absolute median percent deviation at all 
interpolation distances (regression line on top of each panel). The slope 
and absolute median percent deviation decreases at larger cell sampling 
densities. Also, the length of the regression lines decreases at larger cell 
sampling densities as the distances to the nearest measurement decreases 
due to smaller interpolation distances. 

 
 

triangulation exhibit the same decreasing median percent 
deviation at a distance of one cell to the nearest measurement 
when increasing the cell sampling density, and all three 
interpolation techniques also exhibit this decreasing median 

percent deviation for other distances to the nearest measurement 
when increasing the cell sampling density. 

Accordingly, both the cell sampling density and distance to 
the nearest measurement were used to develop predictive 
equations of the interpolation uncertainty on a cell-to-cell basis. 
The cell sampling density can be calculated for an area of sparse 
depth measurements as the percentage of cells in the DEM 
constrained by a depth measurement at a given cell size. A DEM 
developer could therefore change the cell sampling density for 
an area with depth measurements by adjusting the cell size. For 
example, decreasing the cell size would result in a smaller 
percentage of cells in the DEM constrained by depth 
measurements, and therefore a smaller cell sampling density. 
Also, if the cell sampling density is between one of the 
percentages evaluated in this study, a weighted-average of the 
two closest linear regression equations provided in Table 1 
could be calculated to predict the median percent interpolation 
uncertainty.  

The relationship between the cell sampling density and the 
absolute median percent deviation shown in Figure 5 provides a 
global, non-spatial assessment of interpolation accuracy. Such 
assessments assume a similar distance to the nearest 
measurement and terrain variability for every cell, which 
typically is not the case with sparse depth measurements. The 
inadequacy of these accuracy assessments regarding the 
typically irregular distribution of measurements, and subsequent 
varying interpolation distances, is addressed by deriving 
equations to estimate interpolation uncertainty using distance to 
the nearest measurement and the cell sampling density. Methods 
to address the inadequacy of these global, non-spatial 
assessments of accuracy regarding terrain variability are 
proposed toward the end of the following subsection. 
 
Limitations 

The equations in Table 1 were developed from quantifying 
the interpolation deviations for only one DEM cell size (10 m). 
Further research using other cell sizes may reveal the impact of 
DEM cell size on derived predictive equations of interpolation 
uncertainty and determine if the equations in Table 1 are more 
widely applicable across a range of DEM cell sizes. 
Furthermore, these regression equations are best suited for 
Kachemak Bay and presumably for areas of similar terrain, as 
the slope and the curvature were found to be positively 
correlated with the interpolation deviations. The regression 
equations provided in Table 1 can be applied to other areas with 
the caveat that these equations may underestimate interpolation 
uncertainty in areas of higher slope and curvature than 
Kachemak Bay, and overestimate interpolation uncertainty in 
areas of lower slope and curvature (e.g., plains). It would be 
useful to incorporate terrain characteristics, such as slope and 
curvature, directly into predictive equations of interpolation 
uncertainty. However, such efforts fall outside the focus of this 
study, and terrain characteristics would be presumably unknown 
in regions with sparse measurements requiring large 
interpolation distances anyway. 

Slope and curvature could indirectly be incorporated into the 
predictive equations of interpolation uncertainty by 
implementing the methodology presented in this research on a  
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number of different terrains (e.g., low slope and low curvature; 
high slope and high curvature; high slope and low curvature) to 
create a range of uncertainty equations. If there was a densely 
mapped area nearby with presumably similar terrain to an area 
requiring interpolation, as expected when considering Tobler’s 
1st Law of Geography (Tobler, 1970), then this information 
could be used to further constrain the predictive uncertainty 
equation. While potentially useful, such analyses were beyond 
the scope of the research presented in this manuscript.  

The results of this research do suggest that slope and 
curvature would aid in predicting interpolation uncertainty when 
interpolating across small distances (e.g., one or two cells) in 
topographic DEMs. In these cases, the slope and curvature could 
be reasonably estimated from the interpolated DEM. Future 
research could advance the results presented in this manuscript, 
as well as the work of Aguilar et al. (2005), Carlisle (2005), 
Erdogan (2009), Erdogan (2010), and Guo et al. (2010), by 
improving the incorporation of terrain characteristics in 
predicting interpolation uncertainty in both bathymetric and 
topographic DEMs.  

 
CONCLUSIONS 

This study evaluated the accuracy of three common 
interpolation techniques (IDW, spline, and triangulation) in 
developing bathymetric DEMs of Kachemak Bay, Alaska. 
Spline was found to be the most accurate interpolation 
technique, though all techniques have approximately equivalent 
accuracy at large cell sampling densities and shorter 
interpolation distances. Furthermore, the relationship between 
interpolation deviations from measured depths and the distance 
to the nearest depth measurement for each interpolation 
technique with various cell sampling densities were quantified. 
From this quantification, regression equations were derived at 
each cell sampling density that can be used to predict, on a cell 
by cell basis, the uncertainty introduced into DEMs by these 
interpolation techniques.  

Kachemak Bay, Alaska, was chosen as the study area because 
it has heterogeneous terrain (i.e., a wide range of spatially 
varying slope and curvature values). Similar interpolation 
accuracy analyses in other types of terrain would derive 
regression equations—based on the relationship between 
interpolation deviations and distance to the nearest depth 
measurement for various cell sampling densities—that are 
roughly consistent with these results for Kachemak Bay 
bathymetry. This research has indicated that interpolation 
deviations are positively correlated with both slope and 
curvature, and future research efforts should implement the 
robust and easily reproducible methodology described in this 
manuscript to derive more refined predictive equations of 
interpolation uncertainty for terrain that differs from Kachemak 
Bay. Future research should also investigate the impact of DEM 
cell size on derived predictive equations of interpolation 
uncertainty.  

The modeling of numerous coastal processes, such as tsunami 
propagation and inundation, contaminant dispersal, and erosion, 
contain inherent uncertainty in their results that originates from 
many different sources. DEMs, which are used to model 
numerous coastal processes, are often one of those sources of 
uncertainty. The ability to quantify DEM uncertainty, which 

includes uncertainty from the source data, morphologic change, 
and from the uncertainty introduced by the interpolation 
technique described in this manuscript, will support efforts to 
quantify the uncertainty in coastal research results that utilize 
these models of the Earth’s surface.  
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