

Isolation of Nuclear Microsatellites in the African Timber Tree Lophira alata (Ochnaceae) and Cross-Amplification in L. lanceolata

Authors: Piñeiro, Rosalía, Staquet, Adrien, and Hardy, Olivier J.

Source: Applications in Plant Sciences, 3(10)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1500056

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

PRIMER NOTE

ISOLATION OF NUCLEAR MICROSATELLITES IN THE AFRICAN TIMBER TREE *LOPHIRA ALATA* **(OCHNACEAE) AND CROSS-AMPLIFICATION IN** *L. LANCEOLATA*¹

ROSALÍA PIÑEIRO^{2,3}, ADRIEN STAQUET², AND OLIVIER J. HARDY²

2 Evolutionary Biology and Ecology Unit, CP 120/12, Faculté des Sciences, Université Libre de Bruxelles, Av. F. D. Roosevelt 50, B-1050 Brussels, Belgium

- *Premise of the study:* Microsatellite markers were isolated in the rainforest tree *Lophira alata* (Ochnaceae), an important timber tree from Central Africa, and cross-amplified on its savannah counterpart, *L. lanceolata*.
- *Methods and Results:* From a microsatellite-enriched library sequenced on a 454 GS FLX platform, 13 primer combinations were identified. Amplification was optimized in two multiplex reactions. The primers amplified di- and trinucelotide repeats, with two to seven alleles per locus. Eleven primers also amplified in *L. lanceolata*.
- *Conclusions:* Microsatellite primers developed for the genus *Lophira* displayed sufficient variation to investigate hybridization between congeneric species in the rainforest-savannah transition.

 Key words: *Lophira* ; next-generation sequencing; nSSR; Ochnaceae; tropical rainforests; universal primers.

Lophira Banks ex C. F. Gaertn. (Ochnaceae) is a genus of tropical trees endemic to Central and West Africa. Taxonomic treatments recognize two closely related species with similar morphology but well-differentiated habitats: a rainforest species, *L. alata* Banks ex C. F. Gaertn., and a savannah species, *L. lanceolata* Tiegh. ex Keay (Hutchinson and Dalziel, 1954 ; Aubreville, 1959; Bamps, 1970). The rainforest congener, *L*. *alata* , is a timber tree (azobé) of high economic value in Central Africa (Biwolé et al., 2012; Engone Obiang et al., 2012). Its timber is used for outdoor constructions such as harbors, hydraulic infrastructure, railways, and bridges (Palla et al., 2002). Despite its abundance in Cameroon, it is classified as a vulnerable species in the red list of the International Union for Conservation of Nature (IUCN, 2014) due to the massive logging pressure that currently affects its natural populations. In the contact zone between rainforest and savannah vegetation, the two species can be found in sympatry, and it has been hypothesized that hybridization may be occurring between

1 Manuscript received 8 May 2015; revision accepted 8 July 2015.

This work was supported by the Fonds de la Recherche Scientifique (FNRS; grants T0163.13 and 2.4577.10). R.P. was a postdoctoral researcher funded by Fonds de la Recherche Fondamentale Collective (FRFC 2.4577.10). A.S. was a Master's of Science student of the program Écologie des Forêts Tropicales, Université des Antilles et de La Guyane. O.J.H. is Senior Research Associate of the FNRS. We acknowledge the R&D budget of Genoscreen (Lille, France), Thibaut Malausa for assistance generating the genomic library (project EcoMicro, AIP BioRessources grant, Institut National de la Recherche Agronomique [INRA]), and Achilles Biwolé for fieldwork assistance.

³Author for correspondence: rosalia.pineiro@gmail.com. Current address: Evolutionary Genomics, Centre for Geogenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark

doi:10.3732/apps.1500056

them. In this study, we provide and characterize the first set of microsatellites for *L. alata* and test cross-amplification in two populations of *L. lanceolata* .

