

Large Mammals

Authors: Hao, Wang, and Sanderson, James G.

Source: A Rapid Biological Assessment of three sites in the Mountains of Southwest China Hotspot, Ganzi Prefecture, Sichuan Province, China: 109

Published By: Conservation International

URL: https://doi.org/10.1896/054.052.0105

The BioOne Digital Library (<u>https://bioone.org/</u>) provides worldwide distribution for more than 580 journals and eBooks from BioOne's community of over 150 nonprofit societies, research institutions, and university presses in the biological, ecological, and environmental sciences. The BioOne Digital Library encompasses the flagship aggregation BioOne Complete (<u>https://bioone.org/subscribe</u>), the BioOne Complete Archive (<u>https://bioone.org/archive</u>), and the BioOne eBooks program offerings ESA eBook Collection (<u>https://bioone.org/esa-ebooks</u>) and CSIRO Publishing BioSelect Collection (<u>https://bioone.org/csiro-ebooks</u>).

Your use of this PDF, the BioOne Digital Library, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Digital Library content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder

BioOne is an innovative nonprofit that sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Chapter 9

Large Mammals

Wang Hao and James G. Sanderson

Summary

We present the results of a large mammal survey performed during a Rapid Assessment Program (RAP) survey conducted at three sites in the Heng Duan Mountains, Sichuan, China from August 21 to September 12, 2005. To survey for the presence of large mammals we used three methodologies: (1) tracks, scats, sounds, and visual observations, (2) interviews with local people, and (3) camera phototraps. We suspect the presence of 39 large mammal species and confirmed 17 species in the region. Of the mammals recorded, one is listed as Endangered (*Ailurus fulgens*) and three are considered Vulnerable (*Cervus albirostris, Catopuma temminckii*, and *Ursus thibetanus*) by the IUCN. Interviews with local people suggested that an additional three species listed as Endangered and three listed as Vulnerable are likely to occur in the area.

While all three sites were heavily utilized for grazing domestic stock such as yaks, horses, and goats, each of three sites was impacted differently by the local people. We found no evidence of blue sheep or bears at any sites. Our evidence suggests that some of the sites we sampled still contain large mammal species characteristic of western Sichuan, but in very low densities thus supporting the need for immediate conservation action for long-term protection. Further surveys are necessary to confirm or refute the presence of Argali, Tibetan gazelles, brown bears, wolves, and snow leopards.

Materials and Methods

We conducted our surveys at the end of the wet season at three sites in western Sichuan: Danba, Dongma, Kuiyong (N 300 36', E 1010 47') from August 21 to August 26, 2005, Kangding, Pengta (N 300 30', E 1020 20') from August 29 to September 3, 2005, and Yajiang, Decha (N 290 40', E 1000 46) from September 5 to September 9, 2005. Henceforth, we refer to these sites as Danba, Kangding, and Yajiang, respectively. The elevation range surveyed in Danba, Kangding, and Yajiang was 3000 – 4300 m, 2300 – 3900 m, and 3600 – 4600 m, respectively. At Danba the forest was conifer - oak-bamboo and treeline was approximately 4300 m. The second site at Kangding was lower elevation consisting of conifer – secondary broadleaf – oak forests to oak forests and grasslands at 3900 m. Yajiang vegetation was conifer – oak and grasslands up to 4600 m. All sites were utilized to graze yaks, horses, and goats. Due to abnormally high rainfall throughout western Sichuan, interior forests streams were flowing with unusually high volumes of water for this time of year. We surveyed two sites 6 km apart at Danba but present the combined results for this site.

To survey for the presence of large mammals we used three methodologies: (1) tracks, scats, sounds, and visual observations, (2) interviews with local people, and (3) camera phototraps at each of the three study sites. Because these methods provide different confidence levels, all results are presented separately. To determine presence of large mammalian species, each day during daily excursions from base camp we recorded direct observation of species along with track and sound identification, nests, dung and other indirect information. Because our records were also collected opportunistically by our colleagues and some observations may have been repeated, we used this information only to document species presence.

