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ABSTRACT: The increasing importance of wildlife diseases in conservation efforts places an
additional importance on research study design, data analysis, and interpretation. In this paper, we
explore the design and analysis of wildlife disease data with regard to hypothesis testing, statistical
power, sample sizes, the relative costs of type I versus type II errors, and effect size. To illustrate
these ideas, we conducted a literature review of the Journal of Wildlife Diseases (JWD), ran
computer simulations that estimate type II error rates for statistical techniques commonly used in
JWD, and reanalyzed previously published data on disease prevalence. Many studies published in
JWD used chi-squared analysis on prevalence data, but only 19% reported estimates of the
observed effect size. Furthermore, 10% of studies had pooled sample sizes #40, and many had
potentially high costs of type II relative to type I errors. Our computer simulations suggest that
many articles published in JWD lack sufficient statistical power, and this, coupled with our findings
that many studies often ignore high costs of type II errors, argues for increased attention to
statistical power. Finally, our data reanalysis shows how the presentation of observed effect sizes
could allow a better assessment of the biologic significance of findings reported in JWD. We
conclude with some general guidelines to assist wildlife disease researchers in the design of future
studies and the statistical analysis of their data.

Key words: Abundance, negative binomial, precautionary principle, prevalence, statistical
analyses, statistical power, type I and type II error.

INTRODUCTION

Disease is increasingly recognized as an
important, and perhaps crucial, element
in the management and conservation of
wildlife species (Tompkins and Wilson,
1998; Deem et al., 2001). In the rapidly
changing world of wildlife disease, re-
searchers are being called upon to mea-
sure the effects of disease on small, often
endangered, wildlife populations. To as-
sess patterns of disease in wildlife popu-
lations, scientists often quantify the rate or
degree of disease or parasitic infection and
analyze these data using classic techniques
of statistical hypothesis testing.

Two common measures of wildlife
disease reported in the literature are
prevalence and abundance. Prevalence is
the proportion of individuals in a sample
that are infected with a disease (Bush et

al., 1997), and in its raw form it constitutes
a dichotomous response variable (infect-
ed/not infected). Given a random sample
of hosts, prevalence can be representative
of the disease status of a host population.
Alternatively, abundance is a count of the
number of parasites or disease units that
are found in a single host (Bush et al.,
1997), taking an ordinal value of zero or
greater. Averaged across all individuals in
a random sample, abundance estimates
the mean number of parasites or disease
units carried by a single animal within a
population.

Ideally, random sampling can be used
to estimate the prevalence or parasite
abundance within animal populations,
and statistical analyses can be used to
assess how these measures of disease vary
with different factors (e.g., sex, age, time
of year, levels of human impact). The
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analyses of these data are complicated
because prevalence and abundance mea-
sures violate assumptions of standard
linear models such as analysis of variance
(ANOVA) and linear regression. Preva-
lence is bounded by 0 and 1, requiring a
transformation (the arc-sin and logit trans-
formations are common), contingency
table analysis (e.g., chi-squared or log-
linear models), logistic regression, or the
use of nonparametric methods. Parasite
abundance is usually strongly positively
skewed (Fig. 1A), and it can be described
by a negative binomial that incorporates
an overdispersion term (k) that accounts
for the degree to which the variance
exceeds the mean (Crofton, 1971). A
Poisson model, in which the variance is
equal to the mean, has also been used to
model parasite abundance (Wilson et al.,
1996; Fig. 1B). In a review of previously
published studies, 268 of 269 scientific
papers reported that the variance in
parasite abundance exceeded the mean
(Shaw and Dobson, 1995), suggesting a
widespread pattern of parasite aggregation
in hosts. Because of this pattern, the
logarithmic transformation has historically
been employed to normalize abundance
data before the application of linear
models. Alternatively, generalized linear
models (GLM) allow the user to explicitly
model negative-binomial abundance data,

offering a more robust alternative to
traditional linear model analysis (Wilson
and Grenfell, 1997).

Type I and type II errors

Because the material presented herein
will make repeated reference to statistical
concepts of error, we first review defini-
tions of type I and type II error. The
probability of a type I error (a) is the
probability of rejecting the null hypothesis
when the null hypothesis is true. This
error type has traditionally been of prima-
ry interest to biologists. An accepted
benchmark used for determining statisti-
cal significance is a,0.05, a standard
convention, which, while popular, is
somewhat arbitrary (Johnson, 1999).

