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Abstract
Lasting effects of a Cascadia earthquake in 1700 were documented during surveys of Chinookan tidelands near the mouth 
of the Columbia River between 1805 and 1868. The effects resemble estuarine consequences, near Anchorage, of the 1964 
Alaska earthquake: fatal drowning of subsided meadows and forests by post-earthquake tides, rebirth of marshes and forests 
through post-earthquake sedimentation, and uplift. Chinookan remains of killed forests were recorded by James Graham 
Cooper, John J. Lowell, and Cleveland Rockwell. Cooper, attached to a railroad survey and the Smithsonian Institution, 
wrote of redcedar stumps and trunks standing dead in tidal marshes of Shoalwater (now Willapa) Bay. Two such snags 
served as bearing trees for Lowell as he platted a Shoalwater Bay township under contract with the General Land Office. 
Rockwell, of the US Coast Survey, flecked landward edges of tidal flats west of Astoria with symbols that evoke remains 
of a bygone spruce forest. The Lewis and Clark Expedition, while in that area in 1805–1806, mapped and puzzled over 
tideland vegetation that post-1700 succession helps explain. 

Keywords: historical ecology, Sitka spruce, western redcedar

Introduction

The plate-tectonics revolution of the 1960s 
fostered modern views of Northwest earthquake 
and tsunami hazards. The Cascadia Subduction 
Zone, where an oceanic plate descends beneath 
the continental margin from southern British 
Columbia to northern California (Figure 1), 
is recognized today as a source of very large 
earthquakes and attending tsunamis (Thomp-
son 2011, Doughton 2013, Henderson 2014, 
Walton et al. 2021). Their geological traces cor-
respond to accounts of shaking and flooding that 
Native peoples experienced a few centuries ago  

(Ludwin et al. 2005, Thrush and Ludwin 2007). In 
that era, a Cascadia tsunami encountered remains 
of a Manila galleon that had been wrecked on 
the Oregon coast in 1693 or 1694 (La Follette 
et al. 2018), and a Pacific Ocean tsunami of 
remote origin caused documented flooding in 
Japan that dates a parent earthquake in Cascadia 
to 26 January 1700 (Satake et al. 1996, 2003; 
Atwater et al. 2015).

From this modern perspective, ecological 
effects of a 1700 Cascadia earthquake can be 
spotted in field notes, reports, and maps from 
nineteenth-century surveys of Chinookan tide-
lands of the Columbia River and Shoalwater 
Bay. The surveys encountered subfossil trees and 
vegetated wetlands that resemble Anchorage-area 
effects of the 1964 Alaska earthquake, and which 
can be ascribed today to land-level change and 
ecological succession (Figure 2).
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79Earthquake Effects

Earthquake Cycles and their Ecological 
Effects

Subduction can change land levels in cycles 
(Plafker 1969:64-66, Thatcher 1984). Two tectonic 
plates, one descending beneath the other, are stuck 
together on a shallow part of the plate-boundary 
fault, toward which the two plates are moving 
slowly (Figure 2f). The overriding plate bulges 
behind this part of the fault. During an earthquake, 
the bulge collapses as fault rupture allows the 
leading edge of the plate to lurch seaward. The 
bulge forms anew in a deformation cycle that 
repeats. The cycle follows the elastic rebound 
theory, originally proposed to explain horizontal 

displacement in the 1906 San Francisco earthquake 
(Reid 1910:17-26). 

Lowland trees may record subduction ups and 
downs. In general terms, a forest may colonize 
emerging tidelands between earthquakes, and 
the trees may die from tidal submergence soon 
after the land falls during an earthquake (Figures 
2a–2e). In detail these effects vary with salinity, 
tree species, and sedimentation rate. Elevating 
tidelands between earthquakes helps forests 
spread downstream along salinity gradients. 
Conversely, lowering land during an earthquake 
raises salinity in a tidal stream by enlarging the 
tidal prism that the stream dilutes. Differential 
decay allows growth-position remains of one tree 
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Figure 1
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Figure 1.	 Land-level changes during (a) the 1964 Alaska earthquake and (b) earthquakes of the past few thousand years along the 
Cascadia subduction zone. Alaskan points digitized from Plafker (1969: plate 3). Cascadia compilation after Leonard 
et al. (2010). 
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80 Atwater et al.

species to outlast those of another. Stumps and 
roots persist most reliably where soon buried by 
tidal deposits. Tidal deposition, by rebuilding land, 
hastens the establishment of new trees among 
or above the remains of drowned ones—first 
in freshwater tidelands, then later downstream 
where brackish marshes emerge through gradual 
tectonic uplift. 

The examples reviewed below include two 
new findings about tree death from tidal sub-
mergence after the 1964 Alaska earthquake. New 
radiocarbon ages confirm that a victim-spruce 
root put on its final complete ring during the last 
of the pre-earthquake growing seasons, while 
earlywood outside that ring shows that the root 
briefly lived on.   
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Land surface in (a)
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Figure 2. 	Schematic views: (a–e) forest death by coastal subsidence during an earthquake and subsequent forest renewal; (f) 
land-level changes between and during earthquakes at a subduction zone.

