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ABSTRACT 
 

Li, Y.; Huang, S.; Ma, L.; Huang, Q.; Wu, L.; Hou, B., and Leng, G., 2018. Spatiotemporal changes in extreme wet 

and dry conditions and linkages with planetary oscillations. In: Wang, D. and Guido-Aldana, P.A. (eds.), Select 

Proceedings from the 3rd International Conference on Water Resource and Environment (WRE2017). Journal of 

Coastal Research, Special Issue No. 84, pp. 134-143. Coconut Creek (Florida), ISSN 0749-0208. 

 

Exploration of the spatiotemporal changes in extreme wet and dry events and their linkages with planetary 

oscillations is highly necessary for regional hazards mitigation. In this study, a standardized Surface Humid Index 

was applied for characterizing extreme dry and wet conditions (hereafter referred to as EDWC) in the Wei River 

Basin (WRB), China. Then, the heuristic segmentation method was adopted to determine the stationarity of extreme 

dry and wet frequency. The cross wavelet transform and coherence were used to reveal the linkages between EDWC 

and planetary oscillations. Results indicated that: (1) the standardized Surface Humid Index in the WRB has a 

striking trend towards wetter condition in summer and winter, whilst that in spring and autumn has a marked trend 

towards drier condition; (2) the northern basin has the highest extreme wet frequency, while the western basin has the 

lowest extreme dry and wet frequency; (3) the stationarity of the extreme dry and wet frequency series in the WRB is 

valid; (4) the planetary oscillations strongly affect the EDWC in the WRB. El Niño Southern Oscillation exhibits the 

strongest impacts on its EDWC, while Atlantic Multidecadal Oscillation shows the weakest impacts on its EDWC. 

 

ADDITIONAL INDEX WORDS: Extreme dry and wet events, large-scale atmospheric circulation patterns, 

ENSO, standardized Surface Humid Index, the cross wavelet analysis. 
 

 

           INTRODUCTION 

Recently, the global climate has experienced a noticeable 

variation, particularly for the global warming, which results in 

boosting the water circulation rate, thus the frequency of 

extreme conditions are increasing on the global scale (Beniston 

and Stephenson, 2004; Liu et al., 2018; Su, Gemmer, and Jiang, 

2008; Zheng et al., 2006). The effects of these hazards on 

society are increasing and the socioeconomic developments tend 

to be more and more vulnerable (Fang et al., 2017; Huang et al., 

2014c). For example, in the United States, the mid-west drought 

in 1988-1989 led to nearly $39 billion economic losses. In 1992, 

Hurricane Andrew in South Florida in 1992 caused about $30 

billion economic losses, and the mid-west flood in 1993 resulted 

in approximately $19 billion economic losses (Easterling et al., 

2000). 

In view of the potentially devastating impacts of climate 

extremes, increasing attention to climate extremes has therefore 

been drawn to examine long-term trends of seasonal and annual 

climate variations of precipitation, temperature, precipitation 

and temperature extremes (Fang et al., 2018; Jones and Moberg, 

2003; Wang et al., 2013). Previous studies have suggested that 

the intensity and frequency of extreme climate change are 

powerful indicators of climate change, and that the impact on 

nature and human society is far greater than that of average 

(Katz and Brown, 1992; Plummer et al., 1999).  

Extreme dry and wet events (hereafter referred to as EDWE) 

emerge after a prolonged deficit or obvious excessive rainfall, 

but determining the onset, termination as well as spatial extent 

of them is complicated. Based on this, numerous efforts have 

been paid to develop indicators for dry/wet monitoring and 

analysis (Trenberth et al., 2014; Vicente-Serrano, Beguería, and 

López-Moreno, 2010a). Recently, some objective indicators like 

Palmer drought severity index (PDSI) as well as standardized 

precipitation index (SPI) (McKee, Doesken, and Kliest, 1993; 

Palmer, 1965) have been widely applied in dry/wet 

quantification and monitoring. Although the probabilistic feature 

of SPI makes it possible to directly compare various variables 

and locations (McKee, Doesken, and Kliest, 1993), SPI has an 

evident disadvantage, that is, only on the basis of precipitation; 

other key variables like temperature are not included. As a 

result, SPI cannot reflect the strong influences of 

evapotranspiration on dry/wet conditions (Tao et al., 2014). 