In contrast, a type II error (b) is the
probability of accepting the null hypothe-
sis when the null hypothesis is false,
and statistical power (1–b) is the proba-
bility of correctly rejecting the null
hypothesis. For example, if anthropogenic
effects truly increase the prevalence of
disease in a species, but the study fails to
detect that effect, a type II error has been
committed. A standard convention is
b#0.20; however, there are practical
arguments for minimizing the probability
of b well below 0.2 (Di Stefano, 2003; see
following).

Statistical theory dictates an inverse

FIGURE 1. Examples of three distributions: the negative binomial (A), Poisson (B), and normal (C). For all
three distributions, mean55. For negative binomial, variance530, k51; for Poisson, variance55; for
normal, variance51.0.
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relationship between type I and type II
error; a decrease in acceptable levels of
one error type increases the probability of
making an error of the other type.
Biologists have traditionally sought to
minimize type I errors at the expense of
type II errors. However, in many conser-
vation applications, the consequences of a
type II error may actually outweigh those
of a type I error (Dayton, 1998)—this
concept is known as the precautionary
principle (Peterman and M’Gonigle, 1992;
Kriebel et al., 2001). According to the
precautionary principle, type II errors
should be minimized if the cost of failing
to find an effect is high, thus risking
continued harm. This has implications
when studying an organism that is locally
rare or threatened, and we argue that
consideration of the relative costs of type I
and type II errors is important when
planning a study of wildlife disease.
Therefore, when planning studies or
conducting statistical inference, it is im-
portant to consider both type I and type II
errors (Cohen, 1977), and the appropriate
error to minimize should depend upon the
situation.

There is growing concern about the
reliance on hypothesis testing in the
biologic sciences (e.g., Johnson, 1999),
and many alternatives have been proposed
(e.g., Fidler et al., 2006). Despite this
ongoing debate, science still overwhelm-
ingly embraces statistical hypothesis test-
ing (for a specific example, see Fidler et
al., 2006). While not covered here, meth-
ods such as information theoretic ap-
proaches (Burnham and Anderson,
2002), Bayesian statistics (Johnson, 1999),
and equivalence testing (Hoenig and
Heisey, 2001) are three proposed alterna-
tives to traditional hypothesis testing that
may be preferable in the analysis of
certain wildlife disease data. Researchers
are urged to familiarize themselves with
these methods and, when appropriate,
apply them in their research.

In this article, we report the results of
several exercises that demonstrate the

ways in which statistical hypothesis testing
can be used more effectively in wildlife
disease research: 1) Literature review. To
understand how data are currently ana-
lyzed and presented in the wildlife disease
field, we reviewed the Journal of Wildlife
Diseases (JWD) for common methods
used in the analysis of prevalence and
abundance data, sample sizes used in
those studies, observed effect size, and
the relative costs of type I and type II
errors. 2) Computer simulation. To assess
common statistical methods used in JWD,
we conducted computer simulation to
estimate power and the probability of type
II errors associated with a variety of
common techniques used on prevalence
and abundance data. 3) Data reanalysis.
Finally, to demonstrate the ways in which
observed effect size and associated confi-
dence intervals are important for under-
standing biologic significance, we analyzed
previously published data on the preva-
lence of blood parasites in different
populations of birds (Super and van Riper,
1995).

MATERIALS AND METHODS

Literature review

We reviewed five years (2000–04) of papers
published in JWD that tested hypotheses
about differences in either the prevalence or
abundance of wildlife diseases and parasites.
We included studies that measured the
prevalence and/or the abundance of macro-
parasites (e.g., helminths, ectoparasites) de-
termined from visual counts, or microparasites
determined through seroprevalence tests or
counts of parasites per unit volume (e.g.,
viruses, bacteria, blood hematazoa). For each
study identified in our review, we tabulated
the types of analyses conducted, whether the
magnitude of the observed effects was esti-
mated, and the total number of sampled
animals (pooled sample size, n). We also
scored each study for the relative costs of type
I to type II errors, according to the philosophy
of the precautionary principle (Peterman and
M’Gonigle, 1992; Kriebel et al., 2001), where
we subjectively perceived that there was a
possibility that costs of type II errors could
exceed costs of type I errors (i.e., if a type II
error could result in the authors failing to
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detect a true harm to a species). We chose to
include this assessment in order to raise
awareness about the possibility of the high
costs of type II errors in the study of wildlife
diseases.

