

Development and Characterization of EST-SSR Markers for Catalpa bungei (Bignoniaceae)

Authors: Wang, Peng, Ma, Yuzhu, Ma, Lingling, Li, Ya, Wang, Shu'an, et al.

Source: Applications in Plant Sciences, 4(4)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1500117

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

PRIMER NOTE

DEVELOPMENT AND CHARACTERIZATION OF EST-SSR MARKERS FOR CATALPA BUNGEI (BIGNONIACEAE)¹

PENG WANG², YUZHU MA², LINGLING MA², YA LI^{2,3}, SHU'AN WANG², LINFANG LI², RUTONG YANG², AND QING WANG²

²Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu Province, People's Republic of China

- *Premise of the study: Catalpa bungei* (Bignoniaceae) is a deciduous tree native to China. We developed microsatellite markers for *C. bungei* to investigate its population genetics.
- *Methods and Results:* One hundred seventy-seven expressed sequence tag (EST)–simple sequence repeat (SSR) primer pairs were isolated and characterized using next-generation sequencing. Thirty of these primer pairs were polymorphic loci in 52 individuals of *C. bungei*. The number of alleles ranged from two to 18 with observed and expected heterozygosity values of 0.05–1.00 and 0.18–0.95, respectively. The fixation index ranged from –1.00 to 1.00 with an average of 0.32. No linkage disequilibrium was detected in any pair of loci. All markers showed good amplification results in four species (*C. bungei*, *C. fargesii*, *C. duclouxii*, and *C. ovata*) except three loci.
- *Conclusions:* These polymorphic markers are expected to be helpful in further studies on the systematics and phylogeography of *C. bungei* and related species.

Key words: Bignoniaceae; *Catalpa bungei*; expressed sequence tags; population genetics; RNA-seq; simple sequence repeats (SSRs).

Catalpa Scop. (Bignoniaceae) comprises 11 species of trees, and five of the 11 species in the genus originated in China. Catalpa ovata G. Don is distributed in central and northern China, whereas C. bungei C. A. Mey. and C. fargesii Bureau are distributed in central to southwestern China; C. fargesii has a glabrous form, namely, C. duclouxii Dode (Gilmour, 1936). Catalpa tibetica Forrest is endemic to southwestern China and, like C. ovata, has creamy yellow flowers. Catalpa bungei is characterized as fast growing, having excellent wood qualities, and being highly adaptable in China (Shi et al., 2011). Due to these economic and ecological benefits, it has been introduced and cultivated in Shandong, Jiangsu, Henan, and Anhui provinces (Shi et al., 2011). Molecular genetic studies have been few in number (Li, 2008), and no simple sequence repeats (SSRs) have been reported. To optimize the conservation and utilization of C. bungei and related species, the development of expressed sequence tag (EST)-SSR markers is very useful for germplasm identification and research into the genetic diversity of C. bungei and related species.

Next-generation sequencing (NGS) technologies have emerged as powerful tools for high-throughput EST sequence determination (Clark et al., 2013). EST-SSRs derived from EST sequences are more convenient and can be isolated with higher

¹Manuscript received 19 October 2015; revision accepted 18 November 2015.

This work was supported by the Public Service Platform, Jiangsu Science and Technology Department (grant no. BM2012058), and the National Natural Science Foundation of China (grant no. 31200509).

³Author for correspondence: yalicnbg@icloud.com

doi:10.3732/apps.1500117

efficiency and at lower expense than genomic sequence SSRs (Wang et al., 2012). In this study, we identified 3999 SSR loci and characterized 30 polymorphic EST-SSR markers to facilitate our further investigations of systematics and population genetics in *C. bungei* and related species.

METHODS AND RESULTS

ESTs are an important source for the development of SSR markers. In this study, ESTs were isolated using a NGS approach. Total RNAs were extracted from the roots of one individual of C. bungei 'YU-1' using Trizol reagent according to the manufacturer's instructions (Invitrogen, Carlsbad, California, USA). Paired-end libraries with approximate average insert lengths of 200 bp were synthesized using a Genomic Sample Prep Kit (Illumina, San Diego, California, USA) according to the manufacturer's instructions. Libraries were sequenced (101-bp paired-end reads) on an Illumina HiSeq 2000 instrument by a customer sequencing service (Biomarker Technologies, Beijing, China). Raw reads were cleaned by removing adapter sequences, empty reads, and low-quality sequences. Clean reads were assembled into nonredundant transcripts using Trinity, which has been developed specifically for de novo assembly of transcriptomes using short reads (Grabherr et al., 2011). The clean sequence data has been deposited in the Short Read Archive database of the National Center for Biotechnology Information (NCBI; accession no. SRP059272). A total of 62,955 unigenes were obtained with an N50 length of 1417 bp. Potential SSR loci of these unigenes were detected using the MISA tool (Thiel et al., 2003; http://pgrc.ipk-gatersleben.de/misa). The parameters were as follows: minimum SSR motif length of 10 bp and repeat length of 10 for mononucleotides, six for dinucleotides, and five for tri-, tetra-, penta-, and hexanucleotides (Yang et al., 2014). A total of 3999 SSR loci were identified in 14,634 unigenes from the C. bungei transcriptome. Of these unigenes, 580 contained more than one SSR locus, and 484 SSR loci were present in compound formation. The combined set of all of the EST-SSR loci revealed that, on average, one EST-SSR was found for every 7.51 kb of sequence data. Within the identified EST-SSR loci, mono-, di-, tri-, tetra-, and pentanucleotide repeats had two, four, 10, 14, and two types, respectively. The most frequent repeat motifs were mononucleotide

