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Modeling the spatial effects of disturbance: a constructive critique 
to provide evidence of ecological thresholds

Larkin A. Powell, Mary Bomberger Brown, Jennifer A. Smith, Jocelyn Olney Harrison  
and Cara E. Whalen

L. A. Powell (orcid.org/0000-0003-0570-4210) (lpowell3@unl.edu), M. Bomberger Brown, J. A. Smith, J. Olney Harrison and C. E. Whalen, 
School of Natural Resources, Univ. of Nebraska-Lincoln, Lincoln, NE 68583-0974, USA. JAS currently at: Dept of Biological Sciences, Virginia 
Polytechnic Institute and State Univ., Blacksburg, VI, USA

Biologists and conservation planners are frequently asked to evaluate the spatial effects of anthropogenic disturbance on 
species of conservation concern. The linear response of a demographic parameter, such as survival or abundance, to the 
distance-from-disturbance is often used to inform spatial restrictions on development. The linear response, we argue, does 
not model the most common biological mechanisms that cause changes to demographic parameters, nor does it provide 
an estimate of a threshold that planners could use to protect species of concern. In the Great Plains of North America, 
biologists are increasingly concerned about the impact of energy development on populations of four species of grouse. To 
address this gap in our ability to properly assess distance thresholds, we developed a framework of four response patterns 
(null, linear, stair step, ramped) to describe the potential effects of a disturbance on biological processes relevant to nesting 
grouse located along a gradient from the disturbance. We simulated position and survival of grouse nests along a 25-km 
disturbance gradient to mimic the response to disturbances. We evaluated the relative support for a set of linear and 
nonlinear models in a known fate analysis of nest survival. Each of the underlying response patterns was detected with an 
appropriate model in a model selection framework (wAIC  0.61–0.75) when the sample size of nests was high (n  500), 
and thresholds were identified when present. In a low sample size scenario (n  50 nests) that may be typical of short-
term empirical sampling schemes, the stair step threshold was detected, but the more complex, ramped threshold was not 
detected. We provide recommendations regarding study design and inference for ecological and policy thresholds, and we 
encourage researchers to be cautious about the manner in which threshold responses are assessed and described.

The ecological literature (May 1973, Francesco Ficetola 
and Denoël 2009) has long been intrigued with the con-
cept of thresholds or points of abrupt change in ecologi-
cal conditions (Huggett 2005). The threshold concept has 
been applied in many areas of ecology, but especially in 
the study of community ecology (Francesco Ficetola and 
Denoël 2009) and landscape fragmentation (Olden 2007) 
in the context of temporal changes. Currently, the study of 
disturbance ecology (e.g. energy development) provides the 
opportunity to apply the concept of thresholds to spatial 
disturbance gradients. The presence of a threshold distance, 
at which a response parameter (e.g. nest survival, species 
richness or abundance) is no longer affected by a distur-
bance, is of ecological interest, but is also critical for plan-
ning future locations of anthropogenic disturbances (e.g. 
energy developments, US Fish and Wildlife Service 2012). 
However, there is a surprising gap in the ecological literature 

(Andersen et  al. 2009) on analytical techniques that can 
robustly estimate a defendable distance to be used for such 
planning. For example, how far does a pronounced effect on 
abundance reach from an energy facility? Or, how close can 
an energy facility be constructed to critical nesting habitat 
without causing a disturbance?

Energy development is a global phenomenon with the 
potential to significantly affect populations of wildlife 
(Hebblewhite 2008, Smith and Dwyer 2016). Here, we 
explore the dynamics of disturbance thresholds using a case 
study of grouse in the Great Plains of North America. Grass-
lands in this region have recently become targets for rapid 
development of the wind energy industry because of high 
potential wind speeds (Fargione et al. 2012). Oil and natural 
gas extraction also occurs in grasslands, and grassland birds 
are the most rapidly declining avian group in North America 
(Vickery and Herkert 2001). All four species of grouse that 
occur in the grasslands of North America, greater sage-grouse 
Centrocercus urophasianus, greater prairie-chickens Tympanu-
chus cupido pinnatus, lesser prairie-chickens T. pallidicinctus, 
and sharp-tailed grouse T. phasianellus, have been studied 
to characterize the protective buffer zones to be established 
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around critical habitat in relation to energy development 
(Connelly et al. 2000, Pruett et al. 2009, Williamson 2009, 
Winder et al. 2014a, b).

