

Development and Characterization of Microsatellite Loci for Smooth Cordgrass, Spartina alterniflora (Poaceae)

Authors: Guo, Wuxia, Huang, Yelin, He, Ziwen, Yan, Yubin, Zhou,

Renchao, et al.

Source: Applications in Plant Sciences, 1(1)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1200211

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

PRIMER NOTE

DEVELOPMENT AND CHARACTERIZATION OF MICROSATELLITE LOCI FOR SMOOTH CORDGRASS, SPARTINA ALTERNIFLORA (POACEAE)¹

Wuxia Guo², Yelin Huang^{2,3}, Ziwen He², Yubin Yan², Renchao Zhou², and Suhua Shi^{2,3}

²Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

- Premise of the study: Spartina alterniflora is one of the nine most notoriously invasive plants in China. Microsatellite markers were developed for this species to investigate its invasiveness and genetic diversity.
- Methods and Results: Fifteen polymorphic and seven monomorphic simple sequence repeat (SSR) markers derived from
 expressed sequence tags (ESTs) were identified and screened in 60 samples of S. alterniflora. The number of alleles per polymorphic locus ranged from two to eight, with an average of 3.8 alleles per polymorphic locus. The expected heterozygosity and
 observed heterozygosity based on seven disomic loci ranged from 0.27 to 0.46 and 0.21 to 0.51, respectively. The average
 Shannon index ranged from 0.26 to 0.94 in eight nondisomic loci.
- Conclusions: The SSR markers described here may be useful for further investigation of population genetics and invasion dynamics of S. alterniflora.

Key words: invasive species; microsatellite; Poaceae; Spartina alterniflora; transcriptome.

Spartina alterniflora Loisel. (Chloridoideae, Poaceae) is a perennial grass native to the Atlantic and Gulf coasts of North America, and has been used in coastal restoration programs in many countries (Daehler and Strong, 1996). However, S. alterniflora is highly invasive in many parts of the world where it is introduced. In China, the species has been listed as one of the nine most notoriously invasive plants (Zhi et al., 2007). Recently, we have sequenced the transcriptome of S. alterniflora using the next-generation sequencing platform Illumina Genome Analyzer II to understand its invasion in China (Guo et al., unpublished data). The transcriptome sequences contain abundant simple sequence repeat (SSR) markers, which should be very useful in population genetic studies. Here, for the first time, we identified several thousand expressed sequence tag (EST)-derived simple sequence repeat (ESSR) markers from the RNA-seq data of S. alterniflora. Compared to genomic SSR markers, ESSRs are easier and less expensive to develop, as well as more transferable across taxonomic boundaries (Ellis and Burke, 2007).

¹Manuscript received 1 May 2012; revision accepted 4 July 2012.

The authors thank Lu Xia, Lu Lu, and Xiaoting Fang for sample collections. This study is supported by grants from the National Natural Science Foundation of China (41130208, 91231106, 41276107, 31070290, 31170213), the Science Foundation of the State Key Laboratory of Biocontrol (SKLBC2011A06), the Fundamental Research Funds for the Central Universities (09lgpy35, 10lgpy20), and Chang Hungta Science Foundation of Sun Yat-Sen University.

³Authors for correspondence: lsshyl@mail.sysu.edu.cn, lssssh@mail.sysu.edu.cn

doi:10.3732/apps.1200211

METHODS AND RESULTS

Transcriptome sequencing of S. alterniflora was conducted using the Illumina Genome Analyzer II system. In total, 14.55 million 90-nucleotide pairedend reads were obtained and assembled into 69899 contigs with an average length of 503 nucleotides by using two short-read assemblers-Trinity and CAP3 (Huang and Madan, 1999; Grabherr et al., 2011). These unique sequences (i.e., ESTs) were further screened for the presence of microsatellites using MISA (http://pgrc.ipk-gatersleben.de/misa). A total of 3052 potential ESSRs were identified. The microsatellites were defined as di-, tri-, tetra-, penta-, and hexanucleotide SSRs with a minimum of four contiguous repeat units. The most abundant repeat type was trinucleotide (47.8%, 1460), followed by dinucleotide (38.7%, 1182), tetranucleotide (8.1%, 247), pentanucleotide (3.7%, 114), and hexanucleotide (1.6%, 49) repeat units. Primer3 software (Rozen and Skaletsky, 2000) was used to design 50 primer pairs with an expected product size ranging from 100 to 300 bp. Sixty individuals of S. alterniflora representing five populations in China (Appendix 1) were used to evaluate the polymorphisms of the microsatellite loci.