METHODS AND RESULTS

 A microsatellite-enriched library was generated by Genoscreen genomic platform (Lille, France) for one sample of *L. alata* from central Gabon (OH2473; Appendix 1) pooled with DNA of three other species, following the methods of Malausa et al. (2011) and Micheneau et al. (2011) . One milligram of genomic DNA was digested with *RsaI*, ligated to adapters, and amplified. PCR products were enriched with streptavidin-coated magnetic beads and 3'-biotinylated $(AG)_{10}$, $(AC)_{10}$, $(AAC)_{8}$, $(ACG)_{8}$, $(AGC)_{8}$, $(AGS)_{8}$, $(ACAT)_{6}$, $(ATCT)₆$ and subsequently amplified.

 A total of 14,207 reads were generated on a 454 GS FLX sequencer (454 Life Sciences, a Roche Company, Branford, Connecticut, USA). Using QDD (Méglecz et al., 2010), the Genoscreen genomic platform identified 1505 loci containing microsatellite motifs. Subsequently, primer sets were designed on 376 of the loci (multiple primer pairs per locus up to a total of 2615) giving 80–500-bp PCR products, with more than five repeats and with 50–64°C annealing temperature. Sixty-eight primer combinations, corresponding to loci with the longest di-, tri-, and tetranucleotide repeats and with a minimum distance of 10 bp from the microsatellite, were selected. The amplification of the 68 primer pairs was tested on seven geographically separated individuals of *L. alata*. Fluorescent labeling of primers was performed using three primers per locus: a reverse primer, a forward primer with a universal linker sequence $(Q1, Q2, Q3, \text{ or } Q4)$ at the 5' end, and a third primer consisting of the same universal sequence Q1, Q2, Q3, or Q4, labeled with 6-FAM, NED, VIC, or PET, respectively (Schuelke, 2000; Micheneau et al., 2011). PCR amplifications were performed in $1.5 \mu L$ buffer (10 \times), 0.6 μL MgCl₂ (25 mM), 0.45 μL dNPTs (10 mM each), forward primer at 0.07 μM, dye-labeled and reverse primers at 0.2 μM, 0.08 μL *Taq* polymerase (TopTaq DNA Polymerase, 5 U/μL [QIAGEN, Valencia, California, USA]), $1.5 \mu L$ of template DNA (of ca. 10–50 ng/ μ L), and H₂O up to a final volume of 15 μL. Amplifications were performed as follows: 94°C (4 min); 25 cycles of $94^{\circ}C$ (30 s), $55^{\circ}C$ (45 s), $72^{\circ}C$ (1 min); followed by 10 cycles each of 94 °C (30 s), 53 °C (45 s), 72 °C (45 s); and a final extension

Applications in Plant Sciences 2015 3(10): 1500056; http://www.bioone.org/loi/apps © 2015 Piñeiro et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).

at 72 $^{\circ}$ C for 10 min. PCR products (0.8 µL) were separated on an ABI 3730 sequencer (Applied Biosystems, Lennik, Belgium) with 12 μL of HiDi and 0.3 μL of GeneScan 500 LIZ Size Standard (Applied Biosystems). Thirteen primer combinations exhibiting robust amplification, no stutter peaks, and polymorphism at the intraspecific level were selected (Table 1).

