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INTRODUCTION

Raptor interactions with built environments have
the potential to negatively affect individual birds,
populations, and species, often in the form of colli-
sions with human-made structures and vehicles. This
letter aims to serve as an overview of the known
impacts of collisions on raptors around the world
and to offer practical mitigation strategies and direc-
tions for future research. This letter is not intended
as an exhaustive literature review. Rather, the intent
of the Raptor Research Foundation (RRF) is to pro-
vide readers with enough evidence-based examples
so that readers can appreciate the scope and preva-
lence of raptor collisions with built environments
and understand the potential effects on raptor spe-
cies and populations as well as the challenges associ-
ated with addressing these effects across regions. In
this letter, “built environments” refers to landscapes
modified by humans, including structures and infra-
structure systems.

Many raptors are attracted to built environments
because of high availability of prey and carrion, and
novel perches and nest sites, yet living in such envi-
ronments puts raptors at risk of collisions (Dykstra
2018). Raptors are vulnerable to collisions with sta-
tionary and mobile human-made objects, which fre-
quently result in traumatic injuries or death (Loss
et al. 2015, Dwyer et al. 2018, Šálek et al. 2023).
Globally, collisions are consistently reported among

the top causes of raptor admissions to rehabilitation
centers (Thompson et al. 2013, Maphalala et al.
2021). These records only represent a fraction of all
raptor collisions, as many occur in areas with lim-
ited accessibility; and many raptors found dead,
rather than injured, go unreported (Hager 2009,
Panter et al. 2022). Multiple collision risks pose
threats to raptors in urban and rural areas alike,
though some have been better studied than others.

Most studies on raptor collisions focus on vehi-
cles, wind turbines, or to a lesser degree, windows
and buildings. Numerous other collision risks in
built environments remain under-studied, such as
aircraft, overhead power lines, communication tow-
ers, and fences.

IMPACTS OF COLLISIONS ON RAPTORS

Vehicle Collisions. As the world becomes increas-
ingly urbanized, vehicles are increasingly traversing
transportation networks (Coffin 2007). Despite
improving connectivity and logistical capabilities
for humans, road and rail networks pose a risk to
raptors via collisions (De Pascalis et al. 2020). For
owls, vehicle collisions represent a substantial threat
to wild populations and are a major cause of owl
mortality (Molina-López et al. 2011, Arnold et al.
2018, Hernandez et al. 2018). Owls are especially at
risk from vehicle collisions due to blinding by
motor vehicle headlights at night (Bullock et al.
2011). Owl–vehicle collisions can be detrimental to
species of conservation concern and those with
declining populations such as Barn Owls (Tyto alba)
in Canada (Bishop and Brogan 2013).
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Raptor–vehicle collisions are dependent on
many factors. Traffic volume and prey availability in
grassy verges are predictors of raptor distributions
and subsequent raptor–vehicle collisions along
roadways (Planillo et al. 2015, Sumasgutner et al.
2021). Speed limits, road width, and surrounding
landscapes also influence collision risks (Gagné
et al. 2015). For example, DeVault et al. (2014)
found that flight initiation distance of Turkey Vul-
tures (Cathartes aura) nearly doubled as vehicle
speed increased from 30 to 90 kph. Collision rates
between vehicles and Barred Owls (Strix varia) in
North Carolina were higher on roads with higher
speed limits and along roads through more suitable
habitats (Gagné et al. 2015). The surrounding land-
scape, specifically the degree of urbanization, may
also impact collision rates (Hager 2009, Panter
et al. 2022). A study from England and Wales found
that the probability of raptor–vehicle collisions was
greater in less urbanized environments (Panter
et al. 2022). However, evidence from the USA and
Canada reported vehicle collisions affect urban and
exurban raptors (Hager 2009), indicating patterns
likely differ across species and landscapes.

How raptors use the environment close to transpor-
tation networks also influences collision risk (Dwyer
et al. 2018). Raptors that feed on roadkill and roadside
garbage are more susceptible to vehicle collisions (Fig.
1A–B; Lambertucci et al. 2009, Sumasgutner et al.
2021, Slater et al. 2022). Despite this, little is known
about the population-level impacts of vehicle collisions
on raptors across large demographic, temporal, and
spatial scales.