In many cases, best-guess and well-intentioned sugges-
tions for space needed to protect a species of concern (Con-
nelly et  al. 2000, Pitman et  al. 2005, Hagen et  al. 2011) 
have become entrenched in policy guidelines (US Fish and 
Wildlife Service 2012). Such studies may indeed provide 
evidence for a general effect of anthropogenic features on 
movement or survival. However, they were not designed or 
analyzed in such a fashion to provide robust determinations 
of distance-based threshold responses that would guide cit-
ing policy for the location of energy development or other 
spatial disturbances.

For example, Pitman et  al. (2005) provided an analysis 
of nest sites of lesser prairie-chickens with regard to anthro-
pogenic features. The study compared the proximity of nests 
and random points to houses, power lines, and similar fea-
tures by assessing the mean distance of the closest 10% of 
nests and random points. The analysis allowed the assess-
ment of general avoidance but did not allow the assessment 
of a threshold response. So, Pitman et al. (2005) provided 
two comments in an apparent attempt to provide guidance 
for buffer distances for development: 1) “We seldom found 
lesser prairie-chicken nests within 400 m of transmission 
lines or improved roads, even though sand-sagebrush prai-
rie near these features appeared similar to the surrounding 
area,” and 2) “We concede that the impact of a house may 
not equal that of the power plant; however, we did not have 
multiple units of each for analysis. A nonstatistical review 
of the nest location data suggests that the impact of houses 
extended to a radius of 0.5 km, whereas that of compres-
sor stations and the power plant extended to over 1 km”. 
There is no doubt that Pitman et  al. (2005) provided evi-
dence for avoidance of anthropogenic features, but at what 
distance? The US Fish and Wildlife Service (2012) provided 
the following summary of Pitman et  al. (2005): “Pitman 
et al. (2005) found that transmission lines reduced nesting 
of lesser prairie chicken by 90 percent out to a distance of 
0.25 miles [∼400 m], improved roads at a distance of 0.25 
miles [∼400 m], a house at 0.3 miles [∼0.5 km], and a power 
plant at  0.6 miles [∼1 km]”. In fact, none of the threshold 
values cited by US Fish and Wildlife Service (2012) were 
based on Pitman et al.’s (2005) assessment of reduced nest-
ing probability, and Pitman et al. (2005) never referred to a 
90% reduction in nest selection – that reference was appar-
ently a non sequitur derived from the sample design: 90% 
of the nests and random points were not used in Pitman 
et al.’s (2005) analysis. Hagen et al. (2011) used the same 
type of analysis to describe local impacts of disturbance, but 
the anecdotal comments that described nest location became 
accepted as a threshold that is now policy lore.

How should we plan studies to assess threshold responses? 
The traditional study design to evaluate effects of a distur-
bance has been referred to as before–after–control–impact 
(BACI; Morrison et  al. 2008; Fig. 1), and is useful when 
a disturbance occurs throughout a landscape, such as forest 
harvest or prescribed burning (Powell et al. 2000). Control 
sites that are not impacted by a treatment provide spatial 
controls, and the before–after design provides temporal 
controls. However, this design has no potential to provide 

information on thresholds at which a disturbance effect 
ameliorates. Further, disturbances such as roads and energy 
development are linear or point-source in nature and not 
suitable for the application of a BACI design. The study 
design that should be used to evaluate the effects of dis-
tance from a disturbance is an impact gradient design (IGD, 
US Fish and Wildlife Service 2012). If the IGD is used 
before and after the disturbance is created (making it more 
robust), it is a before–after–gradient (BAG) design (Ellis and  
Schneider 1997; Fig. 1). The temporal implementation of 
many disturbances may be unforeseen, and economic situ-
ations often result in changes in timing for energy develop-
ment, which may make a before–after study impractical (US 
Fish and Wildlife Service 2012). Greater prairie-chickens 
have recently been studied using the BAG design (McNew 
et  al. 2014, Winder et  al. 2014a) and the IGD design 
(Harrison 2015, Whalen 2015, Smith et al. 2016).