Downloaded From: https://bioone.org/journals/Northwest-Science on 24 Jan 2025
Terms of Use: https://bioone.org/terms-of-use



81Earthquake Effects

1966 1991

Tidal rills

Brown needles

Grove in (b)

reviR elimytnTwe

Ban 6k 6 in 19

Ban 9k 98in 1

148.972°148.974°

60.844°

50 cm

Post-
earthquake 
silt and sand

Twentymile River

Year C.E.

Year C.E.

1940 1950 1960 1970 1980 1990 2000 2010 2020

50

40

30

20

10

0Cu
m

ul
at

iv
e 

bl
as

t e
ne

rg
y 

of
 

at
m

os
ph

er
ic

 n
uc

le
ar

 
ex

pl
os

io
ns

, i
n 

ap
pr

ox
im

at
e 

m
eg

at
on

s 
TN

T

2.0

1.5

1.0

5 
cm

1 
m

m
0.

3 
m

m

A

Rings dated in (f)

Earlywood 
fringe in (e)

A

A

B

B

C
D

E
F

G

1.0

1.5

2.0

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

14
C 

co
nt

en
t, 

as
 ra

tio
 in

 (f
)

14
C 

co
nt

en
t o

f n
or

th
er

n 
tro

po
sp

he
re

, a
s 

ac
tiv

ity
 ra

tio
  

re
la

tiv
e 

to
 p

re
-b

om
b 

st
an

da
rd

A

B

CDE
FRing G

Earthquake of March 27, 1964

Bomb yield

Bomb carbon Tropospheric activity declined through CO exchange 2 

with oceans and biosphere

Detail 
in (f)

Part of bomb carbon 
curve in (g)

(a)

(c)

(e)

(d)

(g)

(b)

(f)

Root in (c)
0 50 100 METERS 

Figure 3

142σ range of C activity ratio

Earlywood season in year 
that aligns ring A with 1963

Figure 3.	 Dated spruce along Twentymile River near Portage, Alaska. (a) Setting on airphoto taken 1966. (b) Tree sampled dead 
in 1991. (c) Sanded cross-section of root subsampled for radiocarbon analysis (rings A–G). (d, e) Fringe of earlywood 
cells outside ring A. (f) Radiocarbon results plotted on graph of atmospheric radiocarbon activity excerpted from (g). 
Radiocarbon activity in (f) and (g) is expressed as fraction of modern, pre-bomb levels (F14C of Reimer et al. 2004). 
Root 14C data in (f), for rings A–G, from Table 1; 14C curve in (f) and (g) from Hua et al. (2013: Table S3a, NH zone 
1) and Hammer and Levin (2017); bomb yield in (g) from Yang et al. (2003). Airphoto in (a) from collection of A.T. 
Ovenshine; other photos by the authors.
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82 Atwater et al.

1964 Alaska Earthquake

Subduction warped south-central Alaska during an 
earthquake of magnitude 9.2 on 27 March 1964. 
Plafker (1969) mapped a mainly offshore zone of 
uplift flanked by a mostly onshore downwarp, each 
more than 700 km long (Figure 1a). He concluded 
that tens of meters of regional displacement on 
a gently landward-dipping fault had raised areas 
above the fault rupture while stretching areas 
behind it—extension that downwarped land by as 
much as 2.3 m (Figure 2f). Low-angle faulting on 
this grand scale, like plate tectonics itself, had yet 
to be named in 1964. But “subduction” would soon 
denote the descent of one tectonic plate beneath 
another (White et al. 1970, Dickinson 1971).

Lowlands at Portage, outside of Anchorage, 
displayed estuarine effects of the 1964 downwarp. 
There, much of the land dropped 2 m in all—1.5 m 
by tectonic deformation and another 0.5 m by local 
settlement from shaking-induced compaction. 
Ensuing tides drowned a town, nearby meadows, 
and stands of spruce (Picea spp.) and cottonwood 
(Populus spp.), while also bringing in sand and silt 
that built up around the decaying remains of build-
ings, shrubs, and trees (McCulloch and Bonilla 
1970:81-85, Ovenshine et al. 1976). Since the 

middle 1980s, this Alaskan example of tidal death 
and burial from coseismic subsidence has served 
as a modern analog for identifying prehistoric 
earthquakes in Cascadia and for dating them with 
uncommon geological precision (Atwater et al. 
2015:14-17, 24-25, and 96-97, Nelson et al. 2021).

With Cascadia dating in mind, we sampled 
bark-bearing roots of a 1964 spruce victim near 
Portage (Figure 3). Its roots were exposed in 1991 
in an eroding bank of the tidal Twentymile River 
(Figures 3a, 3b). Sanded cross-sections revealed 
wide growth rings and an outermost ring limited 
to thin-walled earlywood cells (Figures 3c, 3d). 
Radiocarbon ages were measured on earlywood 
of the last seven of the complete rings (A–G, 
Figures 3c, 3f). The ages track a doubling in 
atmospheric radiocarbon activity that took place 
during the decade before 1964 (Figure 3g). 
This doubling resulted from nuclear bomb tests 
(Higuchi 2020), and it registered as a radiocarbon 
spike in annual growth rings of North American 
trees (Quarta et al. 2005, Lardie Gaylord et al. 2019). 
The graphical fit of the Portage spruce ages in 
Figure 3g is confirmed numerically in Table 1. The 
results uniquely assign the outermost complete ring 
(A) to 1963, while its fringe of earlywood implies 

Ring 
(Figure 3c)

Lab  
number 
(OS-)

Fraction  
modern (FM) FM error

Year if 
ring A 

formed in 
1963 C.E.