Human-related mortality is a major limiting factor
for some raptor populations (Donázar et al. 2016,
Šálek et al. 2023), with human-caused raptor mortality
increasing over the past century (De Pascalis et al.
2020). Raptors that collide with vehicles experience
higher mortality rates than those impacted by other
anthropogenic factors (Kadlecova et al. 2022). McCabe
et al. (2022) found that immature Snowy Owls (Bubo
scandiacus) were more likely to be killed by vehicle colli-
sions than adult birds in North America and suggested
that if raptor–vehicle collisions occur more often in
suboptimal habitats, negative density-dependent popu-
lation effects may persist. Little is known about popula-
tion effects on other raptor species. However, across 15
raptor species in the UK, vehicle collisions were the
cause of death in 28% of recovered banded birds
between 2002 and 2019 (Hanmer and Robinson
2021). Similarly, approximately 11% of raptor band
recoveries in the USA from 1920s–2000s were due to
vehicle collisions, a percentage that increased markedly
over time (Lutmerding et al. 2012).

Wind Turbine Collisions. Windmills have existed
for centuries but were not reported to affect birds
until the advent of electrical power-generating wind
turbines and subsequent installation of large num-
bers of turbines in relatively small areas. Raptors are
more vulnerable to collisions with wind turbines
than other avian groups and are more likely to suf-
fer population-level consequences (Watson et al.
2018). Collision risk is highly variable and is related
to complex relationships among landscapes, wind
conditions, species abundance, time of year, and
species-specific behaviors (Barrios and Rodríguez
2004, Schuster et al. 2015, Watson et al. 2018).

Griffon Vulture (Gyps fulvus) fatalities in Tarifa,
Spain have been linked to topography and wind con-
ditions (Barrios and Rodríguez 2004). Vultures were
more likely to be killed by turbines located in areas of
poorer updraft where they may spend more time cir-
cling to gain altitude (Barrios and Rodríguez 2004).
Furthermore, Griffon Vulture fatalities throughout
Spain were positively correlated with the species’ abun-
dance (Carrete et al. 2012). In Norway, White-tailed
Eagle (Haliaeetus albicilla) fatalities at the Smøla wind
facility have been linked to siting of the facility within
an area of very high breeding density and siting of
some turbines near a communal roost (Fig. 1C; Wat-
son et al. 2018). In Germany, White-tailed Eagle fatali-
ties were positively correlated with nesting habitat and
wind turbine density but not with nest density (Heuck
et al. 2019). The Altamont Pass Wind Resource Area
(APWRA) is notorious for causing numerous fatali-
ties of Golden Eagles (Aquila chrysaetos), Red-tailed
Hawks (Buteo jamaicensis), American Kestrels (Falco
sparverius), and Burrowing Owls (Athene cunicularia),
among many other species (Smallwood and The-
lander 2008). Within the facility, some turbines are
more likely to kill raptors than others, with particu-
larly dangerous turbines associated with high prey
abundance, high breeding density of raptors, high
density of nonbreeding raptors, and topography sup-
porting low-altitude flight (Schuster et al. 2015, Wat-
son et al. 2018).

Certain flight behaviors and flight activities are also
thought to increase risk. For example, species that
engage in kiting while foraging appear to be at
increased risk of collision. The Red-tailed Hawk (Fig.
1D), American Kestrel, Eurasian Buzzard (Buteo buteo),
Eurasian Kestrel (Falco tinnunculus), Nankeen Kestrel
(Falco cenchroides), and Brown Falcon (Falco berigora) all
share similar flight strategies while foraging that put
them at higher risk of collision (Watson et al. 2018).
Similarly, birds that frequently engage in territorial
flights or social interactions in flight are at higher risk
of collision than those that do not (May et al. 2011).
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Population-level effects from collision fatalities
have been documented for some species. In Spain, a
decline in the population of the endangered Egyp-
tian Vulture (Neophron percnopterus) was linked to col-
lisions with turbines (Carrete et al. 2009). High adult
mortality resulted in an increase in breeding sub-
adult Golden Eagles within the APWRA (Wiens and
Kolar 2021), with effects extending to the continen-
tal population (Katzner et al. 2016). Moreover, both
Red Kites (Milvus milvus) and Eurasian Buzzards suf-
fer population-level consequences from wind tur-
bines in Germany (Gr€unkorn et al. 2016).