Computer simulation

Because computer simulation provides a
robust method for estimating type II error
rates, especially for non-normally distributed
data (Crawley, 2002), we used simulations to
estimate b associated with different statistical
techniques of both prevalence and abundance
data. To accomplish this, we selected equal
random samples from two hypothetical popu-
lations with different mean prevalence or
abundance and used different statistical meth-
ods to test the null hypothesis of no difference
(a,0.05) between the two populations. For
prevalence data sets, we estimated type II
error rates for the chi-squared test for
independence (Ramsey and Shafer, 2002,
section 19.3), Fisher’s exact test (Ramsey and
Shafer, 2002, section 19.4), log-linear regres-
sion (Ramsey and Shafer, 2002, chapter 22;
Nelder, 2000), and logistic regression (Ramsey
and Shafer, 2002, chapter 20). We conducted
tests over a range of pooled samples sizes
(n520–1,000) and observed differences be-
tween the two simulated populations,
(range50.01–0.4). Because the power of
hypothesis tests on prevalence data depends
on the location of the proportion relative to 0.5
(Cohen, 1977), we completed two sets of
comparisons: one in which the base proportion
was 0.5, and another in which the base
proportion was 0.1.

For abundance data, we determined type II
error rates for t-tests (Ramsey and Shafer,
2002, chapter 2), t-tests after log-transforma-
tion (Ramsey and Shafer, 2002, chapter 3),
nonparametric Wilcoxin tests (Ramsey and
Shafer, 2002, chapter 4), and negative bino-
mial regression (a GLM with negative bino-
mial errors and a log link function; Venables
and Ripley 2002, section 7.4). These analyses
used the same sample sizes as above, and
differences in mean abundance ranged from 1
to 500. Because type II error rates vary with k
(the aggregation parameter of the negative
binomial), we conducted comparisons for
three different values of k (0.3, 1, 1.5), which
span the range observed in most studies of
parasites in wildlife hosts (Shaw and Dobson,
1995; Shaw et al., 1998). In each simulation,
we generated a pair of random samples with
different mean prevalence or abundance and
conducted a hypothesis test, repeating this
10,000 times. We calculated the type II error

rate as the proportion of the 10,000 tests in
which a type II error was made (P$0.05).

To compare type II error rates for testing
hypotheses of differences in prevalence versus
differences in mean abundance, we took
random samples from two negative binomial
distributions with means of 1 and 2, respec-
tively, for three values of k (0.3, 1.0, 1.5). We
then conducted a statistical test for difference
in mean abundance between the two samples,
converted abundance values to prevalence,
and conducted a statistical test for difference
in prevalence between the two samples using
log-linear regression. These simulations were
done for a range of sample sizes with a
balanced design (n520–1,000), and the prob-
ability of a type II error was computed as
above.

Data reanalysis

We reanalyzed data from a previously
published JWD paper to demonstrate the
advantages of estimating observed effect size.
Super and van Riper (1995) used chi-squared
contingency tables to test if the prevalence of
avian hematazoan parasites was different on
coastal islands than on the California main-
land, and between resident and migratory bird
communities. In contrast to the methods of
Super and van Riper (1995), we used log-
linear models with ‘‘infected/not infected’’ as a
response (Nelder, 2000), and ‘‘island/main-
land’’ and ‘‘migratory/resident’’ as independent
variables, and we tested the null hypothesis of
independence between the response and the
independent variables based on a chi-squared
distribution for one degree of freedom (Craw-
ley, 2002). We estimated the effect size using
the odds ratio of the two factor terms (Nelder,
2000) and determined significance of the
effect with a Wald’s chi-squared test.

Our method, in addition to being more
statistically powerful than chi-squared tests,
was chosen primarily because it provides a
parameter estimate that allows the wildlife
disease researcher to infer the magnitude of
the observed effect that factors have upon the
prevalence of disease, but we could have used
other statistical methods that also estimate
observed effects. For example, with 232
tables, a log-linear model is identical to logistic
regression (Nelder, 2000). We could have also
estimated the odds ratio from the 232 table
and computed confidence intervals using the
binomial distribution, although this method
tests a hypothesis of homogeneity rather than
independence, and sampling schemes can
dictate the appropriate analysis (Ramsey and
Shafer, 2002, section 19.2).
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All simulations and statistical analyses were
conducted with the R package for Statistical
Computing (R Development Core Team,
2007), and we used the rnegbin and glm.nb
functions from the MASS library to take
random samples and test hypotheses regarding
the negative binomial distribution (Venables
and Ripley, 2002).