Applications in Plant Sciences 2016 4(4): 1500117; http://www.bioone.org/loi/apps © 2016 Wang et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA). repeats (1957 [48.94%]), followed by dinucleotide (1164 [29.11%]), trinucleotide (834 [20.86%]), tetranucleotide (41 [1.02%]), and pentanucleotide repeats (3 [0.07%]) (Table 1). All of the dinucleotide and trinucleotide repeat motifs were further analyzed to determine their distribution. The most common dinucleotide motif was AG/CT (730 [62.71%]), and the rarest was CG/CG (5 [0.43%]) (Table 2). Among the trinucleotide repeats, AAG/CTT (243 [29.14%]) was the most common motif, followed by ATC/ATG (132 [15.83%]); ACT/AGT (9 [1.08%]) was the rarest motif (Table 2).

Subsequently, the mononucleotide repeats were discarded because it was difficult to distinguish genuine mononucleotide repeats from polyadenylation products and some were likely generated by base mismatching or sequencing errors. Primer pairs were designed using Primer3 (Rozen and Skaletsky, 1999). The major parameters for primer pair design were set as follows: primer length of 18–22 bases (optimal 20 bases), PCR product size of 100–500 bp (optimal 200 bp), GC content of 40–70% (optimal 50%), and annealing temperatures of 52–59°C (optimal 55°C). Based on these parameters, 177 primer pairs were designed and synthesized for polymorphism detection.

Genomic DNAs of all accessions were extracted from the leaves using a modified version of the cetyltrimethylammonium bromide (CTAB) method (Kabelka et al., 2002). Samples of C. bungei were collected from four populations: Luoning, Henan Province (population HN: 34°24′6″N, 111°42′42″E; n = 21); Chuxian, Anhui Province (population AH: $32^{\circ}50'54''N$, $117^{\circ}47'49''E$; n =11); Lianyungang, Jiangsu Province (population JS: 34°40'3"N, 119°19'60"E; n = 6); Qingzhou, Shandong Province (population SD: 36°46'15"N, 118°25'56"E; n = 14). Samples of three related species were collected from three populations: C. duclouxii in Kunming, Yunnan Province $(25^{\circ}02'32''N, 102^{\circ}38'46''E; n =$ 13); C. fargesii in Yishui, Shandong Province (35°48'38"N, 118°38'5"E; n = 15); and C. ovata in Yunxian, Hubei Province (32°51'33"N, 110°44'10"E; n = 12). Plants for all accessions were grown in the Catalpa germplasm repository at the Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, and vouchers are deposited at the Herbarium of the Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (NAS), Nanjing, China (Appendix 1). Approximately 10 g of young leaves were collected in the spring season. PCR amplification was carried out in 10-µL reaction mixtures containing 30 ng of template DNA, 1× PCR buffer (Mg²⁺ free), 2.0 mM MgCl₂, 0.2 mM dNTPs, 0.25 µM of each primer, and 1 unit Taq polymerase (TaKaRa Biotechnology Co., Dalian, China). Cycling was performed on a T100 Thermal Cycler (Bio-Rad, Marnes-la-Coquette, France). Amplification reactions were initiated with a pre-denaturing step (95°C for 5 min), followed by denaturing (95°C for 30 s), annealing (55°C for 45 s), extension (72°C for 60 s) for 32 cycles, and a final extension at 72°C for 8 min. Amplified PCR products were separated on 8% denaturing polyacrylamide gels using a vertical electrophoresis device. Detection of EST-SSR bands was performed using the silver staining method.

One hundred seventy-seven EST-SSR primer pairs were synthesized in this study. Fifty-five primer pairs were identified that yielded stable, clear, and repeatable amplicons in all accessions. The other primer pairs were unstable or gave no product. The 55 primers corresponded to 25 monomorphic loci (Appendix S1) and 30 polymorphic loci (Table 3). The polymorphic SSR loci were analyzed with POPGENE version 1.32 software (Yeh et al., 1999) for the number of alleles per locus (A), observed heterozygosity (H_0), expected heterozygosity (H_e) , and fixation index (F_{IS}) . The A values ranged from two to 18 with a mean of 6.78 (Table 4). The H_0 and H_e values were 0.05–1.00 and 0.18–0.95 with averages of 0.53 and 0.75, respectively. The F_{15} values ranged from -1.00to 1.00 with an average of 0.32. Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium using Bonferroni correction were tested for every locus. Less than half of the loci (12, six, one, and seven loci in populations HN, AH, JS, and SD, respectively) showed significant departure from HWE (P < 0.001). Significant linkage disequilibrium was not detected between any pair of loci (*P* < 0.001).

TABLE 1. EST-SSRs present in the Catalpa bungei transcriptome.

Repeat type	No. of motif types	No. of EST-SSRs	Proportion in all SSRs (%)
Mononucleotide	2	1957	48.937
Dinucleotide	4	1164	29.107
Trinucleotide	10	834	20.855
Tetranucleotide	14	41	1.025
Pentanucleotide	2	3	0.075
Total	32	3999	100

http://www.bioone.org/loi/apps

TABLE 2. Characteristics of the di- and trinucleotide repeat motifs in the *Catalpa bungei* transcriptome.