Age on rising limb of 
bomb-carbon curve 
(Figures 3f and 3g)

Age on falling limb 
of bomb-carbon 

curve (Figure 3g)
A 159632 1.8272 0.0043 1963 1963.47–1965.53 

(age range crosses curve crest, 
partly on each limb)

B 159633 1.3914 0.0041 1962 1962.41–1962.86 1973.94–1975.95
C 159634 1.2362 0.0025 1961 1959.26–1961.98 1982.14–1984.99
D 159635 1.2324 0.0025 1960 1959.25–1961.97 1982.17–1984.88
E 159636 1.2879 0.0026 1959 1959.43–1962.18 1979.12–1980.81
F 159637 1.1449 0.0024 1958 1957.79–1958.41 1990.32–1993.07
G 159638 1.0774 0.0021 1957 1956.92–1957.35 2001.11–2004.97

Table 1. 	 Radiocarbon ages of rings of a dead spruce root collected in 1991 from a receding bank of Twentymile River near 
Portage, Alaska (see Figure 3).

Notes: Age ranges in the two columns at right are at two standard deviations and were computed at http://calib.org/CALIBomb/ 
with calibration data of Hua et al. (2013:table S3a, NH zone 1) and Hammer and Levin (2017). Rings A–G, as annual increments 
of growth (Figure 3c), increase in tree-ring age in successive one-year steps, in which case their corresponding radiocarbon ages 
plot uniquely on the rising limb of the bomb-carbon curve in Figure 3f; the collection year (1991; Figure 3b) excludes the falling-
limb ages for rings F and G. The tabulated rising-limb age ranges for rings B, E, and F then require that ring A represent the 1963 
growing season. All the ages were measured in 2021 and are previously unreported.
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Figure 4.	 Maps of southwest Washington estuaries, locating (a) places cited in the text; (b) individual dead western redcedar 
whose death likely resulted from lowering of land during the 1700 Cascadia earthquake; (c) areas of multiple spruce 
stumps submerged at high tide; and (d) live Sitka spruce that either survived the 1700 earthquake or became established 
in the first century thereafter. Tree locations from compilations in Atwater (2020). Tree ages in (d) from Jacoby et al. 
(1997) and Benson et al. (2001). 

Downloaded From: https://bioone.org/journals/Northwest-Science on 24 Jan 2025
Terms of Use: https://bioone.org/terms-of-use



84 Atwater et al.

Buried forest soil containing spruce 
roots in growth position and coated 

with tsunami-laid sand

REDCEDAR TRUNKS 
casting shadows in 

(b)

Person 
standing 
in water

UPLAND FOREST

TIDAL MARSH

TIDAL STREAM

2018

Undated transcription of 1855 field notes

Water level close to half tide

2016

Bone River

View in (a)

Shadow of tall trunk
no longer standing 
two years later in (a)

Figure 5

Base: 2017 NAIP airphotos atop 
2019 Southwest Wa Opsw lidar

123.9°123.95°

46.65°

46.6°

!!
!

!
!

!

!
!!!!!!

!!!!!!!!!! !!!!!!!!!! !!! !!!! !

!

!!!! !!!
!!

0 2 KILOMETERS

US
 1

01

WILLAPA BAY

South Fork 
Palix River

View 
in (b)

Russell

Swan

Shells 
in 

bluffs

Vegetation change at 50 
chains (1,100 m)

Bearing trees for witness 
post at 39.8 chains (880 m)

Bay 
Center

neo  B River

80

0

Section line  
in (d)

Chains northward

(c)

(d)

(b)

(a)

Redcedar trunk or 
stump—In 1960s 
or later

Settler’s house—In 
1853–1855

WATER

TIDAL 
FLAT

TIDAL 
MARSH

UPLAND 
FOREST
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Bone River. Oblique airphoto in (b) from Washington Department of Ecology (2016). (c) Mapped distribution along 
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Figure 6. 	Wetlands beside Youngs Bay. (a, b) Maps by Meriwether Lewis (Lewis et al. [1803–1806] 2005: codex Ia) and William 
Clark (Clark 1806: images 1008620 and 1008624), respectively; typed labels and stump symbols added. (c) Map by 
Rockwell and Sengteller (1868a), illustrating radiating symbols on tidal flat that probably represent spruce stumps. (d) 
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post-earthquake survival into the first months of 
the 1964 growing season (Figures 3d and 3e).

Effects of the 1964 earthquake continued at Por-
tage through natural ecological restoration. Tidal 
flats were succeeded by tidal marshes on which 
new spruce and cottonwood became established 
beside the decaying above-ground trunks of pre-
earthquake trees (Figure 2a; Bartsch-Winkler and 
Garrow 1982, Atwater et al. 2001). The succession 
was driven by initially rapid sedimentation in the 
1960s and early 1970s (Ovenshine et al. 1976), and 
secondarily by slow uplift that has been ascribed 
primarily to glacial unloading (Huang et al. 2020). 