RESULTS

Literature review

From 2000–04, 591 articles were pub-
lished in the Journal of Wildlife Diseases
(JWD). Of these, 70 papers tested hypoth-
eses regarding differences in mean abun-
dance or prevalence. The majority of
studies (96%) reported prevalence, while
20% reported both prevalence and abun-
dance (Table 1). Differences in mean pre-
valence were most commonly tested using
chi-squared contingency tables (63%),

while nonparametric tests (Kruskal-Wallis,
Wilcoxin-Mann-Whitney) were the most
common method used (41%) for testing
differences in mean abundance (Table 1).

The number of factors and factor levels
in these 70 studies varied widely, and
designs were rarely balanced; pooled
sample sizes in the studies ranged from
12 to 63,451. The distribution of sample
sizes was strongly right skewed, and 28%

of studies had pooled sample sizes (n) of
,100; 10% of studies had n#40 (Fig. 2).
The median sample size was 216.5.
Authors of JWD articles did not always
provide estimates of the magnitude of the
observed effect in their studies, even when
their methods generated these results.
Only 19% of studies reported estimates
of observed effect sizes from linear models
(or GLM) or odds ratios. We also found
that the potential cost of type II errors
exceeded the cost of type I errors in 30%

of the studies, suggesting that added
attention should be given to the power of
statistical tests and in balancing the
probability of type I and type II errors
relative to their potential costs.

Computer simulation

Our simulations of prevalence data
generated high probabilities of type II

FIGURE 2. Histogram of sample sizes from 70
studies from the Journal of Wildlife Diseases. Values
represent pooled sample sizes, not those for each
grouping variable. We adopted this convention
because designs were rarely balanced, and the
number of design factors varied. X-axis is plotted
on a logarithmic scale.

TABLE 1. Summary of analysis type and statistical
techniques of 70 papers that conducted hypothesis
tests about difference in mean prevalence or
abundance in the Journal of Wildlife Diseases from
2000 to 2004.

Count % of total

Analysis type

Prevalence 67 96
Abundance 17 24
Both 14 20
Total 70

Prevalence

Two-sample t-test/ANOVA 4 5.7
G-test/log-linear 5 7.1
Nonparametric rank testa 2 2.8
Chi-squared/Fisher’s exact test 44 63
Logistic regression 15 21
Total 70c

Abundance

Two-sample t-test/ANOVA 4 24
GLM–negative binomial 1 5.9
Nonlinear regression 1 5.9
Nonparametric rank testb 7 41
None 4 24
Total 17

a Kruskal-Wallis.
b Kruskal-Wallis, Wilcoxin-Mann-Whitney.
c This number is greater than total number of studies that

analyzed prevalence because some studies used more
than one methodology to analyze prevalence data.
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FIGURE 3. Probability of type II errors (y-axis) plotted for increasing sample sizes (vertically) and
increasing effect sizes (x-axis) for two different base proportions for five different statistical methods. The
effect size represents the difference in mean prevalence between the two populations, and it is plotted on a
logarithmic scale. Horizontal lines indicate b50.20, the generally accepted upper limit of beta. Sample sizes
given are pooled n, for a balanced design comparing two groups (i.e., n5200 corresponds to a test comparing
two samples, each of size 100).
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errors, especially for small sample sizes
and small effect sizes (Fig. 3). For small
sample sizes (n520), log-linear regression
produced the lowest type II error rates. The
probability of type II errors also decreased
when comparing two proportions that were
both closer to 0.5 (Fig. 3; right) than when
comparing two proportions that were far
from 0.5 (Fig. 3; left). Large sample sizes
are important when comparing groups
using prevalence; n,200 produced type II
errors .0.20, except when effect size was
$0.17. When prevalence values were close
to 0.5, the type II error was #0.20 for the
raw effect size $0.13.