We also interviewed local people using Wang and Hu 1999 as a guide. Small groups of between one and five people were asked to page through the book and select which mammals they had observed in the past five years. We avoided making comments that might influence their decisions, and no time pressure was used to coerce responses.

									Ì					Ì			
Site name	Date (2005)	Observer	Time	Elev.	Long	Lat	Common Name	Trace Type	0ty	Freshness	Habitat	Long D	Long M	Long S	D	M	Lat S
(D) Dongma	22-Aug	JS, WH, DJ	11:56	3540	101.78569	30.61366	Tufted deer	Scat	-	DId	TBM, SF, R	101	47	8.5	30	36	49.2
(D) Dongma	22-Aug	JS, WH, DJ	13:34	3800	101.80571	30.61221	Brown bear	Scat		Old	TBM, SF, RD	101	48	20.6	30	36	44.0
(D) Dongma	22-Aug	JS, WH, DJ	17:00	3810	101.80646	30.61217	Wild pig	Scat		Old	TBM, SF, F	101	48	23.3	30	36	43.8
(D) Dongma	22-Aug	JS, WH, DJ	17:50	3690	101.79276	30.61358	Leopard cat	Scat		Mixed with fresh and old	TBM, SF, R	101	47	33.9	30	36	48.9
(D) Kuiyong	23-Aug	WH, LS, DJ	10:30	2750	101.7356	30.60513	Tufted deer	alive		Dir	TBM, SF, RS	101	44	8.2	30	36	18.5
(D) Kuiyong	24-Aug	WH, DJ	11:54	2980	101.75828	30.56433	Eurasian badger	Dead body		3-10 days	TBM, SF, RD	101	45	29.8	30	33	51.6
(D) Kuiyong	24-Aug	WH, DJ	14:04	3300	101.7366	30.54372	Serow	Footprints		1-2 days	TBM, SF, RV	101	44	11.8	30	32	37.4
(D) Kuiyong	24-Aug	WH, DJ	16:14	3330	101.73718	30.54471	Serow	Skull		Old	TBM, SF, RV	101	44	13.8	30	32	41.0
(D) Kuiyong	25-Aug	HM	14:30	3310	101.78378	30.5145	Serow	Scat	1	Old	TBM, SF, R	101	47	1.6	30	30	52.2
(D) Kuiyong	25-Aug	HM	14:30	3310	101.78378	30.5145	Leopard cat	Scat	-1	Old	TBM, SF, R	101	47	1.6	30	30	52.2
(D) Kuiyong	25-Aug	HM	14:30	3310	101.78378	30.5145	Rhesus macaque	Scat		Old	TBM, SF, R	101	47	1.6	30	30	52.2