Repeat type	Repeat motif	Number	Proportion (%)
Dinucleotide	AC/GT	217	18.64
	AG/CT	730	62.71
	AT/AT	212	18.21
	CG/CG	5	0.43
Trinucleotide	AAC/GTT	33	3.96
	AAG/CTT	243	29.14
	AAT/ATT	63	7.55
	ACC/GGT	91	10.91
	ACG/CGT	11	1.32
	ACT/AGT	9	1.08
	AGC/CTG	91	10.91
	AGG/CCT	70	8.39
	ATC/ATG	132	15.83
	CCG/CGG	91	10.91

Cross-amplification of 30 polymorphic loci was tested in 61 individuals of four *Catalpa* species under the same PCR conditions used for *C. bungei*. All markers showed successful amplification results in more than half of the 61 individuals tested, with the exception of three loci (comp100847, comp111793, and comp114074) (Table 5).

To identify potential functions of the 30 polymorphic SSR-associated unigenes, the sequences were used for BLAST searches and annotation against the NCBI nonredundant protein (NR) database (http://www.ncbi.nlm.nih.gov/) using an *E*-value cut-off of 10⁻⁵. All sequences were found to have potential functions by BLASTX. These sequences showed significant homology to protein sequences from *Sesamum indicum* L., *Rehmannia glutinosa* (Gaertn.) Libosch. ex Fisch. & C. A. Mey., *Genlisea aurea* A. St.-Hil., and *Erythranthe guttata* (DC.) G. L. Nesom. The potential functions were mainly related to transcription factor, hormone metabolism, and carbon metabolism (Appendix S2).

CONCLUSIONS

In the present study, we have developed 30 novel EST-SSR polymorphic markers for *C. bungei*. These markers provide an efficient tool for investigating population genetic diversity in different environments and will facilitate studies on molecular breeding, genetic improvement, and conservation of *C. bungei* and related species.

LITERATURE CITED

- CLARK, S. M., V. VAITHEESWARAN, S. J. AMBROSE, R. W. PURVES, AND J. E. PAGE. 2013. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (*Humulus lupulus*). BMC Plant Biology 13: 12.
- GILMOUR, J. S. L. 1936. Catalpa fargesii forma duclouxii. Curtis's Botanical Magazine 159: tab. 9458.
- GRABHERR, M. G., B. J. HAAS, M. YASSOUR, J. Z. LEVIN, D. A. THOMPSON, I. AMIT, X. ADICONIS, ET AL. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature Biotechnology* 29: 644–652.
- KABELKA, E., B. FRANCHINO, AND D. M. FRANCIS. 2002. Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92: 504–510.
- LI, J. H. 2008. Phylogeny of *Catalpa* (Bignoniaceae) inferred from sequences of chloroplast *ndhF* and nuclear ribosomal DNA. *Journal of Systematics and Evolution* 46: 341–348.
- ROZEN, S., AND H. SKALETSKY. 1999. Primer3 on the WWW for general users and for biologist programmers. *In* S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

Applications in Plant Sciences 2016 4(4): 1500117 doi:10.3732/apps.1500117

TABLE 3.	Characteristics	of 30	polymorphic ES	ST-SSR	markers in	Catalpa	bungei. ^a
----------	-----------------	-------	----------------	--------	------------	---------	----------------------