Error rates for abundance data also
produced high type II error rates, espe-
cially for small sample sizes, small effect
sizes, and small values of the aggregation
parameter k (Fig. 4). Type II errors
decreased as the aggregation parameter
(k), sample size, and effect size increased
(Fig. 4). Highly aggregated samples
(k50.3) produced type II errors rates
.0.2, except when pooled sample size
was $1,000. For more moderate values of
k (1.0 and 1.5), n5200 resulted in low
values of b. Effect size had less of an
impact on type II error rates in the
analysis of abundance than in the analysis
of prevalence (Figs. 3, 4) and was more
pronounced for k.0.3 with abundance
data. A GLM with negative binomial
errors produced the lowest type II error
rates with pooled sample size ,100. Our
simulation of statistical power for preva-
lence and abundance from the same data
showed that analysis of abundance is
always more powerful than analysis of
prevalence (Fig. 5), at least when
n,1,000.

Data reanalysis

Super and van Riper (1995) used chi-
squared tests of independence to reject
the null hypotheses of no difference for
hematozoan prevalence between passerine
birds found in island versus continental
coastal scrub communities, and no signif-
icant differences in hematozoan preva-

lence between resident breeding versus
migratory nonbreeding birds in California
coastal scrub communities.

Our analysis produced the same con-
clusion reached by these authors. Howev-
er, we were also able to estimate the effect
of geographic location and migratory
status on hematozoan parasite prevalence,
something that could not be accomplished
with chi-squared analyses. Like Super and
van Riper (1995), we found that birds on
the mainland site of Palomarin, California,
were more likely to be infected than were
birds from San Miguel Island (P,0.001,
deviance5126.2, df51). However, we
were able to estimate that the odds of
infection with hematozoan parasites were
9.9 (95% confidence interval [C.I.]56.1–
17.1) times greater at Palomarin than at
San Miguel island (P,0.001, z58.754,
from a Wald’s test). When we restricted
our analysis to resident breeding species
only, as did Super and van Riper (1995),
we found the same effect (P,0.001,
deviance5193.7, df51), but additionally
we were able to determine that for
breeding birds only, the odds of infection
at Palomarin were 57 (95% C.I.523.3–
184.7) times greater than on San Miguel
Island (P,0.001, z58.754).

We also compared the hematozoan
prevalence for resident versus migratory
birds at the two different study sites. Like
Super and van Riper (1995), we found that
the odds of infection for migratory birds
varied by migration status at the island site
(P,0.001, deviance524.11, df51); in ad-
dition, the odds of infection for migrant
birds were 13.3 (95% C.I.54.6–48.4)
times greater than for resident species
(P,0.001, z54.42). On the mainland, we
found that there was also a difference in
prevalence between migratory and resi-
dent birds (P,0.001, deviance550.66,
df51), but the pattern was reversed; the
odds of infection for migrants was 3.4
(95% C.I.52.4–4.8) times lower than the
odds of infection for resident species. In
summary, using more informative statisti-
cal methods than those used by Super and
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FIGURE 4. Probability of type II errors (y-axis) by effect size (x-axis), plotted for four different statistical
techniques for a range of pooled sample sizes and aggregation parameters (k). Horizontal lines indicate
b50.20, the generally accepted upper limit. The x-axis (plotted on a logarithmic scale) represents the
difference in mean abundance (effect size) between two populations. Sample sizes given are pooled n, for a
balanced design, comparing two groups.
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van Riper (1995), we were able to estimate
effect sizes, an important step toward
understanding statistical results in a bio-
logic context.

DISCUSSION

Literature review

Articles published in the Journal of
Wildlife Diseases most commonly used
Pearson’s chi-squared test of independence
for contingency tables when analyzing
count data for disease prevalence. We argue
that other techniques may be more useful
because chi-squared tests are one of the
least informative statistical tests due to the
lack of an estimated parameter that allows
the user to describe the degree of depen-
dence between the variables of interest
(Ramsey and Shafer, 2002). Chi-squared
tests are also limited by their ability to only
determine independence between sets of
variables and homogeneity of proportions.
In the study of wildlife disease, the
researcher is often interested in measuring
infection as a response that is a function of
one or more explanatory variables. Alterna-
tive statistical methods, such as logistic
regression and log-linear regression, allow
the user to explicitly model the probability
of infection given one or a number of

explanatory variables, and associated pa-
rameter estimates can provide insight into
the magnitude of those effects. Also, we
have shown here that log-linear regression
has greater statistical power than other
techniques, and wildlife disease studies
with small sample sizes should consider
the use of this technique.