(D) Kuiyong	25-Aug	HM	14:30	3310	101.78378	30.5145	Forest musk deer	Scat		Old	TBM, SF, R	101	47	1.6	30	30	52.2
(D) Kuiyong	26-Aug	WH, DJ	14:08	3460	101.78876	30.50568	Leopard cat	Scat	2	1-2 days	TBM, SF, RD	101	47	19.5	30	30	20.4
(D) Kuiyong	26-Aug	WH, DJ	14:08	3460	101.78876	30.50568	Leopard cat	Dead body	1	3-10 days	TBM, SF, RD	101	47	19.5	30	30	20.4
(D) Kuiyong	26-Aug	WH, DJ	15:18	3570	101.78631	30.49485	Leopard cat	Scat	1	3-10 days	TBM, SF, F	101	47	10.7	30	29	41.5
(K) Pengta	29-Aug	JS, WH	10:19	2560	102.31647	30.48336	Wild pig	Feeding	1	1-2 days	TBM, SF, RD	102	18	59.3	30	29	0.1
(K) Pengta	29-Aug	JS, WH	13:57	3050	102.33508	30.47483	Tufted deer	Footprints	1	1-2 days	TBM, SF, F	102	20	6.3	30	28	29.4
(K) Pengta	29-Aug	JS, WH	15:09	3120	102.33482	30.47552	Asian black bear	Scat	1	1-2 days	TBM, SF, F	102	20	5.4	30	28	31.9
(K) Pengta	30-Aug	JS, WH	12:18	2830	102.34049	30.53114	Goral	Scat	3	3-10 days	TBM, SF, R	102	20	25.8	30	31	52.1
(K) Pengta	30-Aug	JS, WH	12:18	2830	102.34049	30.53114	Red panda	Scat	2	Over 10 days	TBM, SF, R	102	20	25.8	30	31	52.1
(K) Pengta	31-Aug	JS, WH	12:00	3100	102.33173	30.48923	Wild pig	Feeding	1	3-10 days	TBM, SF, FW	102	19	54.2	30	29	21.2
(K) Pengta	31-Aug	JS, WH	12:23	3130	102.33271	30.48797	Serow	Footprints	1	1-2 days	TBM, SF, RV	102	19	57.8	30	29	16.7
(Y) Decha	6-Sep	HM	10:00	3700	100.75794	29.6778	Forest musk deer	alive	2	Dir	TBM, PF, F	100	45	28.6	29	40	40.1
(Y) Decha	6-Sep	HM	10:07	3720	100.76599	29.67564	Forest musk deer	Scat	1	1-2 days	TBM, PF, RD	100	45	57.6	29	40	32.3
(Y) Decha	6-Sep	HM	12:06	3880	100.77467	29.67536	Alpine musk deer	alive	-1	Dir	TBM, PF, F	100	46	28.8	29	40	31.3
(Y) Decha	6-Sep	HM	13:00	3960	100.77682	29.67727	Sambar deer	Scat		3-10 days	TBM,PF,F, RV	100	46	36.6	29	40	38.2