The evaluation of thresholds based on point distur-
bances, by definition, involves the identification of a 
discontinuity or change in trend (Muradian 2001) in a 
response variable over distance from the disturbance. 
McNew et al. (nest survival; 2014), Winder et al. (female 
survival; 2014a), and Harrison (nest site survival; 2015) 
considered a linear effect of distance-to-turbine in the con-
text of a gradient-type study design at wind energy facili-
ties, although no evidence for an effect of wind turbines 
was found in any of the studies. While a linear response 
(g  b0  b1  distance) of distance from disturbance is a 
potential hypothesis to consider and could be evaluated 
relative to other nonlinear models (Harrison 2015), the 
linear model does not provide the potential to develop 
a threshold (Francesco Ficetola and Denoël 2009) that 
could be used by planners to create spatial policy (Ellis and 
Schneider 1997). Thus, other nonlinear models should be 
considered to describe underlying processes and determine 

Figure 1. Comparison of before–after–control–impact (BACI), 
before–after–gradient (BAG) and impact gradient design (IGD) 
experimental designs in the context of wind energy development; 
empty ovals indicate the planned site for wind turbines before the 
treatment occurs. Impact in BACI design is throughout a given 
area; BAG design considers impact as point-source at the beginning 
of a gradient (0 – x km). IGD design is used when the temporal 
control (before) is not possible.
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if thresholds exist (Francesco Ficetola and Denoël 2009, 
Hagen 2010).

Linear models that describe changes in a probability (e.g. 
nest survival, lek persistence) along a gradient may appear 
to take on nonlinear shapes when the probability at the dis-
turbance or away from the disturbance closely approaches 
values of 1.0 (Fig. 2). The nonlinear nature of a linear 
model is caused because the model is fitted with a logit link 
function (Francesco Ficetola and Denoël 2009, Powell and 
Gale 2015); although the underlying model is linear at the 
logit scale, the probability cannot exceed 1.0, so the value 
asymptotes at the extremes with the back-transformation 
from the logit scale. Such results provide evidence of lower 
survival near a disturbance, but the underlying structure of 
the model does not carry the hypothesis that a threshold 
exists.

Some biologists have attempted to show critical thresholds 
through the use of discrete (near/far) comparisons of demo-
graphic parameters for a sample of animals based on their 
proximity to energy development. Holloran et  al. (2010) 
used a discrete comparison of annual survival of female 
sage-grouse in the vicinity of an energy development, and 
the discrete categories (break point: 950 m) were decided a 
posteriori based on the distribution (related to expected val-
ues) of nest locations along a gradient. In contrast, Lyon and 
Anderson (2003) used a study design in which they radio-
marked female sage-grouse at leks that fell into two a priori 
distance categories (break point: 3 km); no biological justifi-
cation for the categories was given, which suggests a hypoth-
esis that disturbance extends from energy development to 
a 3-km distance. The 3-km distance was subsequently used 
in policy statements (US Fish and Wildlife Service 2012), 

Figure 2. Depiction of two contrasting linear responses [logit(S)  b0  b1  distance; b0  1.61; open circles, b1  0.00035; dark circles, 
b1  0.0000097] of survival probability to a disturbance at distance  0 along a gradient: (A) logit-scale response, (B) back-transformed 
survival probability. Survival cannot exceed 1.0, or 100%, which causes the seeming non-linear response of survival (B) from a linear logit-
based model (A) when b1  0.00035, the stronger effect, causes the predicted survival to asymptote near 1.0.
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nests in the ramped threshold were assigned a daily survival 
of 0.98 (Sw  0.987  0.8681), for distances  5000 m; 
nests  5000 m were assigned a weekly survival probability 
as Sw   [0.94  (0.000008x)]7 (Fig. 3J).

We used a four-week nesting period to approximate the 
length of the nesting period of any of the four species of 
grouse in the Great Plains of North America. Each week, 
a random number (0.0  y  1.0) was drawn for each nest. 
If y  Sw, the nest was successful for that week, whereas 
the nest failed if y  Sw. We created a known-fate capture 
history (live/dead: LDLDLDLD; White and Burnham 
1999) for each nest based on its at-risk status and success/
failure status during each time period during the four-week 
nesting period. Thus, we constructed eight simulated sets 
of capture histories: one set for each of the four response 
patterns at contrasting sample size scenarios (n  500 and 
n  50 nests). 