Regarding PDSI, it is based on the concept of supply and 

demand, which contains prior precipitation, evaporation demand 

and humidity supply to characterize dry/wet conditions. 

However, some drawbacks of the PDSI exist. For instance, the 

water balance model is not strongly robust, and its numerical 

value is very short in both statistical and physical sense (Ma et 

al., 2015). In the present study, a Standardized Surface Humid 

Index was utilized to characterize dry and wet conditions (Cao et 

al., 2014; Zhang et al., 2013), which incorporates rainfall and 

evapotranspiration and can generally overcome the 

shortcomings of SPI and PDSI to some extent. 

Variations of climate extremes exhibited substantial regional 
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discrepancies because the effects of climate change differ on 

various geographical regions (Guo et al., 2013; Wang, Jiao, and 

Xin, 2013). The Wei River Basin (WRB), the study area in the 

present study, is the transitional region from a semi-humid 

region to an arid region. Located in a typical continental 

monsoon climate zone, the WRB is frequently assaulted by 

EDWE (Huang et al., 2014a, 2015b). These bipolar extreme 

events are expected to increase risk and vulnerability of 

extremes to human populations highly rapidly in a nonlinear 

manner and reduce the efficiency of local water resources 

management (Reza, Ali, and Donald, 2016). The WRB is vital to 

China, especially the establishment of a national key economic 

development zone (the Guanzhong-Tianshui Economic Zone), 

which is conducive to the rapid economic development in 

Western China. Nevertheless, the high-frequency EDWE have 

adverse effects on local social and economic developments. 

Therefore, it is crucial to probe the spatiotemporal variations of 

the extreme wet and dry conditions in the WRB, which makes 

for local disaster reductions and water resource management 

(Zhang et al., 2015a,b). Previous studies mainly focused on 

long-term trends of precipitation and temperature variations at 

annual and seasonal scales (Huang et al., 2016b; Zhao et al., 

2015a,b). However, the spatial-temporal variations of the 

EDWE in the WRB have not been investigated well. Thus, one 

objective of this study is to fill this gap through fully exploring 

the spatiotemporal changes in the extreme wet and dry 

conditions in the WRB.  

The distribution and intensity of extreme dry and wet 

conditions (hereafter referred to as EDWC) are strongly 

irregular in spatiotemporal dimensions (Guo et al., 2013). 

Climate indicators such as the Atlantic Multidecadal Oscillation 

(AMO), El Niño Southern Oscillation (ENSO), North Atlantic 

Oscillation (NAO), and Pacific Decadal Oscillation (PDO) can 

explain this phenomenon to a certain extent (Kam, Sheffield, 

and Wood, 2014; Kiem and Verdon-Kidd, 2009; Sabziparvar et 

al., 2011; Talaee, Tabari, and Ardakani, 2014). Since the WRB 

is located in a typical continental monsoon climate zone, the 

large-scale atmospheric circulation patterns including AMO, 

ENSO, PDO, and NAO may have a strong impact on the change 

characteristics of its EDWE. Thus, it is very necessary to 

explore the correlations between local EDWE and planetary 

oscillations, which helps to reveal possible mechanism 

responsible for the variations of EDWE in the WRB, thus being 

helpful for establishing an early-warning EDWE system and 

effectively guiding local hazards mitigation. Therefore, another 

goal of this paper is to reveal the links between local EDWE and 

AMO, ENSO, PDO and NAO.  

The major objectives of this study are (1) to examine the 

spatiotemporal changes in extreme wet and dry events in the 

WRB; (2) and to explore the correlations between local EDWE 

and AMO, ENSO, PDO, and NAO. 

 

     STUDY AREA AND DATA  

The WRB was selected as a case to study. The detailed 

introduction on the WRB and data is shown as follows. 

 

WRB 
The WRB chosen as a case study in this current study is the 

longest tributary of the Yellow River in China (Figure 1). The 

elevation gradually increases from the southeast to the northwest 

in this region. Its average annual precipitation is roughly 560 

mm (Zhang et al., 2008). However, the annual precipitation in 

the WRB varies distinctly owing to the north Pacific subtropical 

high intensity, duration and impact area of the unstable 

characteristics, which shows a strong impact on local 

precipitation, being expected to cause very frequent EDWE 

(Huang et al., 2015c). Additionally, its precipitation has a 

marked seasonality, and that in flood period (from June to 

September) occupies nearly 60% of annual rainfall. Given the 

adverse effects of EDWE on local social and economic 

developments, it is very essential for us to investigate the 

spatiotemporal changes in extreme wet/dry conditions in the 

WRB and their linkages with large-scale atmospheric circulation 

patterns, which helps to effectively guide local hazards 

mitigation. 