Locus	Primer sequences $(5'-3')$	Repeat motif	Product size (bp)	GenBank accession no.
comp100219	F: CAGGGAGTTTTCCGATTCAA	(CAG) ₅	258	KT893751
100274	R: TTTGCCCGTATTTTCTCCAG	$(\mathbf{C} \mathbf{A})$	256	VT902752
comp100274	F: CGCTTTACCATTTGAAGGGA	$(GA)_6$	256	K1893752
comp100480	F. CGTGGATGAACACGAACAAC	(TCC)-	210	КТ893753
comp100400	R: CCTTTCCTTCTTCCACCTCC	(100)5	210	K1075755
comp100607	F: ACCGGAGCAAAACAAAAATG	(TCC) ₅	189	KT893754
*	R: AAAGCCCGTACTCTTGCTGA			
comp100745	F: GCAAAATCCGTTGTTTCGAT	(TG) ₈	278	KT893755
100017	R: GCAAGAGGCAAGACATAGCC		192	VT00275(
comp100817	F: AAAGCAGCACGAGACGAGAT	$(11G)_{6}$	185	K1893730
comp100847	F: CTGCCTCCTGCATTCTCTTC	(GGC) _c	186	КТ893757
comp100017	R: GTTCGGGATCGTCGTCTTTA	(000)3	100	1110/07/07
comp102534	F: AGAAAGCCCAATTGCAACAC	(ATC) ₅	215	KT893758
	R: ACAACCACTCAACTCTGGGG			
comp103435	F: CTTTCCCCCATTGTTTGTTG	$(TAT)_5$	149	KT893759
aamm 104527		$(C \land C)$	262	VT902760
comp104557	F: ACCGCTTGCATCTCTGATTT	$(GAG)_5$	205	K1895700
comp107379	F: GTACTGCACCCACCCTCCTA	(CAC) ₅	191	KT893761
	R: GGGGAAGAGGGTTGAAAGAG	())		
comp108461	F: CAAACGAATGTACGGAGGCT	$(GCG)_6$	168	KT893762
	R: GAGATTGAGGCAGAGGATGC			
comp108487	F: CAACAGCAATGAATGTTGGG	(ATG) ₅	141	KT893763
00mm100601	R: TCGTAGGCGGTCCATAACTC		155	VT902764
comp109001	R. GAACGTAGCGAGAAGAACCG	(A1)9	155	K1895704
comp109989	F: GCTTATGGGGGTCAAATCAA	(ATT) ₅	127	KT893765
1	R: GCATGAGAGGGAGACCAGAG	. ,,,		
comp110079	F: TGCAGAGTGGATCAAGCAAG	$(AT)_9$	215	KT893766
110526	R: CTACAAAACCCTGCGCGTAT		252	WE002767
comp110536	F: GCTCGCCTGTCAAGAAAATC	$(166)_{5}$	253	K1893/6/
comp110884	F: ATGACACCCATCTTCTTCGC	(GTC) _e	258	KT893768
comprised	R: GGAAGATGAGAGCAAGCCAG	(010)8	200	1110/07/00
comp111793	F: CGATTTTCCAGAGGGAATGA	(CGG) ₆	273	KT893769
	R: CTATGCTACTTCGCCGAACC			
comp112144	F: CCCTCTGTTCACTCCCGATA	$(AC)_9$	203	KT893770
comp112642		$(\mathbf{C}\mathbf{A})$	278	VT902771
comp112045	R: GCAGGCACAAAATCATGAGA	$(CA)_7$	278	K1095771
comp112777	F: CTTCTGGAATCCTCCCTTCC	$(TC)_7$	227	KT893772
1	R: GAATCGAAGGAGACTGCGAC	· //		
comp112944	F: AATGCTTATAATGCCAGCGG	$(CCT)_5$	115	KT893773
112007	R: GCCTCACAACAGCAAGTTCA		262	KT002774
comp112997		$(AGA)_5$	263	K1893774
comp113774	F: CCTGAAGCCTAATCTGCCTG	(CCG) ₅	251	КТ893775
compriserre	R: TGAAGTTGAAAATGGAGCCC	(000)3	201	1110/07/70
comp113869	F: TGGCGGCTCTCCATATTAAC	(TTC) ₅	113	KT893776
	R: ATGCAGGGCAGAGACAGAGT			
comp113985	F: CTTGGAGCGACGTTTCTTTC	$(CAT)_5$	176	KT893777
comp114074		$(\Lambda \mathbf{G})$	260	KT803778
Comp11+074	R: GCAACAGGCCAATACATCCT	$(\Lambda \mathbf{U})_{7}$	207	11073770
comp114135	F: CTGGCTTCCGAAATTGTGTT	(TGA) ₆	213	KT893779
-	R: TCATCATCCTGTGATGCGAT			
comp114163	F: CGCTCTCTTCAAGCTGCTCT	$(TC)_6$	103	KT893780
	R: GATGATGAATCCGAGGAGGA			

^aAnnealing temperature for all loci was 55°C.

SHI, X., Y. LI, R. T. YANG, Q. WANG, AND G. YAO. 2011. ISSR analysis of genetic diversity of *Catalpa bungei* C.A.Mey. germplasm resources in China. *Jiangsu Journal of Agricultural Sciences* 3: 32.

http://www.bioone.org/loi/apps

THIEL, T., W. MICHALEK, R. K. VARSHNEY, AND A. GRANER. 2003. Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (*Hordeum vulgare* L.). *Theoretical and Applied Genetics* 10: 411–422.

