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ABSTRACT 
 
Uranchimeg, S.; Kim, J-G.; Kim, J.-G.; Kwon, H.-H., and Lee, S.-O., 2018. A Bayesian Quantile Regression Approach 
for Nonstationary Frequency Analysis of Annual Maximum Sea Level in a Changing Climate. In: Shim, J.-S.; Chun, 
I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). 
Journal of Coastal Research, Special Issue No. 85, pp. 536–540. Coconut Creek (Florida), ISSN 0749-0208. 

Sea level rise is primarily caused by global warming and has been a key consideration in design practices in 
coastal engineering. The design of coastal structures is currently based on a frequency analysis of the local sea 
level under the stationary assumption, meaning that the maximum sea level will not vary significantly over time. 
However, the stationary assumption for sea levels might not be valid in a changing climate. In such a context, 
this study proposes a systematic approach to investigate nonstationarity in annual maximum sea levels (AMSLs) 
and offers estimates of design water levels for coastal structures using a non-crossing quantile regression-based 
nonstationary frequency analysis model within a fully Bayesian framework. The AMSLs for 20 tide gauge 
stations, each with more than 28 years of hourly records, are considered and compiled in this study. The 
nonstationarity in the AMSLs are explored by focusing on the change in the scale and location parameter of the 
probability distributions. The majority of the stations (three-fourths) are found to have an upward-
convergent/divergent pattern in the distribution, and the distribution changes are confirmed by significance tests. 
This study determines an overly simple nonstationary frequency analysis (NSFA) approach with a time-
dependent mean value might lead to underestimation of the AMSLs, which results in an increase the failure risk 
in coastal structures. A more detailed discussion of the characteristics of the distribution changes for the design 
water level is provided in the paper. 

 
ADDITIONAL INDEX WORDS: Nonstationarity, annual maximum sea levels, distribution, Bayesian quantile 
regression, design water level and uncertainty. 
 

INTRODUCTION 
Global warming is expected to continue and is one of the 

primary contributors to the observed sea level rise (SLR), caused 
by the thermal expansion of ocean water, the melting of mountain 
glaciers, and the melting of parts of the Greenland ice sheet. 
Considering all of these factors, the IPCC published that the sea 
level will rise by approximately 100 cm or more by 2100 if the 
concentration increase in carbon dioxide continues as expected, 
as published in the Climate Change 2014 Synthesis Report 
(Pachauri et al., 2014). The consequences of SLR have led to 
increases in the frequency and intensity of extreme water levels 
in coastal areas. The local sea level is typically the most critical 
factor for many coastal applications, including coastal mapping, 
marine boundary delineation, coastal zone management, coastal 
flood defense and engineering, insurance, and design of 
sustainable habitat restoration, which are all exacerbated by SLR. 

A reliable estimation of extreme sea level events is needed to 
mitigate the hazardous impact of extreme water level conditions 
in coastal areas. In the past, many engineering practices such as 

water resource engineering and coastal engineering were based 
on stationary assumptions such as the stationary extreme value 
analysis approach. However, the assumption of stationarity is 
untenable in most cases due to existing trends in the mean and 
variability of annual maximum sea levels (AMSLs) (Khaliq et al., 
2006). Thus, an advanced statistical model that considers time-
varying changes in the data is needed to address such issues. 

Given diverse evidence of climate change, it is unlikely that the 
assumption of stationarity in hydrologic data is sound. Therefore, 
advanced methods in extreme value analysis must be developed 
and applied (Khaliq et al., 2006). In recent years, the concept of 
nonstationary extreme value analysis has been developed and 
applied in various fields of study (Butler et al., 2007; Hundecha 
et al., 2008; Katz; Parlange and Naveau, 2002; Lee; Kwon and 
Kim, 2010, 2012). In the nonstationary approach, the parameters 
of the distribution function are replaced by time-dependent 
parameters, such that the results of the extreme value analysis also 
vary with time.  