 

 
 

 
 

Figure 1. The locations of the WRB and the distribution of relevant 

meteorological stations. 

 
 

Data 

Daily precipitation, wind speed, relative humidity, sunshine 

hours, maximum, minimum and mean air temperature, as well as 

absolute vapour pressure data collected from 21 meteorological 

stations in this basin and its adjacent areas were adopted in this 

present study (Figure 1). Every station has the daily 

meteorological data spanning from January 1, 1960 to December 

31, 2010, which were derived from National Climate Center 

(NCC) in China Meteorological Administration (CMA). Daily 

potential evaporation was computed through the Penman-

Monteith formulation (Monteith, 1965). In addition, monthly 

AMO, PDO, ENSO, and NAO data spanning 1960-2010 were 

also adopted in this present study. Monthly PDO and AMO time 

series were acquired from the Tokyo Climate Center 

(http://ds.data.jma.go.jp/tcc/tcc/products/elnino/decadal/pdo.htm

l) and the National Oceanic and Atmospheric Administration 

(NOAA) Earth System Research Laboratory 

(http://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.dat

Downloaded From: https://bioone.org/journals/Journal-of-Coastal-Research on 05 Aug 2024
Terms of Use: https://bioone.org/terms-of-use



136       Li et al. 

________________________________________________________________________________________________ 

Journal of Coastal Research, Special Issue No. 84, 2018 

a), respectively. For ENSO, the Nino 3.4 Index time series 

acquired from the NOAA Earth System Research Laboratory 

(http://www.esrl.noaa.gov/psd/data/correlation/nina34.data) was 

used in this study. Regarding NAO, its monthly data were 

acquired from the NOAA National Climatic Data Center 

(http://www.ncdc.noaa.gov/teleconnections/ao.php). 

 

              METHODS 

This section briefly presents methods utilized in this study, 

among which a standardized Surface Humid Index is applied for 

characterizing extreme dry and wet conditions, followed by the 

modified Mann-Kendall trend test method for identifying the 

trends of Surface Humid Index. In addition, the heuristic 

segmentation method is adopted to determine the stationarity of 

extreme dry and wet frequency, and the cross wavelet transform 

and coherence are used to reveal the linkages between EDWC 

and planetary oscillations.  

 

Surface Humid Index 

Considerable indices for analyzing climate extremes have 

been developed aimed at monitoring and predicting the changes 

in precipitation and temperature with various time steps or 

spatial scales, including Crop Moisture Index (Palmer, 1965), 

Crop-Specific Drought Index (Meyer, Hubbard, and Wilhite, 

1993), daily Water Stress Index (Jones and Moberg, 2003), and 

Soil Moisture Deficit Index (Narasimhan and Srinivasan, 2005). 

Especially Surface Humid Index has been extensively applied to 

characterize dry and wet conditions with monthly time step at 

global or regional scales (Ma and Fu, 2001). Surface Humid 

Index (H) is defined as the ratio of precipitation (P) to reference 

evapotranspiration (ET0), which is expressed as follows: 

                                     
0

P
H

ET
                                      (1) 

where, P denotes monthly precipitation; ET0 represents monthly 

potential evaporation. 

Extreme wet events are defined as the monthly standardized 

Surface Humid Index (H) larger than or equal to 0.5 (Cao et al., 

2014; Ma, Hua, and Ren, 2003). Extreme dry events are defined 

as the standardized H smaller than or equal to -0.5 (Zhang et al., 

2013, 2015a,b). Its calculation is expressed as follows: 

                                      
ij

ij i

H

i

H H
D




                                  (2) 

where, Hij represents the monthly H of the i-th month in the j-th 

year; Hi denotes the average H of the i-th month in the previous 

51 years; and stands for the standard deviation of H of the i-th 

month. 