		Population F	IN (N = 21)			Population A	H(N = 11)			Population	(J = 0) = 0			Population S	SD (N = 14)	
Locus	A	$H_{ m o}$	$H_{\rm e}$	$F_{\rm IS}$	Α	$H_{ m o}$	$H_{\rm e}$	$F_{\rm IS}$	Α	$H_{ m o}$	$H_{ m e}$	$F_{\rm IS}$	Α	$H_{ m o}$	$H_{\rm e}$	$F_{\rm IS}$
comp100219	L	0.38*	0.82	0.52	9	0.45	0.79	0.40	5	0.17*	0.80	0.77	8	0.21*	0.87	0.74
comp100274	8	0.57	0.80	0.27	6	0.73	0.89	0.15	5	0.67	0.85	0.14	Ζ	0.36	0.85	0.57
comp100480	ŝ	0.33*	0.62	0.45	с	0.18^{*}	0.59	0.68	4	0.33	0.79	0.54	5	0.36	0.60	0.39
comp100607	6	0.43	0.79	0.44	6	0.45	0.87	0.45	9	0.17	0.86	0.79	13	0.64	0.90	0.26
comp100745	9	0.14	0.55	0.73	9	0.18	0.71	0.73	4	0.17	0.65	0.72	L	0.21^{*}	0.82	0.73
comp100817	б	0.67*	0.61	-0.12	ю	0.82	0.60	-0.42	0	1.00	0.55	-1.00	4	0.57*	0.73	0.19
comp100847	9	0.14^{*}	0.78	0.81	4	0.27*	0.58	0.50	4	0.67	0.77	0.06	9	0.21	0.62	0.64
comp102534	4	0.00*	0.47	1.00	5	0.27*	0.79	0.64	L	0.33	0.88	0.59	7	0.50	0.83	0.37
comp103435	L	0.05*	0.65	0.92	5	0.18	0.58	0.67	5	0.17	0.80	0.77	6	0.50	0.79	0.34
comp104537	5	0.29*	0.72	0.59	7	0.45	0.82	0.42	9	0.67	0.85	0.14	8	0.93	0.84	-0.14
comp107379	б	0.48*	0.65	0.25	4	0.73*	0.74	-0.02	5	0.83	0.83	-0.09	4	0.57*	0.71	0.16
comp108461	6	0.48	0.77	0.36	8	0.64	0.87	0.23	4	0.17	0.56	0.68	8	0.79	0.86	0.05
comp108487	18	0.76	0.94	0.17	10	0.36	0.91	0.58	9	0.33	0.82	0.56	14	0.64	0.92	0.28
comp109601	13	0.67	0.87	0.22	14	0.82	0.95	0.10	6	0.67	0.95	0.24	6	0.79	0.84	0.03
comp109989	6	0.90	0.82	-0.14	8	0.82	0.88	0.03	5	0.83	0.80	-0.13	13	0.93	0.93	-0.03
comp110079	L	0.29	0.70	0.58	8	0.45	0.84	0.43	4	0.17	0.56	0.68	6	0.29	0.74	0.60
comp110536	10	0.62^{*}	0.58	-0.09	8	0.55	0.75	0.23	L	0.74	0.78	0.46	10	0.79	0.84	0.23
comp110884	11	0.43	0.70	0.38	10	0.27*	0.85	0.33	9	0.78	0.85	0.13	13	0.64	0.82	0.46
comp111793	8	0.67	0.78	0.95	11	0.82	0.86	0.39	5	0.84	0.72	-0.36	14	0.64	0.58	-0.11
comp112144	6	0.57*	0.61	0.21	7	0.55	0.83	0.52	5	0.83	0.79	-0.28	8	0.36	0.86	0.79
comp112643	4	0.86	0.45	-0.32	9	0.88	0.82	-0.12	3	0.68	0.60	-0.08	9	0.79	0.79	0.03
comp112777	9	0.33*	0.69	0.45	5	0.57	0.18	-0.58	3	0.50	0.57	0.15	L	0.43	0.70	0.65
comp112944	5	0.86	0.62	0.33	9	0.73	0.75	0.34	4	0.71	0.75	0.14	ю	0.79	0.60	-0.32
comp112997	33	0.63	0.53	0.29	4	0.73	0.76	0.21	7	0.81	0.86	0.21	4	0.50	0.80	0.63
comp113774	9	0.35*	0.95	0.85	7	0.82	0.85	0.13	4	0.74	0.75	0.16	S	0.50	0.76	0.52
comp113869	6	0.68	0.71	0.49	9	0.55	0.78	0.37	L	0.78	0.88	0.23	8	0.07*	0.81	0.76
comp113985	5	0.35	0.52	0.62	ю	0.27*	0.71	0.79	4	0.76	0.81	0.27	9	0.43	0.68	0.38
comp114074	8	0.52	0.23	-0.25	S	0.36	0.83	0.64	5	0.51	0.83	0.43	7	0.21^{*}	0.83	0.89
comp114135	12	0.24	0.76	0.39	8	0.64	0.87	0.42	6	0.75	0.87	0.13	10	0.36	0.89	0.78
comp114163	L	0.80	0.71	-0.26	6	0.80	0.55	-0.55	9	0.88	0.91	0.24	9	0.21^{*}	0.81	0.69
Average	7.33	0.48	0.68	0.37	6.80	0.54	0.76	0.29	5.03	0.59	0.78	0.24	7.93	0.51	0.79	0.39
<i>Note: A</i> = nun ^a Locality info Province (34°40	rmation fu 3"N, 119°	eles; $F_{IS} = fi$ or populatio '19'60''E); S	xation indens: $HN = D = Qingz$	x ; $H_e = \exp (H_e)$ Luoning, He thou, Shande	ected heter enan Provin ong Provin	ozygosity; <i>H</i> nce (34°24'(ce (36°46'15	<i>H</i> _o = observe %"N, 111°42 %"N, 118°25	ed heterozy 2'42"E); AH (56"E).	gosity. H = Chuxi	an, Anhui P	rovince (32	2°50′54″N,	117°47′49′	"E); JS = Li	anyungang,	Jiangsu
* Designates s	ignificant	deviation fr	om Hardy-	-Weinberg e	quilibrium	genotypic p	roportions a	after sequer	ntial Bonfe	rroni correc	tion for mu	ltiple tests ((P < 0.01).			