Time-dependent models of the generalized extreme value 
(GEV) distribution for determining return periods have been 
studied recently and applied to hydro-meteorological data (Katz; 
Parlange and Naveau, 2002; Kim et al., 2016; Méndez et al., 
2007).  Prior to an extreme frequency analysis, the stationarity of 
the data must be confirmed with methods such as the Mann-
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Kendall (MK) test, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 
test, or the Augmented Dickey-Fuller (ADF) test. However, these 
methods are generally based on the mean of the response 
variables and might not be appropriate for extreme events that 
substantially deviate from the mean (Katz and Brown, 1992).  

The aim of this paper is to provide a brief introduction to a 
novel nonstationary extreme value analysis method based on a 
Bayesian quantile regression. The novel approach is described in 
order to estimate the future design water level for coastal 
engineering tasks. The approach described here provides an 
advanced investigation into return levels and distributional 
changes over extended time horizons. An estimate of a 
nonstationary GEV distribution extreme analysis is adopted in 
order to compare a more traditional method with the estimates of 
novel approaches. These approaches are applied to the AMSLs of 
tide gauge stations in South Korea. 
 

METHODS 
Local Sea Level Observations 

In this study, we first extracted AMSLs from tide gauge 
stations. The tide gauge data was obtained from the Korean 
Hydrographic and Oceanographic Administration (KHOA, 
http://www.khoa.go.kr). A total of 45 tide gauge stations are 
operated, and the KHOA performs careful quality control on the 
data, including eliminations of any datum shift errors and 
abnormal values. Additionally, this study considered the record 
length and the proportion of values missing as the quality 
assessment criteria. Stations with less than 5% missing values and 
a record length greater than 28 years were chosen for analysis. 
The missing values are distributed in an unsystematic way and 
differs at each stations, therefore the missing data are not being 
considered in this study. Out of 45 tide gauge stations, 20 were 
selected which covers all coastal areas in South Korea. The spatial 
distribution of the tide gauge stations is shown in Figure 1. 

 

 
 

Figure 1. Spatial distribution of selected tide gauge stations. 
 

Nonstationary Frequency Analysis (NSFA) 
Several extreme value analysis techniques were developed to 

estimate the return periods of extreme sea levels (Bernardara; 
Andreewsky and Benoit, 2011; Lee; Kwon and Kim, 2010, 2012; 
Woodworth and Blackman, 2002). Many studies have suggested 
the use of the GEV approach to estimate the extreme sea levels 
(Kim et al., 2016; Zhang and Sheng, 2013). Before applying 
NSFA, the data should be tested against trends or changes/shifts 

in the mean and variability in order to assess its stationarity or the 
nonstationarity (Hawkes et al., 2008). In this study, the trend and 
stationarity of the data were tested by the MK test, ADF test, and 
KPSS test prior to NSFA. 

In this study, the nonstationary form of the GEV distribution 
was selected and is generally expressed as Equations (1) and (2); 

𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥, 𝑡𝑡) = exp [− (1 + 𝜉𝜉 × 𝑥𝑥−𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)
𝜎𝜎 )

−1
𝜉𝜉] (1) 

𝜇𝜇(𝑡𝑡) = 𝛼𝛼 ∗ 𝑡𝑡 + 𝛽𝛽    (2) 
where 𝑥𝑥 is the independent value (e.g., water level), 𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) the 
time-dependent location parameter, 𝜎𝜎 is the scale parameter, and 
𝜉𝜉 is the shape parameter. 𝛼𝛼 and 𝛽𝛽 are regression coefficients. 
 
Bayesian Quantile Regression (BQR) 

For the analysis of distributional changes in AMSLs, this study 
proposes the following quantile regression model. Let 𝑦𝑦𝑖𝑖,𝑝𝑝 denote 
the extreme sea level for year 𝑖𝑖,  and 𝑝𝑝  denotes the quantile 
level 𝑝𝑝 ∈ (0,1); then, the generic structure of the model is given 
by (Equation 3) 

 
𝑦𝑦𝑖𝑖,𝑝𝑝 = 𝜂𝜂𝑖𝑖,𝑝𝑝 + 𝜖𝜖𝑖𝑖,𝑝𝑝 = 𝑥𝑥𝑖𝑖′𝛽𝛽𝑝𝑝 + 𝜖𝜖𝑖𝑖,𝑝𝑝 (3) 

 
where 𝑥𝑥𝑖𝑖′  is a vector of regressors, 𝛽𝛽𝑝𝑝  is a vector of regression 
coefficients for the 𝑝𝑝𝑡𝑡ℎ conditional quantile, 𝜖𝜖𝑖𝑖,𝑝𝑝 is an unspecified 
quantile-specific error term, for which no distribution is specified 
other than the constraint 𝑄𝑄𝜖𝜖𝑖𝑖,𝑝𝑝(𝑝𝑝) = 0 , and is estimated by 
minimizing the asymmetrically weighted absolute deviations 
through linear programming.   