Window Collisions. More studies exist on bird–
building collisions than perhaps any other collision
source. Birds collide with windows because they do
not perceive glass as humans do. Instead, birds per-
ceive clear glass as an open passageway and mirrored
glass as a continuation of habitat (Fig. 1E; Klem
1979). Though most bird–building collision studies
focus on songbirds, numerous studies from rehabilita-
tion and veterinary clinics around the world report
raptor–building collisions as a top cause of admissions
(Neese et al. 2010, Thompson et al. 2013, Smith et al.
2018, Panter et al. 2022) with numerous raptors docu-
mented, including various falcon (n ¼ 6), hawk (n ¼
13), and owl (n ¼ 15) species. Klem (1979) reported
Accipitridae (hawks, eagles, and kites) among the top
ten bird families most prone to window collisions in
the USA and Canada. Because buildings with glass
windows are present nearly everywhere humans live,
this indiscriminate source of death poses a threat to
raptors globally, though some species are more vul-
nerable to window collisions than others.

Particular hunting strategies also contribute to
greater risk of window collisions by some raptors. Spe-
cies that habitually pursue prey at high speeds
through restricted areas, such as Cooper’s Hawks
(Accipiter cooperii) and Eurasian Sparrowhawks (Accipi-
ter nisus), are particularly vulnerable to window colli-
sions (Klem 1981, Dwyer et al. 2018). For example,
Newton et al. (1999) found collisions were among the

top two causes of death of Eurasian Sparrowhawks in
the UK. Millsap et al. (2024) found collisions with
human-made objects, especially windows and vehicles,
were the greatest cause of death in urban Cooper’s
Hawks in New Mexico, regardless of age.

Raptors occupying urban environments may be
more vulnerable to window collisions than rural rap-
tors because of the greater density of buildings in
urban areas. Although large buildings such as sky-
scrapers cause the greatest number of bird collisions
per building, the vast numbers of residential homes
across urbanized landscapes collectively pose a far
greater risk (Loss et al. 2015). This risk is com-
pounded as many homeowners maintain bird feeders
in their yards, putting both feeder birds and non-
feeder birds at greater risk of window collisions
(Kummer et al. 2016). Hager (2009) found that build-
ing collisions affected 45% of urban raptor species in
the USA and Canada and were the top source of mor-
tality for Sharp-shinned Hawks (Accipiter striatus; Fig.
1F), Cooper’s Hawks, Merlins (Falco columbarius), and
Peregrine Falcons (Falco peregrinus), with potential for
population-level effects. Similarly, Panter et al. (2022)
found urban raptors in England and Wales were 2.5
times more likely to be admitted to rehabilitation cen-
ters due to building collisions compared to raptors liv-
ing in rural areas.

Window collisions can cause challenges in protect-
ing species of conservation concern in urban areas, as
seen in the reintroduction of the Peregrine Falcon in
the USA and Canada following their steep decline dur-
ing the second half of the 1900s. In 1990, window colli-
sions were reported to pose “a serious threat to the
successful reintroduction of this species in urban envi-
ronments” (Klem 1990). Although window collisions
have continued to be reported as a leading cause of
death and injury in reintroduced Peregrine Falcons,
especially young birds (Sweeney et al. 1997, Gahbauer
et al. 2015), their successful reestablishment suggests
these deaths may be compensatory or too infrequent
to overcome current population growth rates.