Analysis

We proposed five models to represent hypotheses that could 
be posed during similar analyses of grouse nest survival near 
wind energy facilities. We used a null model to represent no 
effect of the disturbance on grouse nest survival and we cre-
ated a linear model with a distance (x) effect (logit(Sw)  b0 
 b1x). We then created three models to detect potential 
thresholds: a discrete distance effect model based on two 
categories of distance (near/far; logit(Sw)  b0  b1z, where 
z  1 for nests beyond the break point (‘far’) and z  0 for 
‘near’ nests), an interaction effect of linear distance (x) and 
distance category (z, as before: logit(Sw)  b0  b1x  b2z 
 b3xz), and a cubic polynomial model (logit(Sw)  b0  
b1x  b2x2  b3x3). Models were proposed to align statis-
tical pattern with biological process. We hypothesized that 
the discrete model would best describe a stair step threshold, 
and the cubic or interaction model would best describe the 
ramped threshold (Table 1).

The use of discrete and interaction models required that 
we propose a break point to classify nests as ‘near’ to or ‘far’ 
from the wind energy facility. We compared two methods to 
accomplish this task: 1) visual assessment of raw data, and 2) 
a priori model comparisons. Both methods were attempts to 
mimic a real-life situation faced by a biologist with empiri-
cal samples, so that our inferences would be applicable to 
real situations. First, we used a simple, visual assessment of 
summaries of the raw proportions of nests surviving in each 
1-km distance interval to attempt to discern patterns that 
might suggest a break point. LAP performed the simulations 
and provided a summary (sensu Fig. 3) of the raw data in 
blind fashion to MBB who provided a best approximation of 
the location of a threshold (Fig. 3). We then used these break 
points to create a near/far covariate for each nest (1  far, 
0  near) in our data sets. Second, we used break points of 
1, 2, 3, …, 8 km to construct competing models. The top-
ranked model was moved forward to represent the threshold 
distance for the discrete or interaction models in the final 
analysis (Table 2, 3; Buckland et al. 2001).

Each of the eight scenarios (four response patterns  two 
sample sizes) was analyzed using a known fate analysis with 
two covariates (linear distance to turbine and near/far dis-
tance category) in Program MARK (White and Burnham 

although there was no evidence provided to defend the alter-
native hypothesis that a smaller (e.g., 1, 1.5, 2 or 2.5 km) 
or slightly larger disturbance effect (e.g. 3.5 or 4 km) was 
responsible for the variation observed in the movement pat-
terns.

To address the gap in our ability to properly assess these 
distance thresholds, we developed a framework of patterns 
to describe biological processes relevant to our case study, 
nesting grouse, along a gradient from a disturbance. Our 
objectives were to 1) determine if an appropriate nonlinear 
model would be selected to describe the threshold inher-
ent in respective sets of simulated data and 2) investigate 
the potential for spatial patterns to be detected with small 
sample sizes. We used our results to provide recommenda-
tions for future studies to enhance our ability to predict the 
distance of spatial threshold responses.

Methods

Response frameworks and data simulation

We developed four patterns to describe the potential effect of 
a disturbance on the nest survival of grouse along a gradient 
from a disturbance. Two patterns were simple and without 
a threshold: a null response (no effect of distance; Fig. 3A) 
and a linear response along the gradient (Fig. 3D). Two other 
patterns incorporated more complex types of thresholds: a 
discontinuous, stair step response (Fig. 3G), and a ramped 
threshold (Fig. 3J). In an ecological context, one might 
expect some types of pollutant disturbance to show a linear 
response in the ecosystem as the chemical dissipates in air or 
dilutes in water (Wear and Tanner 2007). A ramped thresh-
old might mimic the reduction in anthropogenic sound 
along the ground as the acoustic energy dissipates upwards 
and outwards (Blickley et  al. 2012, Whalen 2015). A dis-
continuous response might be expected in the context of a 
human village and associated patterns of use of nearby land 
(Dembélé et al. 2006), or a visual disturbance that stimulates 
avoidance behavior (Pruett et al. 2009).