1700 Cascadia Earthquake

Much as at Portage, earthquake geology in Casca-
dia includes remains of tidally drowned marshes 
and forests. Roots of Sitka spruce (Picea sitchensis 
(Bong) Carrière) and trunks of western redcedar 
(Thuja plicata Donn. ex D. Don) are particu-
larly abundant at Copalis River, Grays Harbor, 
and Willapa Bay in Washington, and along the 
lower Columbia River in Washington and Oregon 
(Figures 4a–4c). Both species live today in tidal 
wetlands of the mainly freshwater reaches of these 
estuaries (Franklin and Dyrness 1973:295, Benson 
et al. 2001, Johnson and Simenstad 2015). There, 
tidal forests are dominated by spruce but locally 
contain redcedar—on fallen logs and natural 
levees, and at transitions to floodplains.

Trees dead and living contributed to dating of 
the most recent great Cascadia earthquake along the 
southern Washington coast. Radiocarbon analyses 
of subfossil spruce roots bracket this earthquake 
between 1680 and 1720 C.E. (Atwater et al. 1991, 
Nelson et al. 1995). Among eight of the subfossil 
redcedar dated by ring-width pattern-matching in 
southern coastal Washington, roots of seven died in 
the dormant months of 1699–1700; in the discrep-
ant eighth, a root draped on a log lived into 1708 
(Figures 2b, 4b; Yamaguchi et al. 1997). Narrow 
rings attest to stress during the first decade after 
1700 in living tideland old-growth—in spruce with 
heavy limbs and wind-broken tops at three of the 
estuaries, and in one redcedar along the Columbia 
River at Blind Slough (Figures 2e, 4d; Jacoby et al. 
1997). Tidal forests of all four estuaries were almost 

entirely reborn after 1700, as judged from ring 
counts in 146 additional living spruce (Figure 2d; 
Benson et al. 2001, Atwater 2020 [their table 15]). 
All this evidence is consistent with 26 January 
1700 as the date when the Cascadia plate bound-
ary ruptured along its entire 1,100-km length in 
one giant earthquake or in part of a swift series of 
lesser shocks (Satake et al. 2003, Melgar 2021).

Although trees died from effects of dormant-
season subsidence in Cascadia, many likely man-
aged to continue growing at first, much like the 
Portage tree in Figure 3. An incomplete outermost 
ring fringes roots of six out of ten subfossil spruce 
stumps sampled from tidal banks of the Copalis 
River and Willapa Bay (Atwater and Yamaguchi 
1991 [example in their Fig. 3B]), and spruce-root 
death from post-earthquake tides at Humboldt 
Bay, California, ranged across four years (Jacoby 
et al. 1995). Already tolerant of brackish water, 
Sitka spruce may at first resist saltwater poison-
ing because, in winter, northwest conifers are 
at maximum water storage and are taking up 
little soil water (Waring and Franklin 1979 [their  
figures 3 and 5]). Although saltwater can kill Sitka 
spruce (Wang et al. 2019), a tree may initially 
respond to saltwater stress much as it would to 
drought (Tucker and Pearl 2021), and physiological 
responses to drought include resource allocation 
to roots (Gessler et al. 2017). There is a remote 
possibility that earlywood instead records a wet 
autumn after months of summer drought—a 
growth pattern that has been observed in coastal 
pines (Vieira et al. 2015 [their figure 2]).

Indigenous science of Willapa Bay and the 
lower Columbia River surely would have men-
tioned, during the 1700s, landscape changes from 
post-earthquake tides. Travel by canoe among 
persistent ghost forests, such as the dead redcedar 
grove in Figure 5, would have reinforced Chinoo-
kan counterparts to a Yurok (northern California) 
story in which Earthquake, having lowered prairie 
into the sea, exclaims “Yaha! The brush sticks out” 
(Kroeber 1976:460, Carver 1998:18). In addition, 
oral history may have identified pre-earthquake 
landmarks that post-earthquake tides drowned, 
such as riparian camps and fish weirs at Willapa 
Bay (Cole et al. 1996, Atwater and Hemphill-Haley 
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1997:32 and 76, Losey 2010). Although no 1700 
earthquake or tsunami is evident among published 
Chinookan stories, nearly all those stories were 
collected in 1890 or later (Boas 1894; Ray 1938; 
Gibbs [1865] 1955, [1865] 1956; Jacobs 1959, 
1962:94-95; Hymes and Seaburg 2013)—after 
epidemics that reduced Native populations along 
the lower Columbia River to roughly 10% of 
their pre-1774 numbers (Boyd 1999 [their tables 
3 and 15–17]).

Nineteenth-century Surveys

This epidemic era overlapped with early docu-
mentation of earthquake evidence as attributes 
of Chinookan tidelands. The Lewis and Clark 
Expedition, in 1805–1806, noted vegetation pat-
terns that can be tied today to post-earthquake 
succession; later surveys, in 1854–1868, recorded 
upright remains of killed trees in tidal marshes and 
tidal flats. In each instance, mandates unrelated 
to earthquakes led to observations that can now 
be tied to seismology. 

Presidential Directives and National Claims

A well-known letter from Thomas Jefferson (Jef-
ferson 1803) set scientific objectives for the Lewis 
and Clark Expedition. These aligned with the 
President’s personal scientific interests (Cutright 
[1969] 2003:2-9) and, more fundamentally, with 
a drive to expand the United States westward 
(Goetzmann 1966:3-6). The young nation was 
then vying with Spain, Russia, and Great Britain 
over territorial rights to the Pacific Northwest. 
Under legal traditions deeply rooted in Europe 
(Williams 1990), the American claim rested on 
Robert Gray’s 1792 nominal discovery of the 
mouth of the Columbia River. 