http://www.bioone.org/loi/apps

DD- Noti Marg Marg Marg Marg Marg Marg Marg Marg	TABLE 5.	Cross	s-amp.	lificati	on res	ults fc	or the	30 poly	morpl	nic ES'	F-SSR	loci in	61 ind	ividual:	s of for	Ir Cata	dpa sp	ecies.												
	ID ^a N	[01 ^b]	M02	M03	M04	M05	M06	M07	M08	I 60M	M10 1	M11 N	112 M	[13 M]	4 M1.	5 M1(5 M17	7 M18	M19	M20	M21	M22 N	423 N	124 M	125 M	[26 M	27 M.	28 M2	M 63	8
Calculation 0 0 0 0 0 Calculation 0 0 0 0 0 0 Calculation 0 0 0 0 0 0 0 Calculation 0	CB001	1	1	1	0	0	1	0	0	0	1	0	-	1	1	1	0	0	0	1	1	1	1	1	_	1	1	1	1	
	CB002	1	-	-	0	-	1	0	0	0	1	0	1	1	0	1	0	0	1	1	1	1	-	1	-	1	1	1	1	
	CB003	_	-		0	0		0	0	0		1	1	1		- 1			0		1	1	-	1	_	1.	1	. 1	_	
	CB012				0,							0,		1 -					0 0					_ ,	0,	_ <		. 1		
	CB014																- C									0.				
	CB021																													
	CB032				. –	~ —		. –	. –		. –		. –	1				0	0		0	0				. –	. –	. –		
	CB033				. –						. –	. —	. –	1			0					0	. –	. –		. –				_
101039 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 <td>CB038</td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>, –</td> <td></td>	CB038	0				0		0		0		1	1	1	1		-	-	-		1			1			1		, –	
	CB039	1	-	-	-	-	-	-	0	0	-	-	-	1	-		0	0	-	-	-		-	-	-	1		-	1	
CB041 1 0 1 <td>CB040</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td>	CB040	1		1	1	1	1	1	1	0	1	1	1	1	1	1	-	0	1	1	0	1	1	1	-	1	1	1	1	
1 1	CB041	1		1	1	0	1	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	
CB043 C <td>CB042</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1 1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td></td>	CB042	1		1	1	1	1	0	1	0	1	1	1	1 1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	-	
CB0444 1 1 0 0 1 <td>CB043</td> <td>0</td> <td>1</td> <td></td> <td>1</td> <td>-</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1 (</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td></td>	CB043	0	1		1	-	1	0	1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1 (0	1	1	1	
CB048 1 1 0 <td>CB044</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td>	CB044	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	
Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio Calibrio	CB048		-		-	. <u> </u>	-	0		0	-	. <u> </u>		-	-	-	0	-	0	-	-	0			-	0	1	-	_	
CEN607 1 <td>CB060</td> <td></td> <td></td> <td></td> <td>. –</td> <td></td> <td></td> <td>- 1</td> <td></td> <td>0</td> <td>. –</td> <td>. –</td> <td>. –</td> <td>1</td> <td>. –</td> <td></td> <td>- 1</td> <td>0</td> <td>- 1</td> <td>. –</td> <td>. –</td> <td></td> <td></td> <td>. –</td> <td></td> <td>, –</td> <td>, 1</td> <td>. –</td> <td>. —</td> <td></td>	CB060				. –			- 1		0	. –	. –	. –	1	. –		- 1	0	- 1	. –	. –			. –		, –	, 1	. –	. —	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CB067	. –	. –		. –	·	. –	. –	. –		. –	. –	. –	, –	·					. –	. –	. –	. –	. –		. –		·	. –	
CODD03 C <td>CBOKO</td> <td></td>	CBOKO																													
CDDDD3 CDDD3 CDDD31 1 CDDD33 1 CDD033 1 CDD034 0 CDD035 1 CDD035 1 CDD035 1 CDD035 0 CDD035 1 CDD035 1 CDD035 1 CD035 1																														
CDD013 I <td>CD009</td> <td>0,</td> <td>_ ,</td> <td>_ ,</td> <td></td> <td>_ ,</td> <td>_ ,</td> <td>0,</td> <td>0,</td> <td>0 0</td> <td>_ ,</td> <td>_, ,</td> <td>_ ,</td> <td>- · ·</td> <td></td> <td></td> <td>0 0</td> <td>_ ,</td> <td>0,</td> <td>_ ,</td> <td>_ ,</td> <td>_ ,</td> <td>_,</td> <td>_ ,</td> <td>_, ,</td> <td>_ ,</td> <td></td> <td>_ ,</td> <td>- (</td> <td></td>	CD009	0,	_ ,	_ ,		_ ,	_ ,	0,	0,	0 0	_ ,	_, ,	_ ,	- · ·			0 0	_ ,	0,	_ ,	_ ,	_ ,	_,	_ ,	_, ,	_ ,		_ ,	- (
CD0034 1 <td>CD013</td> <td></td> <td></td> <td>_ ,</td> <td>0</td> <td>_ ,</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td> </td> <td>_ ·</td> <td>_ ,</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>_ ,</td> <td>_ ,</td> <td></td> <td></td> <td></td> <td></td> <td>_ ,</td> <td></td> <td>_</td>	CD013			_ ,	0	_ ,				0				 	_ ·	_ ,	0					_ ,	_ ,					_ ,		_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CD034	1	1	-	-		-	-		0	-	-	1	1	-	-	0	-	-	-	-	1	-	0	_	_	_	-	0	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CD050	0		1	0	0	0	0	0	0	1	0	1	1	1	-	-	0	0	-	0	0	1	1	1 (0	1	1	0	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CD053	-	-		1		0	0	0	0	1	0	1	1	1	0	1	0	1	1	1	0	-	1	1	0	1	1	0	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CD057	1	-	1	0	1	1	0	1	0	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	0	1	1	-	
CD073 1 1 0 <td>CD070</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>0</td> <td>1</td> <td>0</td> <td>-</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td></td>	CD070	1	-	-	-	-	-	0	1	0	-	0	1	1	1	1	0	0	0	1	1	1	-	1	-	1	1	1	-	