A Bayesian inference commonly requires a likelihood; thus, a 
typical approach to Bayesian quantile regression is to assume an 
Asymmetric Laplace Distribution (ALD) for 𝜖𝜖, which enables the 
maximization of a likelihood function of an independently 
distributed ALD. The ALD is characterized by a set of parameters 
such as location (𝜇𝜇), precision (𝛿𝛿2), and skewness (0 < 𝑝𝑝 < 1) 
by letting 𝜇𝜇 = 0 to ensure 𝑄𝑄𝜖𝜖(𝑝𝑝) = 0. 

According to the features of ALD (Yue and Rue, 2011), 
purposed quantile regression model can be rewritten as following 

𝑦𝑦𝑖𝑖,𝑝𝑝 = 𝜂𝜂𝑖𝑖.𝑝𝑝 + 1−2𝑝𝑝
𝑝𝑝(1−𝑝𝑝)𝑤𝑤𝑖𝑖,𝑝𝑝 + √ 2𝑤𝑤𝑖𝑖,𝑝𝑝

𝛿𝛿2𝑝𝑝(1−𝑝𝑝) 𝑧𝑧𝑖𝑖 (4) 

where 𝑾𝑾 is an exponentially distributed random variable with 
rate parameter 𝛿𝛿2,  and 𝒁𝒁  has a standard normal 
distribution𝑵𝑵(𝟎𝟎,𝟏𝟏) . Posterior estimates can be subsequently 
obtained using Bayesian updates conditioned on the exponential 
random variable 𝑾𝑾. And 𝑤𝑤𝑖𝑖,𝑝𝑝 and 𝑧𝑧𝑖𝑖,𝑝𝑝 are subject-specific values 
of 𝑾𝑾 and Z, respectively, and 𝜂𝜂𝑖𝑖,𝑝𝑝 is defined in Equation (3). 

The Bayesian inference framework was adopted to enable the 
inclusion and improved consideration of the uncertainties in the 
proposed quantile regression model parameters. The posterior 
inference for the desired quantiles, 𝑝𝑝𝑗𝑗, simultaneously proceeds 
via data augmentation by introducing observation-specific latent 
weights, 𝑤𝑤𝑖𝑖,𝑝𝑝𝑗𝑗 , as specified in Equation (4).  

Analytical integration of the joint distribution and sampling 
was done by Markov Chain Monte Carlo (MCMC) method in 
WinBUGs model with self-written script. 
Distributional Change Detection  
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A Bayesian quantile regression-based distributional change 
detection approach in AMSLs was proposed based on a previous 
study (Shiau and Huang, 2015). Figure 2 shows an example of the 
basic concept, which exemplifies the detection of a distribution 
change using Bayesian quantile regression. 

 

 
Figure 2. An illustration of construction of an empirical PDF of the AMSLs through 
quantile regression for a wide range of quantiles 

 
Since the sign of the slope parameter of the AMSL can vary 

with quantile, different behaviors in probabilistic distributions 
can be produced from year to year. Detecting the distribution 
changes in AMSL over time is thus made possible by comparing 
the shapes of the derived empirical probability density functions 
(PDFs), as illustrated in Figure 2. To compare the shapes of the 
empirical PDFs, a simplified comparison is performed to 
illustrate changes in the location (mean) and scale (dispersion) of 
the PDFs.  Thus, there are nine possible categories in terms of 
distributional changes depending on both changes of scale and 
location of PDFs, as identified by Shiau and Huang (2015).  