 

The Modified Mann-Kendall Trend Test Method (MMK) 

The traditional Mann-Kendall (MK) trend test approach is a 

nonparametric method. Nevertheless, the results of MK tend to 

be influenced by the persistence of time series (Huang et al., 

2014a). Hence, Hamed and Rao (1998) improved it via taking 

the lag-i autocorrelation into account to get rid of the 

persistence. Therefore, the MMK was applied to calculate the 

trends of monthly standardized Surface Humid Index series and 

extreme dry and wet conditions in the WRB (Hamed and Rao, 

1998). The specific counting processes would be referred to 

Huang et al. (2014c). 

The Heuristic Segmentation Method 

Traditional statistical test methods of detecting the highly 

change points of time series rely on the assumption that the 

given time series should be stationary and linear. However, it is 

very difficult for these previous methods to accurately identify 

their real change points since some hydrological time series 

shows nonlinear and nonstationary characteristics (Huang et al., 

2015a, 2016a). The heuristic segmentation method proposed by 

Pedro, Plamen, and Luís (2001) is based on the sliding T test. 

However, it is modified and extended to detecting change points 

in nonlinear and nonstationary time series. Nonstationary time 

series is divided into several stationary subseries in the heuristic 

segmentation method, and it can get rid of the drawbacks of 

aforementioned traditional methods (Pedro, Plamen, and Luís 

2001).  

The conventional frequency analysis of extreme dry and wet 

events is relied on the stationarity assumption (Verdon-Kidd and 

Kiem, 2015), which indicates historical characteristics of 

extreme events can be extended to the future. However, the 

changing environment might change the statistical 

characteristics of hydroclimate time series, leading to so-called 

non-stationarity (Liu et al., 2017). Neglecting the non-

stationarity would therefore result in severe biases in assessing 

extreme events (Jiang et al., 2014). Therefore, the heuristic 

segmentation method was adopted to identify the stationarity of 

extreme dry and wet events in the WRB. The detailed 

calculation processes would be referred to Huang et al. (2016a).  

 

Cross Wavelet Transform and Coherence  

The cross wavelet transform is a new method of revealing the 

correlations between two related time series (Grinsted, Moore, 

and Jevrejeva, 2004; Hudgins, Friehe, and Mayer, 1993). Using 

wavelet transform to combine the cross-spectrum analysis, two 

time series can be well reflected in the changing characteristics 

and the coupled oscillations both in time-frequency domain 

(Torrence and Compo, 1998). Wavelet coherence examines the 

regions with high common power, which is an approach for 

investigating how coherent the wavelet coherence in time and 

frequency domain. Therefore, in this present study, they are used 

to examine the correlations between the dry/wet conditions in 

the WRB and the large-scale atmospheric circulation patterns 

such as AMO, ENSO, PDO, and NAO. The detailed calculation 

processes can be referred to Torrence and Compo (1998).  

 

RESULTS  

The result section analyses the spatio-temporal changes in 

monthly standardized Surface Humid Index and the stationarity 

of the extreme dry and wet frequency series. Meantime, 

evidence is provided that the planetary oscillations affect the 

EDWC in the WRB. 

 

Spatio-Temporal Changes in Monthly Standardized Surface 

Humid Index Series 

The MMK was used to compute the trends of monthly 

standardized Surface Humid Index series at 21 meteorological 

stations in the basin (Huang et al., 2014a). In terms of MMK 

statistics, when their absolute values are larger than 1.96, the 

identified trends are significant at the 95% confidence level. 

Positive values represent increasing trends and vice versa. The 
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MMK statistics of monthly standardized Surface Humid Index 

series in each month in the WRB are exhibited in Figure 2. The 

meteorological stations in Figure 2 are ranked based on the 

magnitude of their longitude, from west to east. Hence, the 

MMK statistics of standardized Surface Humid Index series in 

each month at 21 meteorological stations can reflect the 

spatiotemporal changes in monthly standardized Surface Humid 

Index series in the WRB. It can be clearly observed from Figure 

2 that the trends of monthly standardized Surface Humid Index 

series show marked spatiotemporal characteristics. Specifically, 

in time dimension, the standardized Surface Humid Index in the 

WRB roughly exhibits statistically significant increasing trends 

in January, May, July, and December at the 95% confidence 

level, whilst that in February, April, and September shows 

statistically significant decreasing trends. In general, the 

standardized Surface Humid Index in the WRB has an obvious 

trend towards wetter condition in summer and winter, whereas 

that in spring and autumn has an obvious trend towards drier 

condition. In spatial dimension, the changes in monthly 

standardized Surface Humid Index series in the middle and 

eastern basin are more remarkable than those in the western 

basin.  