 Multiplex PCR containing six (LML11) and seven (LMK13) microsatellites were set up, taking care to avoid complementary primers and markers with identical dye and amplicon size in the same multiplex with the help of Multiplex Manager (Holleley and Geerts, 2009). Fluorescent labeling of primers was performed using three primers per locus: a reverse primer, a forward primer with one universal sequence $(Q1, Q2, Q3)$ or $Q4$) at the 5' end, and a third primer consisting of the same universal sequence Q1, Q2, Q3, or O4, labeled with 6-FAM, NED, VIC, or PET, respectively (Schuelke, 2000; Micheneau et al., 2011). Type-it Microsatellite PCR Kit (QIAGEN) was used for amplification in a final volume of $14.5 \mu L$ containing: 1 μL DNA (approx. 5–20 ng), 7.5 μL Type-it Multiplex Mix, 0.1 μL of forward primers (final concentration of 0.07 μ M), 0.15 μ L of the reverse primers and labeled primers Q1, Q2, Q3, and Q4 (final concentration of 0.1 μ M for each), and H₂O. The PCR profile was: 95° C (5 min); followed by 20 cycles of 95° C (30 s), 57° C (180 s) for LMK13 or 60 $^{\circ}$ C (90 s) for LML11, 72 $^{\circ}$ C (30 s); followed by eight cycles of $94^{\circ}C$ (30 s), $53^{\circ}C$ (45 s), $72^{\circ}C$ (45 s); and a final extension at 60° C (30 min). PCR products were run on an ABI 3730 (Applied Biosystems) with 12 μL of HiDi and 0.3 μL of GeneScan 500 LIZ Size Standard (Applied Biosystems). The resulting electropherograms were automatically scored with GeneMapper 3.7 (Applied Biosystems) and manually corrected. Individual genotypes exhibited one or two alleles per microsatellite locus, as expected for diploid organisms.

To characterize the 13 microsatellite loci (Table 2), 33 individuals from a *L. alata* population in northwestern Cameroon (Pallisco) were genotyped. Allele sizes, number of alleles per locus, expected (H_e) and observed (H_o) heterozygosity, and inbreeding coefficient (F_{IS}) were estimated with SPAGeDi 1.4 (Hardy and Vekemans, 2002). Linkage disequilibrium (LD) between each pair of loci was tested with GENEPOP 4.1.4 (Raymond and Rousset, 1995). Deviation from Hardy–Weinberg equilibrium (HWE) was tested for each locus using a χ^2 test with GENEPOP, and permutation tests (999 permutations of alleles among individuals) were conducted with SPAGeDI. Transferability of the isolated primers to the savannah congener was tested in 26 individuals from two Cameroonian populations of *L. lanceolata* (Yong and Bango). The number of private alleles was calculated for each species.

In the *L. alata* population, all 13 microsatellite loci were polymorphic (Table 2), with the number of alleles per locus ranging from two to seven. H_e varied between 0.24 and 0.75, and *F*_{IS} between −0.14 and 0.85. Three loci (P36, P44, P47) significantly deviated from HWE ($P < 0.01$ in both χ^2 and permutation tests) due to homozygosity excess (Table 2). Significant LD ($P < 0.01$) was found between loci P18 and P34. LD at $P < 0.05$ was detected between four pairs of loci (P62 and P40, P62 and P51, P18 and P31, and P51 and P31). Eleven microsatellite markers exhibited robust amplification in the two populations of *L. lanceolata* studied (Table 2), where one to eight alleles per locus were retrieved. All loci were polymorphic between the two *L. lanceolata* populations. P24 was monomorphic in the Bango population, whereas P12 and P40 were monomorphic in the Yong population. All loci except for three (P53, P34, and P47) exhibited private alleles for *L. alata*, whereas all but one (P24) exhibited specific alleles for *L. lanceolata*.

CONCLUSIONS

The 13 nuclear microsatellite loci optimized showed sufficient levels of variation to estimate genetic diversity levels in *L. alata* and *L. lanceolata* . These markers will be an important tool to assess how the Pleistocene climatic oscillations have shaped the genetic structure of the two species in Central African rainforests. In addition, the finding of species-specific alleles may help detect ongoing interspecific gene flow in the rainforest–savannah contact zone, where the two species can be found in sympatry.

Note: T_a = annealing temperature.