We simulated (SAS/IML; SAS ver. 9.22) a sample of 
grouse nests (n  500 or n  50) along a 25 000-m (25-
km) disturbance gradient from a hypothetical wind energy 
facility. Nests were randomly assigned a distance from the 
facility, and the distance was used to model the nest’s daily 
and weekly probability of nest survival under one of the 
four scenarios. Under the null response, all nests had a daily 
survival probability of 0.98 (Matthews et  al. 2013), and a 
weekly survival probability of Sw  0.987  0.8681 (Fig. 
3A). Under the linear response, daily survival ranged from 
0.94 (Sw  0.6484; ∼5% decrease in daily survival, ∼25% 
decrease in weekly survival probability) at the origin to 0.98 
at 25 000 m, and the weekly survival (Sw) was assigned to 
nests using the distance (x) from the wind energy facility 
as Sw   [0.94  (0.0000016x)]7 (Fig. 3D). Nests in the 
stair step response were assigned a daily survival of 0.98 for 
distances  5000 m (Sw  0.987  0.8681), and 0.93 for dis-
tances  5000 m (Sw  0.937  0.6017; Fig. 3G). We chose 
5000 m as the threshold to mimic a local effect similar to 
effects anticipated for grouse studies in the context of energy 
development (US Fish and Wildlife Service 2012). Finally, 
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not differ from the underlying probability of Sw  0.8681 
used to simulate nest survival, although the precision was 
lower for small sample sizes (n  50 nests: Sw   0.8795, 
SE  0.0253, 95% confidence interval: 0.8206–0.9209; 
n  500 nests: Sw   0.8537, SE  0.0089; 95% confidence 
interval: 0.8355–0.8703). Similarly, weekly survival prob-
ability in the discrete model was similar to the stair step 
process used to simulate the data for n  500 nests ( 5000 
m: Sw  0.8681, Sw   0.9028;  5000 m: Sw  0.6017, 
Sw   0.6250) and n  50 nests ( 5000 m: Sw  0.8681, 
Sw   0.8714;  5000 m: Sw  0.6017, Sw   0.5424).

1999). We used Akaike’s information criterion (AICc) cor-
rected for small sample size (Burnham and Anderson 2002) 
to determine which of the five models best described the 
variation in nest survival. We assessed model support using 
model ranks (ΔAICc) and weights (wAICc).

Results

Weekly survival probability, as estimated by the constant 
(null) model for each of the constant survival scenarios did 

Figure 3. Depiction of the structural patterns of simulation models ((A): constant, (D): linear, (G): stair step, and (J): ramped) used to 
generate nest survival data along a gradient (0–25 km) from a disturbance. The simulation models produced the raw proportions of nests 
(shown in the same row; e.g. (A) produced (B) and (C) that survived during four-week simulations within each 1-km distance interval for 
two sample size scenarios, n  50 nests (B, E, H and K) or 500 nests (C, F, I and L). These data summaries were used in blind fashion by 
an observer to visually determine where a break point, or threshold (dotted, vertical lines), might exist. For (B), (E) and (F), the observer 
suggested the existence of a threshold even though a threshold did not exist in reality; for (C), the observer correctly claimed no threshold 
existed. Once thresholds were determined, the distance was used to create discrete and interaction models for analysis purposes. .
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was high (n  500 nests), and thresholds were identi-
fied when present (Table 1, 3). At lower sample sizes 
(n  50 nests) that may be typical of short-term empiri-
cal sampling schemes, the stair step threshold was detected 
(wAICc  0.64), but the more complex, ramped threshold 
was not detected when using visual assessment to propose 
break points (Table 1, Fig. 4). Instead, the null model was 
selected (wAICc  0.53); the erroneous interpretation (a 
type II error) of the assessment would be that weekly prob-
ability of nest survival was not affected by the disturbance. 
There were no type I errors when using visual assessment 
to propose break points; thresholds were never inferred 
when they did not exist (null or linear models, Table 1). In 
analyses resulting from a priori model selection to choose 
break points, the proper response pattern was detected 
when samples sizes of nests were high. At low samples 
sizes, the discrete model was selected to represent varia-
tion in data simulated under a linear model, which had no 
discrete threshold (type I error). The discrete model was 
again selected for the ramped threshold scenario (Table 3) 
in preference to the proper, but more complex, cubic or 
interaction models.