CD073 1 1 0 <td>CD073</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>-</td> <td>0</td> <td>_</td>	CD073	1		1	1	1	1	0	1	0	1	1	1	1	1	-	1	1	0	1	1	1	1	1	1	0	1	-	0	_
CD0097 0 <td>CD078</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td></td>	CD078	1	-	1	1	1	0	0	1	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	-	1	1	1	-	
CD0088 0 0 0 0 1 <td>CD097</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td></td>	CD097	0	0	0	0	0	1	0	1	0	1	1	1	1	1	1	0	1	0	-	1	1	1	-	0	0	1	1	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CD098	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	-	0	1	1	1	1	-	0	0	1	1	1	
CD101 1 0 0 1 <td>CD099</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>-</td> <td></td>	CD099	1	-	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CD101	1	1	1	0	0	1	1	-	1	1	1	1	1 1	1	-	1	-	0	1	1	-	1	-	0	0	1	1	1	
CF027 1 1 0 1 <td>CF024</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>0</td> <td>-</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td>1</td> <td></td>	CF024	1	1	1	1	-	1	0	-	1	1	0	1	1	1	1	1	0	0	1	1	1	1	1	-	1	-	-	1	
CF051 0 1 0 0 0 0 0 0 1 <td>CF027</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>-</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>-</td> <td>0</td> <td>_</td>	CF027	1	1	1	1	0	1	1	-	1	1	1	1	1	1	0	1	-	0	1	1	0	1	1	-	1	1	-	0	_
CF059 1 1 0 0 1 1 0 1 1 1 0 1 <td>CF051</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1 1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>_</td>	CF051	0	1	1	0	1	0	0	0	0	1	1	1	1 1	1	0	0	0	0	1	0	0	1	1	-	1	1	1	0	_
CF1052 1 <td>CF059</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>_</td>	CF059	1		1	1	1	0	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	1	0	1	1	0	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CF062	_	-	_	_	_	_	_	_	_	_	_	_	1	_	-	_	0	0	_	_	0	_	0	_	_	0	_	0	_
CF1066 1 1 0 0 0 1 <td>CF064</td> <td>1</td> <td>1</td> <td>1</td> <td>_</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>_</td> <td>-</td> <td>1</td> <td>1</td> <td>-</td> <td>_</td> <td>_</td> <td>-</td> <td>0</td> <td>_</td> <td>-</td> <td>_</td> <td>_</td> <td>1</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td>	CF064	1	1	1	_	-	-	0	0	0	_	-	1	1	-	_	_	-	0	_	-	_	_	1	_	_	_			
CF100 1 0 <td>CF066</td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>-</td> <td>0</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>-</td> <td>0</td> <td>0</td> <td>-</td> <td>-</td> <td>1</td> <td>-</td> <td>1</td> <td>_</td> <td>-</td> <td>-</td> <td>1</td> <td>0</td> <td>_</td>	CF066	-	1	-	-	-	0	0	-	0	-	0	1	1	-	1	-	0	0	-	-	1	-	1	_	-	-	1	0	_
CF102 1 1 0 <td>CF100</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>_</td>	CF100	1	1	1	0	0	1	1	-	1	1	1	1	1	1	1	1	-	0	1	1	1	1	-	0	0	1	1	0	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CF102	1	1	1	1	0	1	1	-	1	1	1	1	1	1	1	1	-	0	1	1	1	1	-	0	0	1	1	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CF103	1	1	1	1	-	1	1	1	1	1	1	1	1 1	1	-	1	1	0	1	1	0	1	-	0	0	1	1	1	
CF105 1 1 0 <td>CF104</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1 1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td></td>	CF104	1	1	1	1	0	1	1	1	1	1	1	1	1 1	1	1	1	0	0	1	1	1	1	-	0	0	1	1	1	
CF106 1 0 1 0 <td>CF105</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1 1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td></td>	CF105	1	1	1	0	1	0	1	1	1	1	1	1	1 1	0	0	0	0	0	0	1	0	1	0	0	0	1	1	1	
CF107 1 <td>CF106</td> <td>1</td> <td></td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>0</td> <td>0</td> <td>1</td> <td>-</td> <td>1</td> <td></td>	CF106	1		0	1	0	1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	-	0	0	1	-	1	
CF108 1 <td>CF107</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>0</td> <td>0</td> <td>-</td> <td>-</td> <td>1</td> <td></td>	CF107	1	1	1	1	0	1	1	-	1	1	1	1	1	1	0	1	1	0	1	1	1	1	-	0	0	-	-	1	
C0015 1 1 0 <td>CF108</td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>-</td> <td></td> <td>- 1</td> <td>1</td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>_</td>	CF108	1			-			0			-		- 1	1		0			0	-					0	0				_
C0019 1 <td>C0015</td> <td>_</td> <td>Т</td> <td>_</td> <td>_</td> <td>0</td> <td>0</td> <td>_</td> <td>0</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>1</td> <td>_</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>_</td> <td></td> <td>_</td>	C0015	_	Т	_	_	0	0	_	0	_	_	_	_	1	_	0	0	0	0	_	_	_	_	0	0	0		_		_
C0083 1	CO019	1					0						- 1	1				0	0	0				0	1	0		. 1	- '	
	C0083		_ ,	_ ,	_ ,	_ ,	0 0	0 0	_ ,		_ ,			 	- -		- -	0 0	- 0	- 0	- 0		_ ,	0 0		0				_
	CO092	. 0	- 0		1 0		0 0	0 0	1 0							- C		00	00	00	0 0	0 0			- 0					