Genomic DNA from each individual was extracted from silica gel-dried leaves using the cetyltrimethylammonium bromide (CTAB) method (Doyle, 1991). PCR amplifications were performed in a final volume of 20 μL , containing 2 μL 10× PCR buffer, 2 μL of 2 mM each dNTPs, 1.2 μL 25 mM MgCl₂, 1 µL 10 pM forward primer, 1 µL 10 pM reverse primer, 2 U Taq DNA polymerase (Sangon, Shanghai, China), and 10 ng of genomic DNA. The PCR reactions were conducted with the following conditions in a thermocycler (Bio-Rad Laboratories, Hercules, California, USA): initial denaturation at 94°C for 5 min, followed by 34 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 45 s, with a final extension cycle at 72°C for 10 min. PCR products were electrophoresed on 8% polyacrylamide denaturing gel and visualized by silver staining. The band size was estimated by comparison with a 20-bp DNA ladder (Fermentas, Vilnius, Lithuania). Twenty-six (52%) of the primer pairs failed to amplify products, two (4.0%) generated complex band patterns that were difficult to genotype, seven (14%) were monomorphic, and 15 (30%) displayed clear polymorphisms (Table 1). To determine the function of polymorphic SSR-associated unigenes, ESSRs were evaluated for connections with genes of known functions; those 22 sequences (including seven monomorphic and 15 polymorphic loci, respectively) were blasted against the GenBank nonredundant database using BLASTX (Altschul et al., 1997) with an E-value of 10⁻¹⁰.

Table 1. Characteristics of 15 polymorphic and seven monomorphic ESSRs developed in Spartina alterniflora.