The Lewis and Clark Expedition went beyond 
Gray’s discovery through acts of possession—not just 
by building and occupying Fort Clatsop (Figure 6), 
but also by making scientific observations in its 
vicinity (Miller 2006:3 and 111-112), and by 
recording them thoroughly in maps (Clark 1806) 
and journals (Lewis et al. [1803–1806] 2005). Cited 
below, in relation to Cascadia earthquake history, 
are Expedition findings about tidal wetlands and 
Sitka spruce.

Transcontinental Rails and Museum 
Collections

The United States Congress, in 1853, funded 
assessments of four competing swaths for the 
nation’s first transcontinental railroad. The compe-
tition was to hinge in part on natural resources the 
four surveys encountered (Goetzmann 1959:262-
275). A northern survey, from Minnesota to Puget 
Sound, was led enthusiastically by Isaac Ingalls 
Stevens (1818–1862), Washington’s first territorial 
governor (Richards 2016:102).

Western surveys were then providing speci-
mens of plants, animals, and rocks to the National 
Museum in the Smithsonian Institution. The 
museum curator, Spencer Fullerton Baird (1823–
1887), in 1852–1854 “was receiving materials and 
information from twenty-six separate expeditions” 
(Rivinus and Youssef 1992:85). As a naturalist for 
the Stevens survey, Baird recommended a young 
physician, James Graham Cooper (1830–1902) 
(Coan 1981:21).

Stevens assigned Cooper to the survey’s western 
division, under George McClellan. George Gibbs, 
prominent in “some of the leading intellectual con-
cerns of nineteenth century America” (Beckham 
1969:viii), joined as ethnologist and geologist. 
The McClellan party ranged mainly east of the 
Cascade Range in the summer and autumn of 
1853, then disbanded (Overmeyer 1941). 

Cooper remained in Washington Territory as a 
mostly self-funded naturalist into October of 1855. 
He based himself at Shoalwater Bay, making ends 
meet as a physician and storekeeper, and resid-
ing mainly in the cabin of an oysterman, Charles 
Russell (Figure 5c). Journals (Cooper 1853–1854, 
1855–1856) and a manuscript (Cooper 1856) 
provide unpublished records of his stay. 

Published monographs from the four railroad 
surveys assembled encyclopedic descriptions 
of the American West (Goetzmann 1959:336). 
Among them were natural history reports that 
Cooper finalized in 1857–1860, largely while in 
Washington, D.C. (Coan 1981:10, 11, and 86). 
There he participated in a naturalist’s club under 
Baird’s tutelage (Rivinus and Youssef 1992:94). 
The 1856 manuscript and a railroad survey report 
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(Cooper 1860) both tout western redcedar as a 
natural resource. In a quote below, as proof that its 
wood resists decay, Cooper cites redcedar trunks 
standing dead in tidal marshes of Shoalwater Bay.

Gridded Townships and Indian Lands

Westward expansion of the United States required 
land grids to which settlers’ claims and purchases 
could be tied. The grids established in Washington 
Territory were surveyed by contractors to the 
General Land Office (GLO; White 1983, Riddle 
2010). The GLO instructed contractors to monu-
ment corners of sections and quarter-sections, 
to measure bearings and distances from corner 
monuments to scribed trees, and to document 
major changes in vegetation along section lines 
(Moore 1851).

John J. Lowell (1823–1856) headed contract 
surveys of two Shoalwater Bay townships in 
autumn of 1855. This was Chinookan land the 
United States had not clearly acquired; outcomes 
of treaty councils in 1851 and 1855 had left 
the issue of Aboriginal title around Shoalwater 
Bay unresolved, though treaties elsewhere had 
extinguished Indian title to much of Washington 
Territory by summer of 1855 (Ruby and Brown 
1976:224–231, Fisher and Jetté 2013). Another 
surveyor submitted the notes and plats (Lowell 
1856a, 1856b) after Lowell, during Indian resis-
tance, drowned as a military messenger (Olson 
2018:238). 

Transcribed Lowell notes cited below locate 
a quarter-section corner with respect to a pair of 
redcedar trunks in a tidal marsh. Also cited is a 
vegetation change by which these bearing trees 
lacked foliage.

Career Topographer Along a Northwest 
Artery

The US Coast Survey achieved eminence under 
Alexander Dalles Bache, its director between 1843 
and 1867 (Odgers 1947). Bache himself identified 
a Japanese source for an 1854 tsunami recorded 
by California tide gauges (Bache 1856, Kusumoto 
et al. 2022). The agency’s early Northwest work 
(Vouri 2016), begun while I. I. Stevens was Bache’s 
deputy, included charting of Shoalwater Bay in 

1852 and 1855 under James Alden (Hydrographic 
party under command of Lieut James Alden 1852, 
Hydrographic party under the command of Cmdr 
James Alden 1855). 

Cleveland Rockwell joined the Coast Survey 
as a teenager in 1856. A biography tells of his 
mentoring by Bache, his topographic service 
with the Union Army, and his eventual acclaim 
as a landscape painter (Stenzel 1972). Rockwell 
embarked in 1868 upon topographic mapping 
along the tidal Columbia River. Across most 
of two decades he surveyed—at a map scale of  
1 mm to 10 m—shorelines, wetland vegetation, 
and riparian land use of this Northwest artery 
(Thomas 1983, Graves et al. 1995). Available today 
as sharp color scans are the three 1:10,000-scale 
topographic sheets used below—T-1112 (Rockwell 
and Sengteller 1868a), T-1123 (Rockwell and 
Sengteller 1868b), and T-1138 (Rockwell 1869).