Applications in Plant Sciences 2016 4(4): 1500117 doi:10.3732/apps.1500117

Пa	M01 ^b	M02	M03	M04	M05	M06	M07	M08	M09	M10	M11	M12 I	M13 1	M14 1	M15 1	M16 N	417 N	418 N	A19 N	420 N	121 M.	22 M2	3 M2	4 M2	5 M26	M27	M28	M29	M30
CO093	0	-		0	-		0	0	0	-	-	1	1	-	1	0	_	0	0	0	1		-	0	-	-	0	-	-
CO094	0	1	0	0	1	0	0	1	0	1	0	1	1	1	0	1	1	0	0	1	0	-	0	0	0	1	0	1	1
CO095	0	1	0	0	1	0	0	0	1	1	0	1	1	1	0	0	0	0	1	0	1 0	-	0	0	0	1	0	1	1
CO096	0	1	0	0	1	0	0	1	0	1	0	1	1	1	0	0	0	0	0	0	1 0	-	0	0	0	1	0	1	1
CO063	1	1	0	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	0	-	1	1	1	1	1	1	0
CO004	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1	1	1	0	0	1	0	1	1	1	0	1	0	1	0
CO037	0	1	0	-	-	-	0	1	0	1	1	1	1	-	1	1	-	1	0	1	1	1	1	-	1	1	0	-	0
Note:	1 = su	ccessfi	ul amp	lificati	ion; 0	= faile	ed amp	lificat	ion.																				
^a Acct	ssion 1	numbe	rs/sam	nple id.	entific.	ation	codes .	at the	Catalp	na gen	nplasn	1 repos	itory,	Institu	ute of I	Botany,	, Jiang	gsu Pro	ovince	and Cl	ninese .	Acader	ny of 3	Scienc	es. CB	= Catc	ulpa bu	ngei; (= D=
Catalpa	duclo	uxii; C	F = C	atalpa	i farge	sii; C	0 = C	atalpa	ovata	; M01	$= loc_1$	us com	1002 np 1002	19; N	102 = 100	locus c	compl	00274	; M03	= loci	us com	p10048	30; M(M = lc	cus co	mp100	607; N	105 =	ocus
comp16	0745;]	M06 =	locus	comp	10081	7; M0	7 = loc	or cor	mp100	847; N	408 =	locus c	somp1(02534	; M09	= locu:	s com	p1034.	35; M	l0 = lo	cus cor	np104;	537; M	[11 =]	ocus cc	mp107	'379; N	112 = 112	ocus
comp10	8461;]	M13 =	locus	comp	10848	7; M1,	4 = loc	or cor	mp109	601; N	415 =	locus c	somp1(99989;	; M16	= locut	s com	p1100	79; M	17 = 10	cus cor	np110;	536; M	[18 = 1]	ocus cc	mp11(1884; N	119 =	ocus

comp111793; M20 = locus comp112144; M21 = locus comp112643; M22 = locus comp112777; M23 = locus comp112944; M24 = locus comp112997; M25 = locus comp11374; M26 = locus comp113869; M27 = locus comp113985; M28 = locus comp114074; M29 = locus comp114135; M30 = locus comp114163.

Applications in Plant Sciences 2016 4(4): 1500117

doi:10.3732/apps.1500117

http://www.bioone.org/loi/apps

Continued

TABLE 5.

- WANG, L. H., Y. X. ZHANG, X. Q. QI, Y. GAO, AND X. R. ZHANG. 2012. Development and characterization of 59 polymorphic cDNA-SSR markers for the edible oil crop *Sesamum indicum* (Pedaliaceae). *American Journal of Botany* 99: e394–e398.
- YANG, T., J. JIANG, M. BURLYAEVA, J. HU, C. J. COYNE, S. KUMAR, R. REDDEN, ET AL. 2014. Large-scale microsatellite development in grasspea (*Lathyrus sativus* L.), an orphan legume of the arid areas. *BMC Plant Biology* 14: 65.
- YEH, F. C., R. C. YANG, AND T. BOYLE. 1999. POPGENE version 1.32: Microsoft Windows-based freeware for population genetic analysis, quick user guide. Center for International Forestry Research, University of Alberta, Edmonton, Alberta, Canada.

Species	Voucher specimen accession no. ^a	Collection locality ^b	Geographic coordinates	No. of individuals
C. bungei	CB-HN-2010-SX	Luoning, Henan Province	34°24′6″N, 111°42′42″E	21
C. bungei	CB-AH-2010-SX	Chuxian, Anhui Province	32°50'54"N, 117°47'49"E	11
C. bungei	CB-JS-2010-SX	Lianyungang, Jiangsu Province	34°40'3"N, 119°19'60"E	6
C. bungei	CB-SD-2010-SX	Qingzhou, Shandong Province	36°46'15"N, 118°25'56"E	14
C. duclouxii	CD-KM-2010-YG	Kunming, Yunnan Province	25°02'32"N, 102°38'46"E	13
C. fargesii	CF-YS-2010-YG	Yishui, Shandong Province	35°48'38"N, 118°38'5"E	15
C. ovata	CF-YX-2010-YG	Yunxian, Hubei Province	32°51′33″N, 110°44′10″E	12

Note: SX = Xin Shi, collector; YG = Gan Yao, collector. ^aVouchers deposited at the Herbarium of the Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (NAS), Nanjing, China. ^bLocality and Chinese province.