Table 9.1. Wang Hao and James G. Sanderson

110 Downloaded From: https://bioone.org/ebooks/ on 05 Apr 2025 Terms of Use: https://bioone.org/terms-of-use

WH 13:35 3950 100.77364 29.67687 WH 13:35 3950 100.77364 29.67687 WH 13:35 3950 100.77364 29.67687 JS, WH 9:18 3870 100.77364 29.67687 JS, WH 9:18 3870 100.7485 29.67687 JS, WH 9:59 4000 100.74122 29.65833 JS, WH 10:49 4170 100.73503 29.65635 JS, WH 10:49 4170 100.73503 29.65635 JS, WH 15:28 4070 100.73503 29.65635 JS, WH 15:28 4070 100.71298 29.71622 JS, WH 11:05 3930 100.71298 29.71622 JS, WH 11:05 3930 100.71298 29.71622 JS, WH 11:05 3930 100.7149 29.71648 JS, WH 11:38 4000 100.7149 29.71748 JS, WH 11:38 4000 <t< th=""><th></th><th>13:35 13:35 9:18 9:59 10:49 15:28 11:05</th><th>3950 3950 3870 4000 4170</th><th>100.77364 100.77364 100.7485 100.74122 100.73503</th><th>29.67687 29.67687</th><th>Earsot much door</th><th>ر</th><th>,</th><th></th><th></th><th>000</th><th></th><th></th><th></th><th></th><th></th></t<>		13:35 13:35 9:18 9:59 10:49 15:28 11:05	3950 3950 3870 4000 4170	100.77364 100.77364 100.7485 100.74122 100.73503	29.67687 29.67687	Earsot much door	ر	,			000					
6-Sep WH 13:35 3950 100.77364 29.67687 7-Sep JS, WH 9:18 3870 100.7485 29.65833 3 7-Sep JS, WH 9:18 3870 100.7485 29.65833 3 7-Sep JS, WH 9:59 4000 100.74122 29.65833 3 7-Sep JS, WH 10:49 4170 100.73503 29.65635 3 7-Sep JS, WH 15:28 4070 100.71298 29.71622 3 8-Sep JS, WH 11:05 3930 100.71298 29.71622 3 8-Sep JS, WH 11:05 3930 100.7149 29.71748 3 8-Sep JS, WH 11:05 3930 100.7149 29.71748 3 8-Sep JS, WH 11:05 3930 100.7149 29.71748 3 8-Sep JS, WH 11:38 4000 100.7149 29.71748 3 8-Sep JS, WH		13:35 9:18 9:59 9:59 10:49 15:28 11:05	3950 3870 4000 4170	100.77364 100.7485 100.74122 100.73503	29 67687	FOTEST IIIUSK UECI	Scat	1	unknown	TBF, PF, F	100	46	25.1	29	40	36.7
7-Sep JS, WH 9:18 3870 100.7485 29.65833 1 7-Sep JS, WH 9:59 4000 100.74122 29.65275 2 7-Sep JS, WH 9:59 4000 100.74122 29.655275 2 7-Sep JS, WH 10:49 4170 100.73503 29.64587 2 7-Sep JS, WH 10:49 4170 100.73953 29.64587 2 7-Sep JS, WH 10:49 4070 100.71298 29.71622 2 8-Sep JS, WH 11:05 3930 100.71298 29.71622 2 8-Sep JS, WH 11:05 3930 100.7144 2 2 8-Sep JS, WH 11:38 4000 100.7144 2 2 2 8-Sep JS, WH 11:38 4000 100.7149 2 2 2 2 8-Sep JS, WH 11:38 4000 100.71495 2 2 2 2 2 8-Sep JS, WH 12:16 4100 100.		9:18 9:59 10:49 15:28 11:05	3870 4000 4170	100.7485 100.74122 100.73503	100 100/4	Serow	Scat	1	unknown	TBF, PF, F	100	46	25.1	29	40	36.7