When the sample size was large (n  500 nests), the raw 
proportions of nests that survived in each distance category 
gave a good approximation of the underlying pattern in 
survival used to generate the data (Fig. 3). However, at 
n  50 nests, the random distribution of nests resulted in 
some distance categories without nests, and the pattern in 
raw survival of nests did not closely match the underly-
ing patterns. The stair step and ramped simulation models 
were structured with break points at 5 km, and our blind 
observer selected likely break points (n  50 nests: 6 km; 
n  500 nests: 4 km) that were close to truth for the stair 
step model. The a priori model selection process selected 
the proper break points (5 km) in both sample size scenar-
ios (Table 2). Our blind observer had more problems with 
assessments of break points in data from the ramped simu-
lations (n  50 nests: 9 km break point; n  500 nests: 2 
km; Fig. 3, 4). The a priori model selection process also put 
forward models with improper break points for the ramped 
simulations (n  50 nests: 2 km; n  500 nests: 6 km).

Each of the underlying response patterns was detected 
with an appropriate model in a model selection frame-
work (wAICc  0.61–0.75) when the sample size of nests 

Table 1. Competing weekly nest survival models of simulated grouse nests along a gradient from a wind energy facility under two sample 
size scenarios (n  50 or 500 nests) and four underlying patterns of survival. The top two models are shown for the eight analyses with 
threshold values estimated by visual inspection by MBB. Models are ranked by Akaike’s information criterion adjusted for small sample size 
(AICc). ΔAICc is the difference of each model’s AICc value from that of the highest ranked model, and wAICc is the Akaike weight.

n  50 nests n  500 nests

Simulated survival pattern Expected best model Top two modelsa ΔAICc (wAICc) Top two modelsa ΔAICc (wAICc)

No effect constant constant
linear

0.00 (0.49)
1.72 (0.21)

constant
linear

0.00 (0.61)
2.00 (0.22)

Steadily increasing response linear distance function linear
interaction

0.00 (0.50)
1.40 (0.25)

linear
cubic

0.00 (0.65)
2.37 (0.20)

Discontinuous, stair step threshold discrete distance function discrete
interaction

0.00 (0.64)
2.35 (0.20)

discrete
interaction

0.00 (0.68)
1.50 (0.32)

Discontinuous ramped threshold cubic or interaction functionb constant
linear

0.00 (0.53)
1.96 (0.37)

cubic
interaction

0.00 (0.75)
2.59 (0.20)

aModels under consideration included constant (null), linear, discrete (near/far), interaction, cubic.
bInteraction function included interaction effect of linear distance and a discrete, near/far distance category.

Table 2. Competing weekly nest survival models of simulated grouse nests along a gradient from a wind energy facility under two sample 
size scenarios (n  50 or 500 nests) and four underlying patterns of survival. The top two models are shown for the a priori analyses to 
determine what discontinuous function should be used in the next step of model selection (Table 3); threshold distances of 1, 2, 3, …, 8 km 
were compared for discrete and interaction models. Models are ranked by Akaike’s information criterion adjusted for small sample size 
(AICc). wAICc is the Akaike weight.

n  50 nests n  500 nests

Simulated survival pattern
Actual threshold 

distance (km)
Proposed discrete  

model class
Threshold in  
top modela wAICc

Proposed discrete  
model class

Threshold in  
top modela wAICc

No effect no threshold discrete
interactionb

nonec

none
0.24
0.55

discrete
interaction

none
none

0.22
0.52

Steadily increasing response no threshold discrete
interaction

3 km
3 km

0.29
0.19

discrete
interaction

7 km
5 km

0.74
0.16

Discontinuous, stair step threshold 5 km discrete
interaction

5 km
5 km

0.59
0.53

discrete
interaction

5 km
5 km

1.00
1.00

Discontinuous ramped threshold 5 km discrete
interaction

2 km
2 km

0.72
0.36

discrete
interaction

4 km
6 km

0.38
0.33

aModels under consideration included constant (null) and discrete, near/far distance models with cut-offs at 1, 2, 3, …, 8 km.
bInteraction models included interaction effect of linear distance and a discrete, near/far distance covariate with cut-offs at 1, 2, 3, …,  
8 km.
cNull model selected, indicating no evidence for a discrete threshold.
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interaction and cubic models to describe trends in demo-
graphic parameters along gradients away from a disturbance. 
These models describe threshold responses, and the models 
are simple in structure and easy to implement.