Coast Survey standards of Rockwell’s time 
called for “features of peculiar character” on 
tidal flats to be represented by imitation (Whiting 
1861:222). Of particular concern were obstacles 
in the water (Shalowitz 1964:188). Cited below 
are Rockwell symbols that likely represent a 
discontinuous fringe of subfossil spruce on tidal 
flats west of Astoria. Also noted, as an indicator 
of post-earthquake succession, are conifers he 
depicted in tidal wetlands.

Ecological Anomalies

Drowned Redcedar

Redcedar standing in Shoalwater Bay tidal marshes 
provided Cooper with a natural example of resis-
tance to decay:

On the salt meadows about Shoalwater Bay 
dead trees of this species are standing sometimes 
in groves, whose age it would be almost impossible 
to tell. They must have grown when the surface was 
above salt water mark, as they are still abundant 
along the fresh borders of the meadows, together 
with other trees. But a gradual sinking of the land, 
still going on, has caused the tide to overflow and 
then killed the forests of which these Cedars are 
the only remains. Their wood is perfectly sound 
and so well seasoned as to be the very best of the 
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kind. It is intensively used in that vicinity (Cooper 
1856:27, 1860:22 contains similar text).

Cooper’s Shoalwater journals identify but 
one instance in which he observed a redcedar 
ghost forest firsthand. Coming upon the bay for 
the first time, Cooper (1853–1854:76) noted that 
“stumps of Cedar stand on the meadows.” These 
stumps likely stood in a tidal marsh near historical 
Tarlatt (location in Figure 4b). Cooper had just 
crossed over from the Columbia by way of an 
upland portage described as an adventure (Swan 
1857:239-241) and plotted on a GLO plat (Gile 
1859). Cooper’s 1854 notes identify this portage 
with a “Mr. M—” (March 14) and with “Martin” 
(August 28)—evidently Thomas Martin, who oper-
ated a Tarlatt post office in 1854–1855 (Secretary 
of State 1855:395, Weathers [1989] 2018). Into 
the 1870s, tidal marshes bordered Tarlatt Slough 
(called Baker’s Slough by Gilbert [1873]) but these 
have since been diked and plowed (Allen 2003).

Shoalwater Bay companions may have told 
Cooper of additional ghost forests to which his 
1856 manuscript and 1860 report allude. Rus-
sell, his primary host, was regarded by Alden 
(1856), of the Coast Survey, as “a pioneer in these 
quarters.” An Alden party that mapped a Tarlatt 
portage (Hydrographic party under the command 
of Cmdr James Alden 1855) hosted Cooper aboard 
their survey steamer from Shoalwater Bay to 
San Francisco Bay (Cooper 1856:47 1/2). James 
Gilchrist Swan (Swan 1857:77 and 323), resid-
ing at the mouth of the Querquelin (now Bone) 
River, paddled upstream past places where dead 
redcedar still stand in tidal marshes (Figure 5c). 

Lowell, the GLO contractor, pinpointed two 
redcedar trunks along another tidal creek. Between 
12 September and 2 November 1855—with a 
crew of four chainmen, two axemen, and a com-
passman—Lowell subdivided terrestrial parts of   
T. 13 N, R. 10 W into mile-square sections (loca-
tion, Figure 4a; Lowell 1856a). Chaining northward 
in forest along the line between sections 34 and 35 
(line, Figure 5c), the crew emerged onto “marsh 
land” traversed by a tidal slough—today’s South 
Fork Palix River, a serpentine arm of Willapa 
Bay (Figure 5c). On this line the quarter-section 
corner coincided with the slough. The crew set a 

witness post on the south bank, from which they 
measured bearings and chained distances to two 
trees identified as “Cedar.” One of these bearing 
trees was described as 76 cm in diameter, 17 m 
distant at N 70º W; the other, 91 cm across, 22.7 m 
away at S 43º E (dimensions converted here from 
inches, chains, and links). The crew continued 
chaining the section line northward across addi-
tional marsh to a forest edge where trees changed 
from dead to living: “Leave bottom land and enter 
green timber” (Figure 5d). 

A modern surveyor, R.E. Zenkner (2004), 
recovered the site of Lowell’s witness post and 
identified remains of both its bearing trees. Zenkner 
described the northwest tree as reduced to a “root 
collar” and the southeast one as a “cedar stump 
(no visible scribe) badly decayed.” In 2020 we 
could not relocate the collar, but we did find a 
moss-covered, waist-high mound of rotten red-
cedar 22.7 m S 43º E from a Zenkner monument. 

Drowned Spruce

Four nineteenth-century records locate stumps, 
probably all Sitka spruce, in tidelands of the 
Columbia River estuary. First is a Cooper journal 
entry about ascending the tidal Wallacut River 
(location, Figure 4a): “In the banks of the creek are 
frequently seen stumps ‘in situ’ showing that it was 
once thickly timbered” (Cooper 1853–1854:75).