7-Sep JS, WH 9:59 4000 100.74122 29.65275 7-Sep JS, WH 10:49 4170 100.73503 29.64587 7-Sep JS, WH 10:49 4170 100.73503 29.64587 7-Sep JS, WH 15:28 4070 100.73953 29.64587 8-Sep JS, WH 15:28 4070 100.71298 29.71622 8-Sep JS, WH 11:05 3930 100.71298 29.71622 8-Sep JS, WH 11:05 3930 100.7144 29.71622 8-Sep JS, WH 11:05 3930 100.7144 29.71622 8-Sep JS, WH 11:38 4000 100.7144 29.71648 8-Sep JS, WH 11:38 4000 100.7144 29.71748 8-Sep JS, WH 11:38 4000 100.71495 29.71748 8-Sep JS, WH 11:38 4000 100.71495 29.71748 8-Sep JS, WH 12:16 4100 100.71495 29.71848 8-Sep JS, WH 1		9:59 10:49 15:28 11:05	4000 4170	100.74122 100.73503	29.65833	Serow	Scat	1	3-10 days	TBF, SF, RV	100	44	54.6	29	39	30.0
7-Sep JS, WH 10:49 4170 100.73503 29.64587 7-Sep JS, WH 15:28 4070 100.73953 29.64587 8-Sep JS, WH 11:05 3930 100.71298 29.71622 8-Sep JS, WH 11:05 3930 100.71298 29.71622 8-Sep JS, WH 11:05 3930 100.71298 29.71622 8-Sep JS, WH 11:05 3930 100.7144 29.71622 8-Sep JS, WH 11:38 4000 100.7144 29.71748 8-Sep JS, WH 11:38 4000 100.7144 29.71748 8-Sep JS, WH 11:38 4000 100.7144 29.71848 8-Sep JS, WH 11:38 4000 100.714495 29.71848 8-Sep JS, WH 12:16 4100 100.71495 29.71848 8-Sep JS, WH 12:55 4150 100.71495 29.71868 8-Sep JS, WH 13:45 4100 20.714695 29.71868 8-Sep JS, WH <td< td=""><td></td><td>10:49 15:28 11:05</td><td>4170</td><td>100.73503</td><td>29.65275</td><td>Asian golden cat</td><td>Scat</td><td>5</td><td>Mixed with fresh and old</td><td>TBF, SF, RV, P</td><td>100</td><td>44</td><td>28.4</td><td>29</td><td>39</td><td>9.9</td></td<>		10:49 15:28 11:05	4170	100.73503	29.65275	Asian golden cat	Scat	5	Mixed with fresh and old	TBF, SF, RV, P	100	44	28.4	29	39	9.9
7-Sep JS, WH 15:28 4070 100.73953 29.65035 1 8-Sep JS, WH 11:05 3930 100.71298 29.71622 2 8-Sep JS, WH 11:05 3930 100.71298 29.71622 2 8-Sep JS, WH 11:05 3930 100.71298 29.71748 2 8-Sep JS, WH 11:38 4000 100.7144 29.71748 2 8-Sep JS, WH 11:38 4000 100.7144 29.71748 2 8-Sep JS, WH 11:38 4000 100.7144 29.71748 2 8-Sep JS, WH 11:36 4100 100.7144 29.71748 2 8-Sep JS, WH 12:16 4100 100.71495 29.71868 2 8-Sep JS, WH 12:16 4100 100.71495 29.71868 2 8-Sep JS, WH 12:16 4100 100.71495 29.71868 2 8-Sep JS, WH 12:55 4150 100.71495 29.71463 2		15:28 11:05			29.64587	Asian golden cat	Scat		Mixed with fresh and old	TBF, SF, RV, P	100	44	6.1	29	38	45.1
8-Sep JS, WH 11:05 3930 100.71298 29.71622 8-Sep JS, WH 11:05 3930 100.71298 29.71622 8-Sep JS, WH 11:05 3930 100.71298 29.71622 8-Sep JS, WH 11:38 4000 100.7144 29.71748 8-Sep JS, WH 11:38 4000 100.714 29.71748 8-Sep JS, WH 11:38 4000 100.714 29.71748 8-Sep JS, WH 11:38 4000 100.7144 29.71748 8-Sep JS, WH 11:36 4100 100.71457 29.71848 8-Sep JS, WH 12:16 4100 100.71495 29.71848 8-Sep JS, WH 12:55 4150 100.71495 29.71868 8-Sep JS, WH 13:45 4100 100.71495 29.71868 10.571463 8-Sep JS, WH 13:45 3900 100.71379 29.71463 10.571463 10.571463 10.571463 10.571463 10.571463 10.571463 10.571463 10.571463		11:05	4070	100.73953	29.65035	Porcupines	Hair	2	within 1 day	TBF, SF, F	100	44	22.3	29	39	1.3