ESSR locus		Primer sequences (5′–3′)	Repeat motif	Size (bp)	T _a (°C)	Location	A	PIC	GenBank accession no.	Putative function
SaESP01		TATCCCCAGACACCCACAGT CATTCTCTGGGTCTGCAACA	$(TC)_{10}$	268	60	3' UTR	6	0.70	JU981477	grancalcin
SaESP02	F:	GAAGAGACCGTTCAGGTTGG CCCGGCGACTAACTCTCAT	$(TGA)_6$	214	60	5' UTR	3	0.42	JU981475	cytochrome c
SaESP03	F:	CGTGCCGACCAAGTAAAGTT ACCGACAGCGTGTTCCTC	$(CTC)_6$	256	60	ORF	4	0.53	JU981468	AIR12 precursor
SaESP04		AGCGAAGGGAAGATCTCGAC GGAGGCCTTTTTAATAGCCG	(TC) ₉	155	60	5' UTR	3	_	JW662119	acyl-desaturase
SaESP05	F:	CTTGCAGCGGCTATCCTTAC ACGAGACCTTCGCTTTTGAA	$(GCG)_6$	245	60	ORF	1	_	JW662116	DNA binding protein
SaESP06		AACCTGAAGTGCGTAAGCGT CTTCCCCCAACACTTCGATA	$(AT)_9$	245	60	ORF	5	0.46	JU981466	large secreted protein, putative
SaESP07	F:	CCCAGCACCTCTGATTTGAT ATCCACCTCTACCATGCGTC	$(TTC)_6$	132	60	3' UTR	3	0.58	JU981470	bZIP transcription factor
SaESP08		TGCTAAGATTGGAGCAGGGT GCTTACATTACCGCCAAAGC	$(TAC)_6$	266	60	3' UTR	1	_	JW662120	serine acetyltransferase 3
SaESP09	F:	GACTTTACCGCGAAGAGCC AGGAAGCCCAAAACACACAC	(TTC) ₇	192	60	5′ UTR	3	0.43	JU981464	mitogen-activated protein kinase kinase kinase 2–like
SaESP10	F:	CGAAAGGTTAAGCCAATCCA ACGAAAGTTGCGGGTACAAC	(CT) ₉	211	60	5' UTR	8	0.82	JU981473	hypothetical protein
SaESP11	F:	ACAAACTCGGCCTCCTCTT ATAAGTACCCGCCCTTGTCC	$(CT)_8$	171	60	5' UTR	3	_	JW662118	CBL-interacting protein kinase 1
SaESP12	F:	GGAGCAACAAAGACAGAGCC CGACTCGTGGTTGGTGAAG	$(CAC)_6$	215	60	ORF	1	_	JW662115	hypothetical protein
SaESP13	F:	CGATCCACTGGTACTGGGAC GGCTGCCATTATCGATTGTT	(TGCC) ₅	196	60	3' UTR	2	0.37	JU981471	ribokinase
SaESP14	F: R:	TCGTCACGTTGACTTGTGGT TGCTGCTTCCCTTTGATCTT	$(GA)_8$	249	60	3' UTR	4	0.62	JU981469	hypothetical protein
SaESP17	F: R:	TGCTTCATGCGTTGATTAGC TGAGATGAAGCCTGTGGAGA	(CA) ₉	150	60	3' UTR	5	0.58	JU981465	glycosyltransferase
SaESP18	F: R:	GCCACAACAAGAGTTGGGTT GCTGGTCCAAAGAAATCAGA	$(AAT)_6$	171	60	3' UTR	4	0.45	JU981474	transcription factor
SaESP19		GCGCCATTACCACAGAGG ATACGATCTGCCCTGTTTCG	$(CT)_7$	165	60	5' UTR	5	0.63	JU981467	choline/ethanolamine kinase
SaESP20		TGTAGCTGTTAGCATTGGCG AGGACCAGCAGAGGACAGAG	$(AG)_{10}$	170	60	3' UTR	3	0.54	JU981476	transcription factor
SaESP21		ATACCGCAACGAAAGCAAAG CTACTGCACCGACAAGTGGA	$(TTC)_6$	205	60	3' UTR	1	_	JW662114	xyloglucan xyloglucosyl transferase
SaESP22	F:	CCAGCGTCTCCTCTACAACC CAGGAAACAAACGGACATGA	$(TTC)_6$	277	60	3' UTR	1	_	JW662117	hypothetical protein
SaESP23		ATCCGTGCGTCTCTGTCTCT CCACCATGATGCATAACAGC	(GTCA) ₅	255	60	3' UTR	2	0.24	JU981478	cyclophilin
SaESP24	F:	ACCCTGCTAGATATGCACGC TTGTCGAAGGAGTAGGAGGC	$(CCT)_6$	263	60	ORF	2	0.37	JU981472	hypothetical protein

Note: A = number of alleles detected; PIC = polymorphism information content; $T_a =$ optimal annealing temperature.

All of the sequences showed significant similarities to known genes (Table 1). The allele number (A) and polymorphism information content (PIC) were calculated for each of the loci using a Web-based calculator (http://www.genomics .liv.ac.uk/animal/pic.html). The number of alleles per polymorphic locus ranged from two to eight, with an average of 3.80 alleles per polymorphic locus. The number of alleles per individual ranged from one to six, which was consistent with the hexaploidy of S. alterniflora. Seven (46.67%) of 15 polymorphic loci showed the disomic pattern with a maximum of two alleles per individual. These 15 polymorphic microsatellite loci are further characterized in Tables 2 and 3. The expected heterozygosity (H_e) and observed heterozygosity (H_0) for each disomic locus were calculated using POPGENE (version 1.32; Yeh and Boyle, 1997). The Shannon index for each nondisomic locus was calculated using POLYSAT (version 1.2-1; Clark and Jasieniuk, 2011). The H_e for those loci was also calculated using the Web-based calculator (http://www.genomics.liv.ac.uk/animal/pic.html), assuming Hardy-Weinberg equilibrium (HWE). In general, S. alterniflora showed a moderate level of genetic polymorphisms in China. The average H_0 ranged from 0.21 to 0.51, and the H_e ranged from 0.27 to 0.46 based on seven disomic loci. The average Shannon index (I) ranged from 0.26 to 0.94