 
Figure 1. Raptor collisions with anthropogenic obstacles are a global conservation concern. (A) Crested Caracaras
(Caracara cheriway) foraging on a vehicle-struck mammal along a road edge in southern Florida, USA. Photo J. Dwyer;
(B) A Crested Caracara (Caracara cheriway) killed by a collision with a vehicle in southern Texas, USA. Photo H.
Bullock; (C) White-tailed Eagles (Haliaeetus albicilla) transiting a wind farm in west-central Norway. Photo T. Katzner;
(D) Red-tailed Hawk (Buteo jamaicensis) killed by collision with a wind turbine in central California, USA. Photo US
Geological Survey; (E) Barred Owl (Strix varia) impact smear on a window in Kansas, USA. Photo K. Anton, Johnson
County Community College Bird Collision Study, www.youtube.com/watch?v=FgZcnaOI_-A; (F) Sharp-shinned Hawk
(Accipiter striatus) and Lesser Goldfinch (Spinus psaltria) killed in collisions with a window in Vancouver, Canada. Photo
J. Dodson; (G) Short-eared Owl (Asio flammeus) killed in collision with either a vehicle or a glass highway sound barrier
in South Korea. Photo K. Young-Jun; (H) Golden Eagle (Aquila chrysaetos) likely killed by a vehicle collision but lying
below a distribution power line, which can also cause collision mortality, in Wyoming, USA. Photo E. Fairbank.
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Other Collision Sources. There are many other
sources of collision-related fatalities in raptors.
These include, but are not limited to, collisions
with aircraft, communication towers, fences, high-
way sound barriers (Fig. 1G), and overhead power
lines (Fig. 1H; Molina-López et al. 2011, Simon
et al. 2020, Cococcetta et al. 2022). In some cases,
such as when glass sound barriers or power lines are
placed along highways, it can be difficult to identify
whether a bird was killed or injured by a window
collision, power line collision, or vehicle collision.

Of these other collision sources, aircraft are
among the most studied for raptors (Blackwell and
Wright 2006, Washburn et al. 2015, 2021). Collisions
between birds and aircraft have consequences for
both wildlife and humans (Washburn 2018) and thus
differ from most other collision sources. Airfields
attract raptors that forage in open areas and species
that roost or perch on the ground, e.g., Snowy Owl
and Bald Eagle (Haliaeetus leucocephalus). In the USA,
16 of 19 owl species and 28 of 34 diurnal raptor spe-
cies have been struck by aircraft (Federal Aviation
Administration 2023). Among the top 20 bird species
that are considered most dangerous to military aircraft
and human life, seven species are medium- to large-
bodied raptors (Pfeiffer et al. 2018). Although most
collisions between aircraft and raptors occur near the
ground (,150 m above ground) on approach, taxi,
or take-off, collisions may occur anywhere that aircraft
and birds occupy the same space (Dolbeer 2006).

SOLUTIONS AND RESEARCH NEEDS

Vehicle Collision Solutions. The impacts of vehi-
cle collisions on raptor populations remain specula-
tive, yet strategies to mitigate raptor–vehicle collisions
have been attempted. Using flight diverters, fencing,
and hedging to redirect raptors above and away from
roadways may reduce raptor–vehicle collisions (Kocio-
lek et al. 2015, Dwyer et al. 2018). In Spain, poles posi-
tioned along roadways (spaced 1–2 m apart for forest
raptors and 3 m apart for soaring raptors) shifted
flight paths of some raptor species but with mixed
effects (Zuberogoitia et al. 2015). Attaching orange
and white flags to the poles induced a stronger avoid-
ance response (Zuberogoitia et al. 2015), especially
for forest-dwelling raptors, suggesting that flagged
poles may reduce the number of raptor–vehicle colli-
sions along key sections of transportation networks.
Monochromatic light-emitting diodes targeted at avian
photoreceptors have been used to deter Red-tailed
Hawks from approaching baited lures at a banding
station positioned in a mowed grassy area in an open
field (Foss et al. 2017). Individuals exposed to lights

were more than five times more likely to abort than
those who approached an unlit control station sur-
rounded by dense shrubs and low trees (Foss et al.
2017). This experiment was designed to reduce rap-
tor–aircraft strikes but could be applied to reduce
raptor–vehicle collisions on roads and railways.