 
RESULTS 

Trends and Stationary Tests 
As mentioned in the methodology section, well known 

statistical methods are conducted, such as the MK test, for 
determining the existence of linear trends in AMSLs, and the 
KPSS test and ADF test are employed to determine the existence 
of stationarity in AMSLs. The results are illustrated in Figure 3.  

The MK test detected significant linear trends in the AMSL at 
13 tide gauge stations, which were distributed over all coastal 
areas of South Korea. The ADF test and KPSS test detected 
statistically significant nonstationary in AMSLs at 13 and 18 tide 
gauge stations, respectively. 

 

 
Figure 3. Trends and stationarity test results. The green dots indicate no 
linear trends/stationarity, and red dots indicate statistically significant 
trend/nonstationarity in AMSLs. The panel indicates MK test (a), ADF 
test (b), and KPSS test (c). 

 

Distributional Changes in the AMSLs and their Relations to 
Design Water Level 

The purpose of the study was to identify the distributional 
changes in the desired quantiles, inferred from the time-varying 
mean and variance using the entire posterior distributions. The 
BQR model was applied to the AMSLs for a wide range of 
quantiles (i.e., 0.05, 0.15, 0.25, 0.35, 0.45, 0.50, 0.65, 0.75, 0.85, 
and 0.95) for all tide gauge stations. 

 
Table 1. Categorization of distributional changes in the AMSLs and summary of the 
significance test for the difference in the distribution. (∙) indicates p-value and test 
statistics in the two-sample KS and AD test, respectively 

Station Name Category 
Significant Change in Distribution 

Two-Sample KS 
test 

Two-Sample AD 
test 

1 Anheung I Yes(0) Yes(18.992) 
2 Boryeoung I Yes(0) Yes(14.733) 
3 Busan III Yes(0) Yes(15.794) 
4 Chujado I Yes(0) Yes(11.777) 
5 Heuksando I Yes(0) Yes(21.324) 
6 Gadukdo III Yes(0.001) Yes(5.588) 
7 Geomundo III Yes(0) Yes(11.711) 
8 Gunsan III Yes(0) Yes(10.191) 
9 Jeju I Yes(0) Yes(28.826) 

10 Mokpo I Yes(0) Yes(38.634) 
11 Mukho VI No Yes(2.901) 
12 Pohang I Yes(0) Yes(28.132) 
13 Seogwipo III Yes(0) Yes(24.536) 
14 Sokcho I Yes(0) Yes(16.344) 
15 Tongyoung VI No No(1.196) 
16 Ulleungdo VI No No(1.652) 
17 Ulsan VI No Yes(2.528) 
18 Wando IX Yes(0) Yes(7.588) 
19 Wido III Yes(0) Yes(12.947) 
20 Yeosu IX Yes(0) Yes(9.704) 

 
Four categories (i.e., Categories I, III, VI, and IX) of 

distributional change in tide gauge stations were identified, and 
two-sample KS and AD tests were applied to assess the 
significance of differences in the estimated distributions in the 
initial and final years of the records for all stations, as summarized 
in Table 1. The two-sample KS test showed that 16 out of 20 
stations have significantly different distributions at the 10% 
significance level, while the two-sample AD tests detected 18 
stations with AD statistics over the critical value of 2.492, 
indicating that they have significantly different distributions. 
Categories I and III showed an increasing trend in the mean value 
of AMSLs, while Categories VI showed no change in the mean 
value of AMSLs, and Category IX showed a decreasing trend in 
the mean value of AMSLs, with associated variances.  

A reliable design water level estimation is vital for the effective 
performance of coastal structures. Changes in design water level 
for a set of representative stations under the identified categories 
are illustrated in Figure 4. In Figure 4, the design water levels for 
the first and final years of the observation period were compared 
with the design water level estimated by the NSFA method. 
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Figure 4. Distributional changes in the AMSLs compared with design sea 
level estimates of the NSFA approach. The left panel represents the time 
series of AMSL and its quantiles with Bayesian credible bounds. The 
middle panel represents the estimated distribution of quantiles in the first 
and last years of the records. The right panel represents nonstationary 
design rainfall estimates, corresponding to different return periods with 
those of the NSFA approach. The stations are a) Jeju, b) Gunsan, c) 
Tongyoung, d) Yeosu, which are selected from different categories. 