The next two documents are the Rockwell 
topographic sheets T-1112 and T-1123, surveyed 
in summer and autumn (Rockwell and Sengteller 
1868a, 1868b; Stenzel 1972:27). These maps 
delineate a high-water shoreline where sparsely 
wooded tidal marshes adjoin tidal flats of Youngs 
Bay (Figure 6). Beside parts of this shoreline, 
Rockwell flecked the tidal flat with unexplained, 
radiating symbols. Figure 6b, on a base map 
from 1805–1806, summarizes the extent of these 
symbols, and Figure 6c reproduces examples. The 
symbols imitate modern examples of exhumed 
spruce stumps that retain horizontal roots meters 
long, and which have fallen from banks eroded 
by waves of Youngs Bay. Viewed at ground level, 
some of these stumps retain roots anchored in a 
buried forest soil exposed near the mouth of the 
Lewis and Clark River (Figure 6d). Northeast of 
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there, along the nearest 0.5 km of Youngs Bay 
shore, Rockwell’s radiating symbols coincide with 
spruce stumps that sprawl in July 2014 imagery 
on Google Earth. The symbols also coincide with 
shores where erosion later carried away trian-
gulation stations of 1868 (Stenzel 1972:46-50). 
Sprawl typifies root systems of Sitka spruce where 
drainage is poor (Fraser and Gardiner 1967 [plates 
5-7 and 18]).

The fourth and latest document is a feature 
article about diking and farming of tidal wetlands 
west of Astoria (The Pacific Farmer 1888). Its 
unnamed author asserts “indisputable evidence 
that an old forest of spruce ages ago grew where 
this tide land now is, along the west side of 
Young’s bay”—the floor of this bygone forest 
having dropped four feet “through some convul-
sion of nature.”

Spruce decay probably explains why none of 
these Columbia River stumps were described or 
drawn as tall. Cooper (1860:22) described Shoal-
water Bay ghost forests as redcedar “only.” Today 
along the Bone River, subfossil spruce roots jut 
out from a tidal-creek bank (Figure 5a) below a 
brackish marsh above which only redcedar extend 
(Figure 5b).

The Lewis and Clark Expedition, though attuned 
to submerged forests upstream along the Columbia 
River (O’Connor 2004:402-405, Reynolds et al. 
2022), recorded no subfossil trees at Youngs Bay 
during the winter of 1805–1806. The Expedition 
had no mandate to map tidal flats and “peculiar 
features” upon them, nor opportunities to observe 
tidal flats during low daylight tides of summer and 
autumn (tides hindcast at NOAA/NOS/CO-OPS 
2023). But the Expedition did record hints that a 
successional clock in the Columbia River estuary 
had recently been reset.

“Marsey Prairie”

One such hint can be seen in descriptions of veg-
etation south of Youngs Bay. Reconnoitering by 
canoe on November 30, 1805, Lewis found a plain 
“marshey and untimbered for three miles back” 
(Lewis et al. [1803–1806] 2005:codex Ia)—a 
“Marsey prairie” stippled on an accompanying 
map (Figure 6a). Clark extended such a stipple 

southward past Fort Clatsop (Figure 6b). Neither 
captain recorded any counterpart to Rockwell’s 
radiating symbols. But both captains recorded 
evidence that post-earthquake succession had 
reached a tidal-marsh stage within the first 100 
years after 1700 (Figure 2c).

Observations in later Chinookan surveys 
compare pre-earthquake vegetation with post-
earthquake vegetation. Cooper (1853–1854:75), 
along the tidal Wallacut River, contrasted lands 
“once thickly timbered” with adjacent tidal mead-
ows having “scattered spruce trees of perhaps 
20 years growth” (Figure 2d). Rockwell plotted 
asterisks—a standard Coast Survey symbol for 
conifers (Thomas 1983:4)—not just along the 
Wallacut (Rockwell 1869) but also in some of the 
tidal wetlands south of Youngs Bay that adjoin 
his radiating symbols.

“A Distinct Species”

A 1700 Cascadia earthquake may have occasioned 
Lewis’s two-fold division of Sitka spruce near 
Fort Clatsop—into upland old growth (his tree  
“No. 1”) and a bottomland species (“No. 7”) 
(Lewis et al. [1803-1806] 2005).

Tree No. 1 enters Lewis’s journal for February 4, 
1806 as the first of “sveral species of fir in this 
neighbourhood which I shall discribe as well as 
my slender botanicall skil will enable me.”

[It] grows to immence size; very commonly  
27 feet in the girth six feet above the surface of the 
earth, and in several instances we have found them 
as much as 36 feet in the girth or 12 feet diameter 
perfectly solid and entire. they frequently rise to 
the hight of 230 feet, and one hundred and twenty 
or 30 of that hight without a limb. 

Tree No. 7, recorded two weeks later, is “a spe-
cies of pine peculiar to the swamps and marshes 
frequently overflown by the tide.” It resembles 
No. 1 in most respects and its cone, as sketched 
by Lewis, is unmistakably Sitka spruce. But it 
“seldome rises to a greater hight than 35 feet and 
is from 2½ to 4 feet in diameter.” And “as this is 
a distinct species I shall call it No. 7.” 