 

 
 

 
 

Figure 2. The MMK statistics of monthly standardized Surface Humid 
Index series in each month at 21 stations in the WRB. 

 
 

Spatial Distribution Characteristics of the Extreme Dry and 

Wet Frequency in the WRB 
Based on monthly standardized Surface Humid Index series at 

21 meteorological stations in the WRB, the extreme dry and wet 

frequency in every year at these stations during 1960-2010 was 

calculated. Then, their mean extreme dry and wet frequencies 

are obtained. On the basis of the Inverse Distance Weighing 

(IDW) in the ArcGIS software, the spatial distribution of 

extreme dry and wet frequency in the WRB is plotted and shown 

in Figure 3. It can be obviously found from Figure 3A that the 

extreme wet frequency in the WRB exhibits a marked spatial 

discrepancy. Specifically, the northern basin has the highest 

extreme wet frequency, whilst the western basin has the lowest 

extreme wet frequency. Differently, the extreme dry frequency 

in the WRB shows a relatively small spatial discrepancy (Figure 

3B). Generally, the extreme dry frequency in the western basin 

is smaller than that of other areas in the WRB. 

 

 
 

 
 

Figure 3. The spatial distribution of extreme wet (A) and dry (B) 

frequency in the WRB; EWF and EDF denote extreme wet frequency 

and extreme dry frequency, respectively. 

 
 

Temporal Changes in the Extreme Dry and Wet Frequency 

in the WRB 

The extreme dry and wet frequency in every year during 

1960-2010 in the whole WRB was calculated, which is 

presented in Figure 4. It can be obviously seen from Figure 4 

that the extreme dry frequency exhibits a slightly increasing 

trend, while the extreme wet frequency exhibits a slightly 

decreasing trend. Their corresponding MMK statistics are 0.77 

and -1.13, respectively, indicating that both of them have no 

significant change at the 95% confidence level. 

In addition, the MMK t was also used to compute the trends 

of the extreme dry and wet frequency in every year within 1960-

2010 at the 21 meteorological station in the WRB. The spatial 

distribution of the MMK statistics of the extreme dry and wet 

frequency in the WRB is plotted and displayed in Figure 5. It 

can be seen from Figure 5A that the MMK statistics of the 

extreme wet frequency in the WRB have an obvious spatial 

difference. Specifically, the extreme wet frequency of the 

western basin and Huashan station located in the eastern basin 

exhibits a significant deceasing tendency at the 95% confidence 

level, whereas that in other areas in the WRB shows no 

significant trends. Generally, the decreasing extreme wet 

frequency of the western basin and Huashan station is 
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responsible for the slightly decreasing wet frequency in the 

whole basin outlined above. Compared with the extreme dry 

frequency, the MMK statistics of the extreme dry frequency in 

the WRB exhibit a relatively smaller spatial discrepancy (Figure 

5B). The extreme dry frequency of some parts in the western 

basin and the Huashan station shows a significant increasing 

tendency at the 95% confidence level, whereas that in other 

areas in the WRB has no significant trends. In general, the 

increasing extreme dry frequency in these areas is responsible 

for the slightly increasing dry frequency in the whole basin 

outlined above. 

 

 
 

 
 

Figure 4. The extreme dry and wet frequency in every year during 1960-

2010 in the whole WRB. 

 
 

 
 

 
 

Figure 5. The spatial distribution of the MMK statistics of the extreme 

wet (A) and dry (B) frequency in the WRB; EWF and EDF denote 
extreme wet frequency and extreme dry frequency, respectively. 

 

Identification of the Stationary of EDWE 

Based on the heuristic segmentation method, possible change 

points in the extreme dry and wet frequency during 1960-2010 

in the WRB were explored, thereby determining whether their 

stationarity is valid or not. The threshold P0 was chosen as 0.95 

and was selected as 25 in this present study (Pedro, Plamen and 

Luís, 2001). The detailed calculation steps can be referred to 

Huang et al. (2015a, 2016a). The results of change points in 

extreme dry and wet frequency series in the whole WRB are 

displayed in Figure 6. It can be clearly observed that no change 

point was identified due to the probability of their largest T is 

less than the threshold (P0). Therefore, the stationarity of the 

extreme dry and wet frequency series is still valid. 