In our review of Journal of Wildlife
Diseases papers, we found that some
articles report data for studies in which
pooled sample sizes were very small (e.g.,
3 of the 70 reviewed articles had pooled
sample sizes #15). At these sample sizes,
for small to intermediate effect sizes, the
probability of type II errors approaches
100%. Under these situations, statistical
hypothesis testing becomes meaningless,
especially if there is any cost to commit-
ting a type II error. We argue that when
sample sizes are very small, it may be
preferable to simply report descriptive
statistics with associated confidence inter-
vals, use methods more suited to such
small sample sizes (for example, boot-
strapping methods; Efron and Tibshirani,
1993), or wait to publish results until
larger sample sizes become available.
When wildlife disease researchers are
dealing with critically endangered species,
small sample sizes are a reality. We hope

FIGURE 5. Probability of type II errors (y-axis) for increasing sample sizes (x-axis) for the analysis of
abundance data using a GLM and of prevalence data using log-linear regression. For all three simulations,
samples were randomly drawn from two populations with means51 and 2, for k50.3 (left), k51.0 (middle),
and k51.5 (right). The corresponding prevalence values were 0.36 and 0.46 (left), 0.49 and 0.66 (middle), and
0.53 and 0.72 (right). Horizontal line indicates b50.2. Sample sizes shown are pooled n, for a balanced design,
comparing two groups.

708 JOURNAL OF WILDLIFE DISEASES, VOL. 45, NO. 3, JULY 2009

Downloaded From: https://bioone.org/journals/Journal-of-Wildlife-Diseases on 13 Aug 2024
Terms of Use: https://bioone.org/terms-of-use



the findings presented here demonstrate
that hypothesis testing may not be the best
way to understand such limited data sets.

The balance between statistical errors
and the practical costs of type I and type II
errors is often ignored in the scientific
literature, and statistical methods common-
ly arbitrarily reduce the probability of a type
I error at the expense of increasing type II
errors (Di Stefano, 2003). Our literature
review revealed that these concerns are also
largely overlooked in wildlife disease re-
search, and that in at least a portion of the
studies that we investigated, the potential
costs of making type II errors could equal or
outweigh the cost of type I errors. When
focusing on a species of conservation
concern, wildlife disease researchers should
make every effort in attempting to reduce
the probability of making a type II error.

We recognize that our efforts to accu-
rately assess the relative costs of type II
and type I errors in the work of others may
be imperfect; the individual researcher is
eminently more suited to evaluate these
relativities in her or his own work.
However, we hope that by addressing this
issue here, researchers will recognize the
importance of considering the relative
costs of type I and type II errors during
the planning stage of future studies.

Computer simulation

Our results have produced some general
guidelines for sample sizes in the analysis of
prevalence and abundance data. Our com-
puter simulation revealed that below
n5200, analysis of prevalence data lacks
statistical power, except for the largest
effect sizes. For abundance data, there is
also low power below n5100. These
findings, combined with results from our
literature review, suggest that at least some
of the articles published in the Journal of
Wildlife Diseases lack sufficient statistical
power. This observation may be conserva-
tive for two reasons. First, our simulations
used balanced sample sizes with one 2-level
factor in the design. Studies reviewed in
JWD usually had unbalanced designs that

are inherently less powerful. Also, for a
given pooled sample size, as the number of
factors increases from one with more than
two levels, statistical power also decreases.
For these reasons, lack of statistical power
may be more common than our study
demonstrates. By utilizing the sample size
guidelines presented in this paper, re-
searchers can conduct their own prospec-
tive power analyses before a study design is
implemented.

Our simulation results demonstrate that
an analysis of parasite count data is always
more powerful than an analysis of preva-
lence data, at least for n,1,000. When
given the choice, abundance data should
always be analyzed using appropriate
methods, for example, when these counts
are possible and feasible, such as in the
study of macroparasites. Furthermore,
independent analyses of abundance and
prevalence data from a given data set are
useful because they describe the disease
dynamics of host wildlife populations in
different ways.

We found that, for abundance data,
negative binomial regression is more pow-
erful than some alternative methods; this
finding was also reported by Wilson et al.
(1996). However, this technique does have
shortcomings and should not be considered
a panacea. For example, negative binomial
regression may not be suited for models in
which a single dispersion parameter is fit to
multiple combinations of terms in a complex
model. When models are simple and sample
sizes are large, recommended alternatives
include more complex nonlinear maximum
likelihood methods and bootstrapping (Wil-
son and Grenfell, 1997; Newey et al., 2005).
An analysis of dispersion also allows the user
to account for variation in the dispersion
parameter between combinations of model
terms (Shaw et al., 1998).