8-Sep JS, WH 11:05 3930 100.71298 29.71622 8-Sep JS, WH 11:38 4000 100.714 29.71748 8-Sep JS, WH 11:38 4000 100.7144 29.71848 8-Sep JS, WH 12:16 4100 100.71495 29.71848 8-Sep JS, WH 12:55 4150 100.71495 29.71848 8-Sep JS, WH 13:45 4100 100.71457 29.71808 8-Sep JS, WH 13:45 4100 100.71379 29.71463 8-Sep JS, WH 14:25 3900 100.71379 29.71463 20.71463			3930	100.71298	29.71622	Forest musk deer	Scat	1	1-2 days	TBM,PF,S	100	42	46.7	29	42	58.4
8-Sep JS, WH 11:38 4000 100.714 29.71748 8-Sep JS, WH 11:38 4000 100.714 29.71748 8-Sep JS, WH 11:38 4000 100.714 29.71748 8-Sep JS, WH 11:38 4000 100.714 29.71848 8-Sep JS, WH 12:16 4100 100.71381 29.71848 8-Sep JS, WH 12:55 4150 100.71495 29.71848 8-Sep JS, WH 12:55 4100 100.71495 29.71848 8-Sep JS, WH 13:45 4100 100.71457 29.71808 8-Sep JS, WH 13:45 3900 100.71379 29.71463 8-Sep JS, WH 14:25 3900 100.71379 29.71463		11:05	3930	100.71298	29.71622	Wild pig	Nest	1	Old	TBM,PF,S	100	42	46.7	29	42	58.4
8-Sep JS, WH 11:38 4000 100.714 29.71748 8-Sep JS, WH 12:16 4100 100.71381 29.7185 8-Sep JS, WH 12:16 4100 100.71381 29.7185 8-Sep JS, WH 12:15 4150 100.71495 29.71868 8-Sep JS, WH 12:55 4150 100.71495 29.71868 8-Sep JS, WH 13:45 4100 100.71457 29.71808 8-Sep JS, WH 13:45 3900 100.71379 29.71463 0.553 WH 14:25 3900 100.71379 29.71463		11:38	4000	100.714	29.71748	White-lipped deer	Scat	many	old	TBM, PF, R	100	42	50.4	29	43	2.9
8-Sep JS, WH 12:16 4100 100.71381 29.7185 8-Sep JS, WH 12:15 4150 100.71495 29.71848 8-Sep JS, WH 12:55 4150 100.71495 29.71848 8-Sep JS, WH 12:55 4100 100.71495 29.71848 8-Sep JS, WH 13:45 4100 100.71457 29.71808 8-Sep JS, WH 13:45 3900 100.71379 29.71463 0.555 WH 14:25 3900 100.71379 29.71463		11:38	4000	100.714	29.71748	Alpine musk deer	Scat	1	3-10 days	TBM, PF, R	100	42	50.4	29	43	2.9
8-Sep JS, WH 12:55 4150 100.71495 29.71848 8-Sep JS, WH 13:45 4100 100.71457 29.71808 8-Sep JS, WH 13:45 3900 100.71457 29.71808 8-Sep JS, WH 14:25 3900 100.71379 29.71463 9-Sep JS, WH 14:25 3900 100.71379 29.71463		12:16	4100	100.71381	29.7185	Goral	Scat	1	3-10 days	TBM, PF, F	100	42	49.7	29	43	6.6
8-Sep JS, WH 13:45 4100 100.71457 29.71808 8-Sep JS, WH 14:25 3900 100.71379 29.71463 0.5.3 WH 14:25 3900 100.71379 29.71463		12:55	4150	100.71495	29.71848	Wild pig	Nest	1	Old	TBM, PF, S (in F)	100	42	53.8	29	43	6.5
8-Sep JS, WH 14:25 3900 100.71379 29.71463 0 Soc WH 13:15 2000 100.7787 20.66100		13:45	4100	100.71457	29.71808	Wild pig	Scat	many	Old	TBM, PF, R	100	42	52.5	29	43	5.1
0 Com W/H 13.15 3000 100 7787 30 66100		14:25	3900	100.71379	29.71463	Porcupines	Hair	1	unknown	TBM, PF, F	100	42	49.6	29	42	52.7
9-36P WII 13:13 2700 100.//84 29.00179	Sep WH	13:15	3900	100.7784	29.66199	Eurasian badger	Scat	1	1-2 days	TBM, SF, RD	100	46	42.2	29	39	43.2
(Y) Decha 9-Sep WH 14:54 4000 100.78013 29.66242 Himalaya		14:54	4000	100.78013	29.66242	Himalayan marmot	Den	1	Old	IJ	100	46	48.5	29	39	44.7