 

 
 

 
 

Figure 6. Identification of change points in extreme dry and wet 

frequency series in the whole WRB. 

 
 

The Dry/Wet Conditions Period in the WRB 
To analyze the dry /wet conditions period in the WRB, the 

wavelet analysis was adopted and the time-frequency 

distribution of the annual standardized Surface Humid Index in 

the whole WRB is exhibited in Figure 7. It can be clearly 

observed in Figure 7 that the dry/wet conditions in the WRB 

have a primary period of nearly 20 years and a secondary period 

of roughly 7 years, which is in line with the finding of Chen, 

Chang, and Huang (2014). 

 

 
 

 
 

Figure 7. The time-frequency distribution of the annual standardized 

Surface Humid Index in the whole WRB. 

 

Downloaded From: https://bioone.org/journals/Journal-of-Coastal-Research on 05 Aug 2024
Terms of Use: https://bioone.org/terms-of-use



                                                           Spatiotemporal Changes in Extreme Wet and Dry Conditions                                                    139 

_________________________________________________________________________________________________ 

Journal of Coastal Research, Special Issue No. 84, 2018 

DISCUSSION 

Regional wet and dry events is considered to be related to the 

large-scale atmospheric circulation patterns, and attempts to 

explore the underlying physical mechanism may benefit the 

prediction of regional wet and dry events. Thus, the cross 

wavelet transform was applied to identifying correlations of H 

series with AMO, ENSO, PDO and NAO. 

It can be found from Figure 8a that AMO exhibits a certain 

impact on annual standardized Surface Humid Index series in 

the WRB. Specifically, AMO shows significant negative 

linkages with annual standardized Surface Humid Index series 

with a signal of 2-4 year in 1960-1970. Additionally, it also 

exhibits significant positive linkages with annual standardized 

Surface Humid Index series with a signal of 8-9 year in 1985-

1990. Generally, the cross wavelet phase angle has mean phase 

130°±15°, meaning that H series has roughly 3 months lag 

compared with AMO in this period. Additionally, the wavelet 

coherence coefficients of H index and AMO were calculated, 

and the squared wavelet coherence of H series and AMO is 

presented in Figure 8b. It also shows the significant negative 

linkages between H series and AMO in 1960-1970 and 

significant positive linkages in 1980-1987. 

 

 
 

 
 

Figure 8. The cross wavelet transform (a) and wavelet coherence (b) 

maps of annual standardized Surface Humid Index series in the WRB 

and AMO in 1960-2010. The 5% confidence level against red noise is 
presented as a thick contour, and the relative phase linkage is 

represented as arrows, in which arrows pointing right stand for positive 

correlations, and arrows pointing left stand for negative correlations. 

 

 
 

 
 

Figure 9. The cross wavelet transform (a) and wavelet coherence (b) 

maps of annual standardized Surface Humid Index series in the WRB 

and ENSO in 1960-2010. 

 
 

It can be clearly observed from Figure 9a that ENSO exhibits 

strong impacts on annual standardized Surface Humid Index 

series in the WRB. Specifically, it shows statistically significant 

negative associations with annual standardized Surface Humid 

Index series with a signal of 2-4 year in 1960-1970 and a signal 

of 4-6 year in 1983-1994. The squared wavelet coherence of H 

series and ENSO shows more significant regions than cross 

wavelet transform, suggesting that ENSO exerts striking impacts 

on the changes in H series in the WRB (Figure 9b). PDO also 

shows strong impacts on annual standardized Surface Humid 

Index series in the WRB (Figure 10). Specifically, it shows 

statistically significant negative linkages with annual 

standardized Surface Humid Index series with a signal of 4-6 

year in 1983-1994, which is a little similar with that of ENSO 

(Figure 10a). The squared wavelet coherence of H series and 

PDO also shows more significant regions than cross wavelet 

transform, suggesting that PDO exerts striking impacts on the 

changes in H series in the WRB (Figure 10b). Similarly, NAO 

also exhibits strong influences on annual standardized Surface 

Humid Index series in the WRB (Figure 11). Specifically, it has 

statistically significant positive relationships with annual 
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standardized Surface Humid Index series with a signal of 2-4 

year in 1960-1970, which is contrary to that of AMO. Besides, it 

also shows significant positive linkages with annual 

standardized Surface Humid Index series with a signal of 4-5 

year in 1991-1996 (Figure 11a). The squared wavelet coherence 

of H series and NAO also shows more significant regions than 

cross wavelet transform, suggesting that ENSO exerts obvious 

impacts on the changes in H series in the WRB (Figure 11b). 