in eight nondisomic loci. Five disomic loci (including SaESP06 in all five populations; SaESP09 in the Fujian, Shanghai, and Jiangsu populations; SaESP13 in the Taiwan and Hong Kong populations; SaESP18 in the Taiwan population; and SaESP19 in the Fujian population) deviated significantly from HWE (P < 0.05). It is likely that the observed departures from HWE are due to the presence of null alleles or a result of mixed reproductive modes (selfing and outcrossing) in S. alterniflora. The monomorphism at some loci observed for some populations may also reflect nonequilibrium population dynamics resulting from its recent introduction and spread in China (Tables 2 and 3).

CONCLUSIONS

In this study, we report the development and characterization of a set of ESSRs, which was derived from a large-scale transcriptome sequencing of *S. alterniflora* using the Illumina Genome Analyzer II system. Fifteen polymorphic and seven

http://www.bioone.org/loi/apps 2 of 3

TABLE 2. Characterization of seven disomic polymorphic microsatellite loci in Spartina alterniflora.

	Fujian (<i>N</i> = 12)			Taiwan $(N = 12)$			Shanghai (N = 12)			Jiangsu (N = 12)			Hong Kong $(N = 12)$		
Disomic locus	Ā	$H_{\rm o}$	H_{e}	Ā	H_{o}	H_{e}	\overline{A}	$H_{\rm o}$	$H_{\rm e}$	\overline{A}	H_{o}	H_{e}	Ā	$H_{\rm o}$	$H_{\rm e}$
SaESP06	4	1.0000+	0.7536	2	1.0000+	0.5217	4	1.0000+	0.6014	2	1.0000+	0.5217	2	1.0000+	0.5217
SaESP09	2	0.1667*	0.5217	2	0.5000	0.3913	2	0.0000*	0.2899	3	0.1667*	0.4203	1	0.0000	0.0000
SaESP13	2	0.7500	0.5181	2	0.0000*	0.4638	2	0.3333	0.5072	2	0.6667	0.5072	1	0.1667*	0.4638
SaESP18	3	0.3333	0.3007	2	0.0000*	0.5072	2	0.0833	0.0833	2	0.2500	0.2283	1	0.4167	0.5181
SaESP19	3	0.0833*	0.3587	1	0.0000	0.0000	4	0.5833	0.4855	4	0.8333	0.7065	1	0.1667	0.1594
SaESP23	2	0.1667	0.1594	1	0.0000	0.0000	2	0.5833	0.4312	2	0.2500	0.4312	1	0.0000	0.0000
SaESP24	2	0.5000	0.3913	1	0.0000	0.0000	2	0.3636	0.4156	2	0.4167	0.4312	1	0.7273	0.5195

Note: A = number of alleles; $H_e =$ expected heterozygosity; $H_o =$ observed heterozygosity.

Table 3. Characterization of eight nondisomic polymorphic microsatellite loci in Spartina alterniflora.