DJ:Daniel Juhn JS:James Sanderson WH:Wang Hao Dir Direct observation F:Inside forest FW:Forest window G:Grassland P:Path PF:Primary Forest R:Beside rocks RD:Along Road RV:Riverside S:Shrub SF:Secondary Forest TBF:Temperate Broadleaf Forests TBM:Temperate Broadleaf and Mixed Forests

D:Danba K:Kangding Y :Yajiang

Legend Site Name

Observer Freshness

Habitat

The passive method included the use of nine camera phototraps (PhotoScout, Huntsville, Alabama, USA; Trapacamera, Saő Paulo, Brazil; and Cuddeback Digital, DeerCam, Park Falls, Wisconsin, USA) operated at each study site. All three phototrap models were triggered by heat-in-motion. Each PhotoScout and Trapacamera used a standard 35mm camera set on autofocus and loaded with ASA 200 print film. Cameras were set to operate continuously and to wait a maximum of 60 seconds between photographs. Cameras

were placed at sites suspected of being frequented by various mammalian species. Den sites, trails, and feeding or drinking stations were typically chosen for camera placement. Cameras were typically located at least 500 meters from base camp. For shy mammals under severe hunting pressure, camera trapping methods might be more effective than walking transects, especially when observers have different and varied levels of expertise.

			iniais photographed by		each of three China RAP sites.	ï
Site		Number of Cameras	Duration	Total Camera nights	Person to set	Wildlife captured
Danba	Dongma	6	Aug 22 - Aug 26	24	JS, Wang Hao, DJ	-
	Kuiyong	4	Aug 24 - Aug 26	8	AS	-
Kangding	Mid road	3	Aug 29 - Sept 2	12	JS, Wang Hao, Wang Dayong, Nima	Rhesus macaque
	Lower road	1	Aug 31 - Sept 2	2	JS, Wang Hao, Wang Dayong	-
Vallana	Sacred Mts.	4	Sept 6 - Sept 10	16	JS, Nima	Eurasian Badger
Yajiang	Valley near Camp	5	Sept 6 - Sept 10	20	Wang Hao, Jiang Wei	Alpine Musk Deer

DJ: Daniel Juhn; JS: James Sanderson; AS: Anne Savage Observers:

Results

We observed, identified by tracks, scats, or sound 8, 6, and 12 species of large mammals at Danba, Kangding, and Yajiang, respectively (Table 9.1, Appendix 6). Interviews of local people revealed the possible presence of a total of 28, 25, and 30 species of large mammals at Danba, Kangding, and Yajiang, respectively (Table 9.1). No camera trap photographs were taken at Danba during 32 camera-trap days. During 14 camera-trap days at Kangding a Rhesus macaque (Macaca mulatta) was photographed. At Yajiang camera phototraps recorded the presence of Alpine musk deer (Moschus sifanicus) and Eurasian badger (Meles meles) during 36 camera-trap days (Table 9.2).

We observed alive only five wild large mammals during our surveys: one Alpine musk deer (Moschus sifanicus) at Danba and another at Yajiang, one Forest musk deer (Moschus berezovshii) at Yajiang, one Tufted deer (Elaphodus cephalophus) at Danba, and a Eurasian badger (Meles meles) at Yajiang. Despite frequent searches of the mountain tops we were unable to confirm the presence of Blue sheep (Pseudois nayaur) and Brown bear (Ursus acrtos). The presence of Asian black bear (Selenarctos thibetanus) is based on a single paw track at Yajiang. Based on observations of several scats we suspect the possible presence of golden cat (Catopuma temminckii) at Yajiang.

Discussion

Our results suggest that the full biologically rich assortment of large mammals which characterize the high elevation forests of western Sichuan might remain in the greater Danba and Yajiang areas. However, the large mammalian fauna appears to occur in exceedingly low densities and is extremely shy, particularly at Danba and Kangding.

Table 9.3. The number of threatened mammals documented at each of 3 sites (IUCN 2006).