The discrete and interaction models require the declaration 
of a break point, and this determination needs to be based 
on biological reasoning if a threshold is to be ecologically 

Discussion

Spatial disturbance response models

The models we used in our analyses were generally supported 
when appropriate, and the process in the simulated data was 
described. We encourage biologists to consider discrete, 

Table 3. Competing weekly nest survival models of simulated grouse nests along a gradient from a wind energy facility under two sample 
size scenarios (n  50 or 500 nests) and four underlying patterns of survival. The top two models are shown for the eight analyses with thresh-
old distances derived through a priori model selection for discontinuous functions (Table 2). Models are ranked by Akaike’s information 
criterion adjusted for small sample size (AICc). ΔAICc is the difference of each model’s AICc value from that of the highest ranked model, and 
wAICc is the Akaike weight.

n  50 nests n  500 nests

Simulated survival pattern Expected best model Top two modelsa ΔAICc (wAICc) Top two modelsa ΔAICc (wAICc)

No effect constant constant
linear

0.00 (0.67)
1.72 (0.28)

constant
linear

0.00 (0.61)
2.00 (0.22)

Steadily increasing response linear distance function discrete
linear

0.00 (0.43)
0.60 (0.32)

linear
cubic

0.00 (0.65)
2.37 (0.20)

Discontinuous, stair step threshold discrete distance function discrete
interaction

0.00 (0.64)
2.40 (0.20)

discrete
interaction

0.00 (0.85)
3.40 (0.15)

Discontinuous ramped threshold cubic or interaction functionb discrete
interaction

0.00 (0.66)
1.83 (0.26)

interaction
cubic

0.00 (0.68)
2.00 (0.25)

aModels under consideration included constant (null), linear, discrete (near/far), interaction, cubic. Discrete and interaction models used 
were the result of a priori model comparisons to determine break points.
bInteraction function included interaction effect of linear distance and a discrete, near/far distance category.

Figure 4. Comparisons of predicted estimates of weekly survival from five alternative models (constant, linear, discrete, cubic polynomial, 
and interaction) with the ramped pattern (A and B) of survival used to simulate weekly nest survival data under two sample size scenarios 
(n  50 or 500) with visual assessment used to produce break points in discontinuous models. Nests were randomly placed along a gradient 
of distances from a disturbance. Predicted survival from the top-ranked models are shown on top (A and B) with the ramped, simulated 
data pattern. Predicted survival from models with no support are shown on the bottom (C and D). See Table 1 for details on model com-
parisons.
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slight, yet critical, misinterpretation of Leddy et al.’s (1999) 
study design, stating: “Densities of grassland birds measured 
at transects in reference fields and at transects at least 180 m 
from turbines [emphasis ours] were four times greater than in 
portions of study plots located near turbines”. In fact, Leddy 
et al. (1999) had no transects  180 m from turbines, and 
the threshold insinuated by Erickson et al. (2007) through 
the use of the phrase “at least” was never claimed by Leddy 
et al. (1999). If the objective of a study is to produce recom-
mendations that include the potential to show a response 
threshold, an IGD should be used with samples taken at the 
appropriate scale along the gradient to allow the assessment 
of a point of change.

Our simulation model uses a 25-km gradient, which  
was similar in scale to the gradient used by others to study 
effects of wind turbines on greater prairie-chickens (Harrison 
2015, Whalen 2015, Winder et al. 2015). The use of a long 
gradient, relative to anticipated effect distance of the distur-
bance assures a spatial control region that would be assumed 
to have no effect. However, as we demonstrated with our 
simulation scenario at n  50 nests, a long gradient can 
also spread a small sample thinly and possibly obscure the 
underlying effect. Thus, longer gradients require attention 
to sample size at an appropriate scale throughout the gra-
dient to provide data to inform the shape of the response 
curve. Alternatively, the use of a shorter gradient increases 
the potential for a simple linear model to describe the local 
effect of the disturbance, but the gradient may not reach into 
areas not affected by the disturbance. Harrison (2015) and 
Winder et  al. (2015) used a secondary focal analysis of a 
smaller portion of the gradient for a more detailed analysis, 
which may be beneficial to further define the shape of the 
effect.