	Fujian $(N = 12)$			Taiwan $(N = 12)$			Shanghai ($N = 12$)			Jiangsu ($N = 12$)			Hong Kong $(N = 12)$		
Nondisomic locus	Ā	I	$H_{\rm e}$	\overline{A}	I	H_{e}	Ā	I	$H_{\rm e}$	\overline{A}	I	H_{e}	\overline{A}	I	H_{e}
SaESP01	6	0.5868	0.7140	3	0.0000	0.0000	6	0.5623	0.7733	6	0.5661	0.7285	3	0.0000	0.0000
SaESP02	3	0.8676	0.5694	2	0.0000	0.0000	2	0.5623	0.0000	3	0.9596	0.5952	2	0.0000	0.0000
SaESP03	3	0.8240	0.6145	4	1.1187	0.6076	4	0.8370	0.5826	3	0.5661	0.4545	3	0.8240	0.5947
SaESP07	3	0.2868	0.6661	3	0.6365	0.6531	3	0.6931	0.6250	3	0.6792	0.6420	3	0.6792	0.6420
SaESP10	6	0.8676	0.6304	3	0.0000	0.0000	8	1.4735	0.8247	7	0.8877	0.8328	6	0.5623	0.3822
SaESP14	3	0.5623	0.0988	2	0.0000	0.0000	4	1.1988	0.6973	4	1.5171	0.6811	4	0.8676	0.6990
SaESP17	3	1.0114	0.0000	2	0.0000	0.0000	5	1.3144	0.6961	5	1.4241	0.7267	2	0.0000	0.0000
SaESP20	3	1.1269	0.6454	3	0.2868	0.5406	3	0.8877	0.5261	2	0.4506	0.0000	2	0.0000	0.0000

Note: A = number of alleles; $H_e =$ expected heterozygosity; I = Shannon index.

monomorphic microsatellite markers were identified. Seven of those polymorphic loci display disomic inheritance. These newly developed ESSRs should be valuable for population genetic studies of this invasive species, and they can be used as new tools to trace its invasion history in China.

LITERATURE CITED

Altschul, S. F., T. L. Maddens, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Research* 25: 3389–3402.

CLARK, L. V., AND M. JASIENIUK. 2011. POLYSAT: An R package for polyploidy microsatellite analysis. *Molecular Ecology Resources* 11: 562–566.

Daehler, C. C., and D. R. Strong. 1996. Status, prediction and prevention of introduced cordgrass *Spartina* spp. invasion in Pacific estuaries, USA. *Biological Conservation* 78: 51–58.

APPENDIX 1. Voucher information for five populations of *S. alterniflora* used in this study. All vouchers are deposited at the Herbarium of National Sun Yat-Sen University.

Voucher no.	Collection locality	Geographic coordinates
Shi 091105	Fuzhou, Fujian, China	26°01′04″N, 119°37′19″E
Xia 110401	Mipu, Hong Kong, China	22°29′45″N, 114°02′47″E
Xia 110411	Nantong, Jiangsu, China	32°33′96″N, 121°01′67″E
Xia 110415	Chongming, Shanghai, China	31°36′21″N, 121°49′85″E
Shi 101015	Taibei, Taiwan, China	25°07′34″N, 121°27′30″E

DOYLE, J. J. 1991. DNA protocols for plants—CTAB total DNA isolation. *In* G. M. Hewitt and A. Johnston [eds.], Molecular techniques in taxonomy, 283–293. Springer-Verlag, Berlin, Germany.

ELLIS, J. R., AND J. M. BURKE. 2007. EST-SSRs as a resource for population genetic analyses. *Heredity* 99: 125–132.

GRABHERR, M. G., B. J. HAAS, M. YASSOUR, J. Z. LEVIN, D. A. THOMPSON, I. AMIT, X. ADICONIS, ET AL. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature Biotechnology* 29: 644–652.

HUANG, X. Q., AND A. MADAN. 1999. CAP3: A DNA sequence assembly program. *Genome Research* 9: 868–877.

ROZEN, S., AND H. SKALETSKY. 2000. Primer3 on the WWW for general users and for biologist programmers. *Methods in Molecular Biology* (*Clifton, N.J.*) 132: 365–386.

YEH, F. C., AND T. J. B. BOYLE. 1997. Population genetic analysis of codominant and dominant markers and quantitative traits. *Belgian Journal of Botany* 129: 157.

ZHI, Y. B., H. L. LI, S. Q. AN, L. ZHAO, C. F. ZHOU, AND Z. DENG. 2007. Interspecific competition: *Spartina alterniflora* is replacing *Spartina anglica* in coastal China. *Estuarine, Coastal and Shelf Science* 74: 437–448.

http://www.bioone.org/loi/apps 3 of 3

^{*} Heterozygote deficiency (P < 0.05).

 $^{^{+}}$ Heterozygote excess (P < 0.05).