Environment alone, irrespective of earthquake 
history, produces spruce variants. Where tidal, 
Sitka spruce has gangly limbs (Figure 6d) that 
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give the tree a distinctively “sprawling, open-
growth” look (Franklin and Dyrness 1973). Still, 
a 1700 Cascadia earthquake may have set No. 7 
apart—whether through survival of pre-earthquake 
spruce, youth of post-earthquake spruce, or both.

Where already “2½ to 4 feet in diameter” in 
1806, No. 7 may have included pre-earthquake 
Sitka spruce that post-1700 tides had yet to kill. 
Such trees would have been siblings of the few 
earthquake survivors in some of those same rem-
nant tidal forests to the north and east (Figures 2e, 
4d). Most may have sprouted adventitious roots, 
as judged by survivors’ root systems exposed in 
the 1990s by bank erosion along the Columbia 
River at Price Island (Atwater et al. 2015:97). 
These showed dead roots nearly 1 m deep near 
a buried 1700 ground surface, as well as live 
roots near the modern ground surface (Atwater 
1994:10 and 48). The live roots had evidently 
sprouted into post-earthquake deposits. Picea 
elsewhere has produced adventitious roots from 
trunks surrounded by debris-flow deposits (Strunk 
1997) and from cuttings planted commercially 
(Ragonezi et al. 2010).

Young spruce in freshwater tidal forests 
undoubtedly adjoined upland old growth upstream 
of Fort Clatsop, before logging. Freshwater tide-
lands of the Copalis River, Grays Harbor, Willapa 
Bay, and the Columbia River estuary all display 
post-earthquake spruce that had become estab-
lished before the time of the Lewis and Clark 
Expedition (Figures 2d, 4d; Benson et al. 2001).

Raised Shell Beds

Did Cooper know of land-level changes that 
happened suddenly? Coastal uplift accompanied 
Chilean earthquakes in 1822 (Graham and Gre-
enough 1835, Kölbl-Ebert 1999, Thompson 2012) 
and 1835 (Darwin 1839:379, FitzRoy 1839:412-
414). Did Baird’s naturalist’s club discuss those 
findings while Cooper was on hand in 1857–1860? 

Whatever he knew of land-level changes in 
Chile, Cooper invoked nothing sudden to explain 
the redcedar submergence at Shoalwater Bay. To 
the contrary, in the railroad report (much as in the 
1856 manuscript) he proposed “a gradual, slow 
sinking of the land (which seems in places to be 

still progressing, and is perhaps caused by the 
undermining of quicksands)” (Cooper 1860:22). 
But he also anticipated that “continued and care-
ful examination of [the submerged redcedar] may 
afford important information as to the changes of 
level in these shores.” 

Here the railroad report turns to an apparent 
contradiction: “beds of marine shells” exposed in 
bluffs overlooking Shoalwater Bay. Gibbs ([1854] 
1855:466), on a geological reconnaissance for 
Stevens, had noticed these beds and had interpreted 
them as uplifted. In Gibbs’s footprints, Cooper 
(1853–1854:87) reexamined shell beds near the 
site of modern Bay Center (location, Figure 5c). 
He found that the shells were “mostly of existing 
species,” and he estimated that they had been 
“elevated about 10 ft. above the present high tides.” 

Today, the emergent shells near Bay Center 
can be seen as fully compatible with submerged 
redcedar forests nearby, for two reasons. First, 
the shells underwent little if any net change in 
elevation if deposited when sea levels were about 
as high as they are today. Twentieth-century 
geologists assigned these fossils to Pleistocene 
ancestors of Willapa Bay (Clifton 1983:367). 
The shells contain mixes of right-handed and 
left-handed amino acids consistent with ages in 
the range of 90,000–170,000 years (Kvenvolden 
et al. 1979:1517 and 1519) or close to 80,000 
years (Kennedy et al. 1982 [their locality 7]). 
These ages are consistent with net uplift in the 
approximate range of 0–40 m. Second, to end 
up near present sea level, the shells could follow 
a sawtooth trajectory through repetitions of the 
subduction cycle in Figure 2f—falling during 
earthquakes but rising in between (Atwater and 
Hemphill-Haley 1997:8-11). Subsidence during 
subduction earthquakes may then negate, in the 
long run, most of the gradual uplift that takes 
place between them.    

Conclusions

A Cascadia earthquake in 1700 had ecological 
effects that influenced 19th-century accounts of 
Chinookan tidelands near the mouth of the Colum-
bia River. The effects noted resemble estuarine 
consequences, near Anchorage, of the 1964 Alaska 
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earthquake: lowering of meadows and forests into 
post-earthquake tides that killed the plants, and 
ensuing rebirth of vegetated wetlands through 
post-earthquake sedimentation and uplift. In Cas-
cadia, remains of killed forests attracted attention 
in the 1850s and 1860s. James Graham Cooper, 
attached to a railroad survey and the Smithsonian 
Institution, wrote of redcedar stumps and trunks 
standing dead in tidal marshes of Shoalwater (Wil-
lapa) Bay. Two such snags served as bearing trees 
for a land surveyor, John J. Lowell, as he platted 
a Shoalwater Bay township under contract with 
the General Land Office. Cleveland Rockwell, a 
topographer with the US Coast Survey, flecked 
landward edges of tidal flats west of Astoria with 
symbols that evoke remains of a bygone spruce 
forest. Decades earlier, the Lewis and Clark Expe-
dition in 1805–1806 described tideland vegetation 
that post-1700 succession helps explain. 
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