Managing roadsides to make them less attractive to
birds by modified right-of-way mowing regimes and
vegetation management could reduce raptor–vehicle
collisions (Jacobson 2005, Kociolek et al. 2015). How-
ever, in this era of anthropogenic change, only small
patches of isolated habitat remain untouched by the
ecological influences of roads (Coffin 2007), and
deterrence management of roadside habitats may
have profoundly negative population impacts due to
the loss of food availability and foraging habitat (Hind-
march et al. 2017). Recent research has recom-
mended that roadkilled carcasses should be relocated
away from roadways, reducing the risk of flushing,
which often results in collisions between vehicles and
scavenging species, such as Golden Eagles (Slater et al.
2022, Lonsdorf et al. 2023).

Successful mitigation and prevention of raptor–
vehicle collisions is largely dependent on the spe-
cies involved, technique employed, and scale at
which efforts are implemented. Future research
should attempt to identify key collision hotspots
through time and space, exploring the impacts on
broader raptor populations. Innovation of new
tools to mitigate raptor–vehicle collisions should be
the focus of researchers, governing bodies, and
organizations responsible for the safety of wildlife
and people across global transportation networks.
Future studies should aim to identify any further
population-level effects of vehicle collisions on rap-
tors across age and taxonomic groups.

Wind Turbine Collision Solutions. Because fatali-
ties and predicted fatalities at wind energy facilities
can decrease energy production and impede devel-
opment, there is much interest in reducing collisions
between wind turbines and raptors, especially threat-
ened and endangered species. Solutions can occur
either before or after construction. Pre-construction
solutions include landscape management and siting
individual turbines or entire facilities in low-risk
areas, e.g., low-use, low prey abundance, etc., (Alli-
son et al. 2017, Garcia-Rosa and Tande 2023). To
guide pre-construction efforts to minimize fatalities,
sensitivity or risk maps have been produced for some
species and regions (Miller et al. 2014, Murgatroyd
et al. 2021, Wallace et al. 2024). When poorly sited
projects result in high numbers of fatalities, post-con-
struction mitigation measures can reduce fatalities
(McClure et al. 2022).
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Laws and regulations also can reduce fatalities.
In the USA, mitigation may be required under regu-
lations governing incidental take (US Fish and
Wildlife Service [USFWS] 2021, 2024). When laws
have been violated (e.g., incidental take without a
permit), mitigation measures have been enforced,
leading to reductions in fatalities (US Department
of Justice 2013, McClure et al. 2022).

Post-construction solutions include repowering,
curtailment (i.e., shutdown) of individual turbines,
and blade painting. Early-generation wind turbines
are smaller, lower to the ground, and have faster
spinning blades than newer turbines. Thus, repow-
ering (i.e., replacing smaller, lower production tur-
bines with larger, higher production turbines) is a
potential solution to decrease high mortality rates
for some species (Smallwood and Karas 2009).

Temporary, informed curtailment of turbines
has also been used to mitigate fatalities. Informed
curtailments may be done by human observers or
automated systems that detect, identify, and track
raptors and curtail turbines (Marques et al. 2014).
Reports from human observers have reduced soar-
ing bird mortality by 62% and vulture mortality by
92% in Spain (Ferrer et al. 2022). In Wyoming, an
automated curtailment system decreased eagle fatal-
ities by 85% and outperformed human observers
(McClure et al. 2021, 2022). Performance of these
types of systems, however, may vary regionally, sug-
gesting that further study is needed (Duerr et al.
2023).

Blade painting, such as painting one blade or
striping blades with black paint, increases visibility
to flying birds and may be effective in reducing col-
lisions. Blade painting at the Smøla wind energy
facility reduced collisions by 70%, with the greatest
reductions for raptors (May et al. 2020). That said,
more studies are needed to better understand the
effect of blade painting.

Preventing raptor fatalities at wind energy facili-
ties is challenging, and more research on the effec-
tiveness of mitigation tools is needed. Further,
avoiding siting wind farms in high-risk areas and
using systems, including artificial intelligence, to
reduce fatalities is of the utmost importance, given
the considerable expansion of wind energy
expected over the coming decades.