Data reanalysis

Our analysis of the contingency tables in
Super and van Riper (1995) came to the
same general conclusion made in that
paper. The goal of our data reanalysis was

O’BRIEN ET AL.—ANALYZING WILDLIFE DISEASE DATA 709

Downloaded From: https://bioone.org/journals/Journal-of-Wildlife-Diseases on 13 Aug 2024
Terms of Use: https://bioone.org/terms-of-use



not to find fault with the authors of the
original paper, but to show that alternative
methods could provide further insight into
their research findings. We reanalyzed
their data to make the point that chi-
squared tests may not always be the most
informative statistical tool, and that esti-
mations of the observed effect size should
be presented when possible. We argue
that our use of an alternative method
allows for a more informative exploration
of their data. Instead of simply answering
the question ‘‘Does the prevalence of
blood hematazoa depend upon geographic
location,’’ we feel that our additional
analyses addressed a more complex and
perhaps more biologically meaningful
question: ‘‘To what degree does the
prevalence of blood hematazoa depend
upon geographic location?’’ If, instead of
geographic effects, we were interested in
the role of an anthropogenic effect on the
prevalence of disease in an endangered
species, we believe that it would be
important to know not only if an effect
exists, but also how large that effect is.
This could be done simply by estimating
the difference between an anthropogenic
treatment and control, and computing a
confidence interval of the difference.

An understanding of the biologic impor-
tance of a statistically significant finding is
important, as is the interpretation of
findings that fail to reject the null hypoth-
esis. The use of parameter estimates and
associated confidence intervals can help in
both cases (Steidl et al., 1997, 2000). In the
case of our data reanalysis, our estimates of
the differences in the prevalence of disease
between different areas allowed us to
interpret the magnitude of the observed
effect, which can then lead to a discussion
of the biologic importance of this effect.
Because wildlife disease workers collect
data that contain biologic information, we
should use our data to come to biologic, not
simply statistical, conclusions (Steidl et al.,
2000). Furthermore, when statistical infer-
ence fails to detect a difference, issues of
statistical power come into play. Because

assessing the power of a test retrospectively
can be problematic (Gerard et al., 1998),
confidence intervals should be used to
guide inferences when researchers fail to
reject their null hypotheses (Steidl et al.,
1997; Gerard et al., 1998).

Finally, it should be noted that unreli-
able or biased numbers work just as well
as reliable ones when conducting statisti-
cal hypothesis tests. Many newer methods
are being developed to better increase the
diagnostic reliability of estimation and
analysis measures such as prevalence
(e.g., Senar and Conroy, 2004; Heisey et
al., 2006; Jennelle et al., 2007). While
these methods have not been addressed
here, wildlife disease researchers need to
explore and, where appropriate, imple-
ment new and emerging statistical tech-
niques as the study of wildlife diseases
plays an ever-increasing role in the
conservation of wildlife species.

In summary, we offer several suggestions
regarding the analysis of wildlife disease
data: 1) It is important to consider statistical
power when designing and analyzing data in
wildlife disease studies. If the costs of type
II errors are potentially high, researchers
should ensure that it is feasible to collect
enough data to adequately answer the
question at hand, and then use statistical
tests that have the most power. In deter-
mining necessary sample sizes, the general
guidelines provided here may be used, or
prospective power analysis may be used to
estimate the power of the proposed study.
2) If possible, data should be collected and
analyzed that will allow analysis of parasite
abundance. Analysis of abundance is not
only more powerful for a given sample size
than the analysis of prevalence, but it also
allows one to describe disease dynamics in
an alternative way. 3) When possible,
statistical techniques should be used that
provide parameter estimates of the effect
size observed in the study. Parameter
estimates should be reported along with
confidence intervals, which will allow both
researchers and readers to assess the
biologic significance of reported findings.
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Wildlife disease workers are faced with a
wide array of statistical options for analyzing
their data. Additionally, many of us strive to
develop research programs that have rele-
vance in a management setting. With this
increasing complexity, there comes the
added responsibility to use appropriate
statistical techniques and to maximize
information transfer between the scientist
and the user of scientific information. We
hope that our suggestions and comparison
of statistical techniques in this article will
provide food for thought in the design of
future wildlife disease studies and in
eventual data analysis and interpretation.
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