 
 

DISCUSSION 
Assessment of distributional changes in the AMSLs over the 

various quantiles contribute to identifying the trends involved in 
different aspects of coastal structure and engineering. Specially, 
information on the distributional changes for a specific quantiles 
such as higher tail of the AMSL distribution, supports estimating 
design water level due to the fact that appropriate design water 
level required for coastal defense structure and engineering in 

contests of protecting and reducing risks for people who lives in 
coastal zones. 

Traditional nonstationary extreme sea level analysis is 
considered when the existence of time-varying change is detected 
in the time series. Thus, this study adopted an MK test for 
determining the existence of linear trends in AMSLs and KPSS 
test and ADF test for existence of stationary in AMSLs. 13 tide 
gauge stations out of 20 were detected to have a significant linear 
trend in their AMSLs and there was no spatial characteristics 
(Figure 3a). But stationary test results found more statistically 
significant nonstationary tide gauge stations in their AMSLs. 13 
and 18 tide gauge stations were detected by KPSS test and ADF 
test, respectively (Figure 3b and 3c). 

Four stations were selected to represent the different 
distributional changes for each category in order to demonstrate 
the behavior of trend and design water level: Jeju (Category I), 
Gunsan (Category III), Tongyoung (Category VI), and Yeosu 
(Category VII), as shown in Figure 4. 

The spatial distribution of the identified categories associated 
with the distributional changes in the AMSLs is illustrated in 
Figure 5. The Category I and III stations are distributed at all 
coastal zones of South Korea, while Category VI and IX are 
detected in the South and East Coast regions. Interestingly, tide 
gauge stations on the west coast all show increasing trends 
(Categories I and III). The changes in the distributions are 
significant, except at 4 stations with the two-sample KS test and 
2 stations with the two-sample AD test. 

The spatial distribution of the identified categories associated 
with the distributional changes in the AMSLs is illustrated in 
Figure 5. The Category I and III stations are distributed at all 
coastal zones of South Korea, while Category VI and IX are 
detected in the South and East Coast regions. Interestingly, tide 
gauge stations on the west coast all show increasing trends 
(Categories I and III). The changes in the distributions are 
significant, except at 4 stations with the two-sample KS test and 
2 stations with the two-sample AD test. 

 

 
 

Figure 5. Spatial distribution of the categories associated with the distributional 
changes in AMSLs. 

 
The spatial distribution of the identified categories associated 

with the distributional changes in the AMSLs is illustrated in 
Figure 5. The Category I and III stations are distributed at all 
coastal zones of South Korea, while Category VI and IX are 
detected in the South and East Coast regions. Interestingly, tide 
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gauge stations on the west coast all show increasing trends 
(Categories I and III). The changes in the distributions are 
significant, except at 4 stations with the two-sample KS test and 
2 stations with the two-sample AD test. 

 
CONCLUSIONS 

This study proposed a BQR model to assess nonstationarity by 
exploring distributional changes in the AMSLs of tide gauge 
stations over the observation period. More specifically, the 
distributional changes were categorized into a number of classes 
in which nonstationarity was largely defined by changes in 
location and scale parameters of the probability distribution. The 
BQR model-based nonstationarity detection scheme was then 
utilized to understand the impact of distributional changes on 
estimates of the design water level.  

The proposed BQR model provides reliable estimates for 
detecting distribution changes by simultaneously fitting models 
over the quantiles found to be consistent with the monotonic 
response desired under the non-crossing constraints within a fully 
Bayesian framework. Four categories of distributional change 
were found in the AMSLs. Most of the stations were classified as 
Category I, which is characterized by an upward-divergent 
pattern in the distribution. Six stations were classified as Category 
III. 

The BQR model-based nonstationarity frequency analysis 
approach provided a method for understanding the key attributes 
of the dynamic distributional changes in the AMSLs in a changing 
climate. In order to focus more clearly on nonstationarity and its 
direct impact on design water level estimates, this study explored 
changes in design water level estimates for different 
nonstationarity categories. For Categories I, III, and IV, a 
noticeable increase in design sea level was observed, while 
Categories IV and IX showed no evidence of association with risk 
of increased extreme sea levels. 
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