Window Collision Solutions. Practical solutions to
prevent bird–window collisions include the use of
bird-friendly glass and building designs. Several
companies offer bird-friendly glass and products to
apply to existing glass surfaces to prevent collisions.
American Bird Conservancy maintains an online
database of available products with ratings of their

effectiveness in preventing window collisions in
songbirds (American Bird Conservancy 2024). Mul-
tiple studies have demonstrated the effectiveness of
fritted glass and glass treated with decals applied in
tight grid patterns in mitigating window collisions
in non-raptorial birds (Sheppard and Phillips 2015,
De Groot et al. 2022). Incorporating bird-friendly
architectural designs such as decorative grilles that
break up expanses of glass can also reduce bird–win-
dow collisions (Sheppard and Phillips 2015). Although
ultraviolet-treated glass has proven marginally effective
in reducing songbird collisions, it would likely make
no difference in raptor collisions, as raptors have low
sensitivity to ultraviolet radiation (Håstad and Ödeen
2014). Raptor-specific studies are needed to empirically
determine whether visual markers on glass reduce rap-
tor–window collisions. We suspect that differences in
the mechanisms behind raptor collisions and songbird
collisions may limit the effectiveness of such markers in
mitigating raptor–window collisions.

Proximity of bird feeders and vegetation to win-
dows have proven to be important predictors of win-
dow collisions in non-raptorial birds (Klem et al.
2004, Kummer et al. 2016). However, drivers of win-
dow collisions may be different for raptors, particu-
larly those that pursue prey at high speeds. Such
raptors typically utilize their lateral visual field while
pursuing prey, only switching to frontal vision when
seizing prey, meaning they may not recognize
potential collision sources ahead until they are too
close to avoid a collision (Martin 2011). Although
Klem et al. (2004) found that placing feeders ,1 m
away from windows greatly reduced collision fatali-
ties in non-raptorial birds, Boal and Mannan (1999)
found that feeders placed near windows put Coo-
per’s Hawks at high risk of fatal window collisions
while in pursuit of feeder birds. This risk is com-
pounded by the tendency of raptors to return to
bird feeders due to high densities of easily captured
prey (Klem 1981). Future research should aim to
identify factors that predict raptor–window colli-
sions and determine effective mitigation strategies.

Other Collision Sources Solutions. As with wind
turbines, strategically planning overhead power line
routes and communication tower placement to avoid
migratory corridors and areas of high concentrations
of vulnerable species can significantly mitigate raptor
collisions and incidental take (Bernardino et al.
2018, D’Amico et al. 2019). To further minimize rap-
tor collisions with power lines and guy wires of tow-
ers, visual markers can be installed on wires to make
them more visible to birds, particularly in areas with
large concentrations of raptors (Slater et al. 2020).
Placing markers on fences has been shown to reduce
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fence collisions among some grouse (Phasianidae)
and may also be effective in reducing raptor colli-
sions (Van Lanen et al. 2017).

Currently, airports institute hazard management
programs and implement science-based manage-
ment to decrease the presence of birds and other
wildlife on airfields (Cleary and Dolbeer 2005,
DeVault et al. 2013). Programs that use multiple
mitigation strategies based on the biology of “prob-
lem species” are most effective in reducing raptor–
aircraft collisions (Washburn 2018). Most-used
methods include translocation of raptors, prey man-
agement, hazing, and lethal removal, yet further
study is needed to assess the efficacy of these meth-
ods in deterring raptors in various locations (Wash-
burn et al. 2021). Integrating other strategies into
management plans could further decrease raptor–
aircraft collisions. Examples include displaying
visual stimuli with eyespot patterns and looming
movement to deter raptors at airfields (Hausberger
et al. 2018) and, in areas where soaring raptors are
problematic, mapping the strongest thermals and
adjusting aviation routes to avoid these areas (Novo-
selova et al. 2020).

As a leading professional society for raptor
researchers and raptor conservationists, the RRF is
dedicated to the accumulation and dissemination of
scientific information about raptors, and to resolving
raptor conservation concerns (RRF 2021). Raptor
collisions with built environments remain an ongo-
ing conservation concern, presenting a global threat
to raptor populations. Based on the science summa-
rized here, mitigating the factors associated with rap-
tor collisions with human-made structures and
vehicles will allow long-term co-occurrence of raptor
populations with human populations.
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