Last, we propose that a priori predictions, or hypotheses, 
should guide the length of the gradient used in the study. 
Manville (2004) supposed an 8-km disturbance effect for 
prairie grouse, so a gradient study should be at least twice 
that long to test for the exact distance of a break point. Our 
assessment of sample size confirms the need to include suf-
ficient samples along the gradient and especially in the prox-
imity of the hypothesized break point to provide statistical 
resolution. Grouse leks and nests cannot be experimentally 
manipulated in space, and these sites are not always spaced 
perfectly along gradients (Whalen 2015, Winder et  al. 
2015), which may affect the potential to describe ecological 
thresholds.

Our assessment, for simplicity of mission, was based on 
the impact gradient design in the context of exploration of 
the effects of a hypothetical, existing wind energy facility. 
When logistics allow, we encourage the use of the before–
after–gradient (BAG) design. Most critically, we encourage 
the use of the entire data set in an analysis similar to those 
we provided; entrepreneurial focus on a subset of the data 
(Pitman et al. 2005, Hagen et al. 2011) would seem to sacri-
fice the advantage of the study design and statistical power to 
find a threshold response that is the objective of the study.

From ecology to policy

We acknowledge the difference between a statistical 
threshold (defined as the point at which evidence for an 

meaningful. We used a visual assessment to inform the selec-
tion of a break point by viewing our summaries of our data 
a posteriori, similar to Zuur et al.’s (2010) encouragement 
to visually inspect data in initial stages of analysis. We found 
our visual assessment to provide comparable results to the a 
priori model selection process (Buckland et al. 2001); visual 
assessment avoided type I errors (Table 1), but the a priori 
model selection generally found the proper break points 
when they existed (Table 2, 3). Holloran et al. (2010) used 
a different approach that seemed well-justified to select the 
break point of a discrete model for annual survival of female 
sage-grouse by assessing the spatial distribution of nests – 
to search for a signal that might inform the ‘reach’ of the 
disturbance. Whalen (2015) used background sound lev-
els at greater prairie-chicken leks to determine which leks 
had potential to be influenced by noise from wind turbines 
to inform the development of a discrete model to describe 
effects of wind turbines on male breeding vocalizations. We 
encourage similar rigorous thought as discrete models are 
developed for future studies.

Our analyses provide evidence that various types of non-
linear models have potential to help develop thresholds for 
siting guidelines. However, we did not consider one class of 
nonlinear models, general additive models (GAMs), in our 
assessment. McNew et  al. (2014) used a GAM approach, 
although distance to nearest turbine was not found to 
affect nest habitat selection of greater prairie-chickens. 
Winder et al. (2015) also used a GAM analysis to assess the 
numbers of males on leks proximal to a wind energy facil-
ity. We acknowledge that GAMs provide flexible, fine-scale 
descriptions of nonlinear responses (Post van der Burg et al. 
2010), so we do not discourage their use. In fact, if proper 
algorithms are used to guide the smoothing parameters used, 
the GAM may produce a nicely fitted response that reveals 
break points (although the exact placement of the threshold 
must be estimated visually; Francesco Ficetola and Denoël 
2009) without a priori considerations of response shape. But, 
our experience suggests that AIC values for discrete models 
(used in a GLM framework) cannot be compared with AIC 
values taken from GAM frameworks (Harrison 2015); thus 
complete discontinuities cannot be assessed with GAMs. 
Further, the models we used in our analysis have the advan-
tage that they can be constructed in many software platforms 
that do not provide functionality in GAMs (e.g. program 
MARK). The simpler models we propose should fit most 
biological processes that would cause a threshold response, 
while avoiding the risks of overfitting a GAM (Winder et al. 
2015).

Study design considerations

Certainly, study design is critical to provide data that can be 
assessed for threshold responses. As policy makers and biolo-
gists review literature, it is critical they utilize information 
that is available from a published study and refrain from using 
the data beyond its original intent. For example, Leddy et al. 
(1999) placed survey transects at three distances away from 
turbines to assess a potential effect of wind energy facilities 
on abundance of grassland birds. The study was not designed 
to establish a specific threshold, and the authors made no 
such claims. However, Erickson et  al. (2007) provided a 
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