 In general, among AMO, ENSO, PDO, and NAO, ENSO 

shows the strongest impacts on the EDWC in the WRB, 

followed by NAO and PDO, while AMO exhibits the weakest 

impacts on the EDWC in the WRB. Roughly, the large-scale 

atmospheric circulation patterns such as AMO, ENSO, PDO, 

and NAO strongly impact the changes in the EDWC in the 

WRB, which can effectively guide local hazards mitigation and 

water resources management. 
 

 
 

 
 

Figure 10. The cross wavelet transform (a) and wavelet coherence (b) 

maps map of annual standardized Surface Humid Index series in the 

WRB and PDO in 1960-2010. 

 
 

Figure 3B shows that the calibration curve, plotting a graph of 

the electrode voltage versus the logarithmic ion concentration, 

was obtained in the experimental conditions described above.  

When the concentration increases, the electrode potential 

becomes more negative since the phosphate microelectrode is 

sensing an anion. Three replicate measurements of each standard 

phosphate solution were made and the average values were used 

for calibration plots. It can be seen that no significant 

differences between plots were observed since the standard 

deviation values calculated were too small. The linear range was 

determined where the data points do not deviate from linearity 

by more than 10 mV. The potential response of the assembled 

phosphate ion-selective lab chip sensor showed a linear 

regression in the range of 1×10-5 to 1×10-3 M with a slope of 54 

mV/decade. Thus, based on the calibration curve, the limit of the 

lower and upper detection was found to correspond to 1×10-6 M 

and  1×10-2 M at pH 6.0, respectively. 

 

 
 

 
 

Figure 11. The cross wavelet transform (a) and wavelet coherence (b) 
maps of annual standardized Surface Humid Index series in the WRB 

and NAO in 1960-2010. 

 
 

CONCLUSIONS 

Investigation of the spatiotemporal changes in extreme wet 

and dry conditions and their correlations with planetary 

oscillations is very essential for regional hazards mitigation. In 

this study, a standardized Surface Humid Index was adopted to 

characterize EDWC. The MMK trend test approach and wavelet 

analysis was applied to calculate the trend and period of the 

EDWC in the WRB. The heuristic segmentation method was 
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adopted to explore the stationarity of extreme dry and wet 

frequency. Furthermore, the cross wavelet transform and 

coherence were used to examine the linkages between EDWC 

and four planetary oscillations. The main conclusions are 

presented below: 

 

(1) The standardized Surface Humid Index in the WRB has a 

marked trend towards wetter condition in summer and winter, 

whereas that in spring and autumn has a striking trend towards 

drier condition. Generally, the changes in monthly standardized 

Surface Humid Index series in the middle and eastern basin are 

more remarkable than those in the western basin. 

(2) The northern basin has the highest extreme wet frequency, 

whereas the western basin has the lowest extreme dry and wet 

frequency, and the spatial difference of the spatiotemporal 

changes in the extreme wet frequency is more obvious than that 

in the extreme dry frequency. Generally, the extreme dry 

frequency in the whole WRB shows a slightly increasing trend 

primarily owing to the significantly increasing extreme dry 

frequency of some parts in the western basin and the Huashan 

station, whilst the extreme wet frequency exhibits a slightly 

decreasing trend mainly due to the significantly decreasing 

extreme wet frequency of the western basin and Huashan 

station.  

(3) The stationarity of the extreme dry and wet frequency 

series in the WRB is still valid. Its dry and wet conditions have a 

primary period of roughly 20 years and a secondary period of 

nearly 7 years. 

(4) The large-scale atmospheric circulation patterns such as 

AMO, ENSO, PDO, and NAO strongly affect the EDWC in the 

WRB. ENSO shows the strongest impacts on the EDWC in the 

WRB, followed by NAO and PDO, while AMO exhibits the 

weakest impacts on its EDWC. 

 

In conclusion, the findings in this study help to effectively 

guide local hazards mitigation.  
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