 P Fluorescent label on forward primer. Q1 = TGTAAAACGACGGCCAGT (Schuelke, 2000), Q2 = TAGGAGTGCAGCAAGCAT, Q3 = CACTGC-TTAGAGCGATGC, Q4 = CTAGTTATTGCTCAGCGGT (Q2–Q4, after Culley et al., 2008).

http://www.bioone.org/loi/apps

http://www.bioone.org/loi/apps 3 of 4

LITERATURE CITED

- AUBREVILLE, A. 1959. La flore forestière de la Côte d'Ivoire, 2nd éd. Centre Technique Forestier Tropical, Nogent-sur-Marne, France.
- BAMPS, P. 1970. Répartition géographique du genre *Lophira* Banks ex Gaertn. (Ochnaceae). *Bulletin du Jardin botanique national de Belgique* 40(4): 291-294.
- BIWOLÉ, A., N. BOURLAND, K. DAÏNOU, AND J.-L. DOUCET. 2012. Définition du profil écologique de l'azobé, *Lophira alata*, une espèce ligneuse africaine de grande importance: Synthèse bibliographique et perspectives pour des recherches futures. *Biotechnologie, Agronomie, Société* et Environnement 12: 213-228.
- CULLEY, T. M., S. G. WELLER, A. K. SAKAI, AND K. A. PUTNAM. 2008. Characterization of microsatellite loci in the Hawaiian endemic shrub *Schiedea adamantis* (Caryophyllaceae) and amplification in related species and genera. *Molecular Ecology Resources* 8: 1081-1084.
- ENGONE OBIANG, N. L., A. NGOMANDA, L. J. T. WHITE, J. KATHRYN, É. CHÉZEAUX, AND N. PICARD. 2012. A growth model for azobé, *Lophira alata* , in Gabon. *Bois et Forêts des Tropiques* 314 : 65 – 72 .
- HARDY, O. J., AND X. VEKEMANS. 2002. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. *Molecular Ecology Notes* 2: 618–620.
- HOLLELEY, C. E., AND P. G. GEERTS. 2009. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. *BioTechniques* 46: 511-517.
- HUTCHINSON, J., AND J. M. DALZIEL. 1954. Flora of West Tropical Africa. Crown Agents, London, United Kingdom.
- IUCN. 2014. The IUCN Red List of Threatened Species. Version 2014.3. Website www.iucnredlist.org [accessed 25 September 2015].
- MALAUSA, T., A. GILLES, E. MEGLÉCZ, H. BLANQUART, S. DUTHOY, C. COSTEDOAT, V. DUBUT, ET AL. 2011. High-throughput microsatellite isolation through 454 GS-FLX titanium pyrosequencing of enriched DNA libraries. *Molecular Ecology Resources* 11: 638–644.
- MÉGLECZ, E., C. COSTEDOAT, V. DUBUT, A. GILLES, T. MALAUSA, N. PECH, AND J. F. MARTIN. 2010. QDD: A user-friendly program to select microsatellite markers and design primers from large sequencing projects. *Bioinformatics (Oxford, England)* 26: 403-404.
- MICHENEAU, C., G. DAUBY, N. BOURLAND, J.-L. DOUCET, AND O. J. HARDY. 2011 . Development and characterization of microsatellite loci in *Pericopsis elata* (Fabaceae) using a cost-efficient approach. *American* Journal of Botany 98: e268-e270.
- PALLA, F., D. LOUPPE, AND C. DOUMENGE. 2002. Azobé. Série Forafri no. 33, CIRAD-Forêt, Montpellier, France.
- RAYMOND, M., AND F. ROUSSET. 1995. GENEPOP version 1.2: Population genetics software for exact tests and ecumenicism. *Journal of Heredity* $86 \cdot 248 - 249$
- SCHUELKE, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233-234.

Downloaded From: https://bioone.org/journals/Applications-in-Plant-Sciences on 03 Jan 2025 Terms of Use: https://bioone.org/terms-of-use

Applications in Plant Sciences 2015 3(10): 1500056 Piñeiro et al. *-- Lophira* microsatellites doi:10.3732/apps.1500056

^a All collections are located in Cameroon except for OH2473 from central Gabon.

b Collection date (day/month/year).

c Seedling grown by Precious Woods Gabon, Compagnie Equatoriale des Bois S.A. The geographical coordinates correspond to the mother plant and are approximate.