Site	Methods	Endangered (EN)	Vulnerable (VU)
	Camera Trap	-	-
Site 1: Danba	Survey	-	2
Dunda	Interview	2	8
	Camera Trap	-	-
Site 2: Kangding	Survey	1	2
Rangung	Interview	3	7
	Camera Trap	-	-
Site 3: Yajiang	Survey	-	4
i ujiung	Interview	1	7

According to the current IUCN Red List (IUCN 2006) four species recorded or reported to occur in the area during our survey are listed as Endangered: Snow leopard (Uncia uncia), Giant Panda (Ailuopoda melanoleuca), Red panda (Ailurus fulgens), and Asian wild dog (Cuon alpinus). Four recorded or reported species are listed as Vulnerable: Asian golden cat (Catopuma temminckii), Takin (Budorcas taxicolor), Argali (Ovis ammon), and White-lipped deer (Cervus). The remaining species recorded including Leopard (Panthera pardus), Goral (Naemorhedus goral), Forest musk deer (Moschus berezovskii), Alpine musk deer (Moschus chrysogaster), Tibetan fox (Vulpes ferrilata), Lynx (Lynx lynx), Common otter (Lutra lutra), and Clawless otter (Aonyx cinereus) are listed as Lower Risk or Least Concern. The presence of threatened species, particularly those listed as Endangered, make these forests critical

to both regional and global biodiversity (Table 9.3). The Tibetan gazelle (*Procapra picticaudata*) is considered Low Risk/Near Threatened but likely requires re-evaluation. The gazelle is an icon of the rich and threatened fauna of western Sichuan. The possible existence of this species at Yajiang is an exciting possibility that should be investigated further. The possible presence of Argali at Danba is based upon an interview. There is no evidence to support the presence of the endemic Chinese mountain cat (*Felis bieti*) at the sites we surveyed nor did any of the local Tibetans recognize the cat as they do elsewhere where the cat occurs (He et al. 2004, Chen et al. 2005).

Because only three camera trap pictures of native animals were obtained, discussion of photographic rates is not useful. However, that so few photographs were obtained suggests that wildlife occurs in low densities or is extremely shy at the sites we surveyed. Although we found a catapult at Kangding and a single snare trap typical of those used to capture musk deer was found at Yajiang, we found no evidence of widespread direct persecution of wildlife. This could be because wildlife occurs in such low densities that hunting is simply not worth the effort. However, the anti-poaching efforts of government and local communities have recently been enhanced, and a nation-wide effort by the Chinese government to limit the number of guns held by local people has been successful. Yaks, horses, and, to a lesser extent, goats appear to be quite numerous and utilize all of the available grazing land up to the limit of grass at the highest elevation.

Under the present rules regulating grazing practices each household pays a very low rate per animal to graze as much livestock as they can manage. This suggests a "tragedy of the commons" situation whereby every household grazes as much livestock as possible thereby encouraging widespread overgrazing over as large an area as can be managed by a family. In effect, no domestic rangeland management practices exist. At Kangding, for instance, we were informed that more than 100 yaks died of disease in 2004. The possibility of overgrazing by domestic livestock and the presence of wildlife sharing pastures with domestic livestock cannot be good for either humans or wildlife and is likely not sustainable.

Local pressure on forest resources for fuel wood, building of homes, shops, public buildings, and monasteries supports the conversion of forest to pasture. Once cleared of trees, domestic animals likely maintain these grasslands. For instance, at Kangding in a forest patch adjacent to a pasture we found little recruitment of trees. Tree recruitment by villagers is supported by the socalled *Grain-for-Green program*. However, tree replanting takes place in unused agricultural patches nearest the village while trees are harvested in the forest beyond the village. Though our observations were not systematic we suggest that further investigation of tree replanting efforts is necessary. For instance, tree replanting might achieve better long-term results if replanting was done in the forest when mature trees are harvested.

Our results are suggestive of and consistent with the so-called *empty forest syndrome* whereby large mammal populations are, one by one, reduced in density and become "ecologically extinct" from large areas (Redford 1992). An ecologically extinct species is one that continues to exist, but the population of the species is so low that the ecological role of the species is irrelevant. The cause of this slow but inevitable extinction might be due to unmitigated grazing practices rather than direct persecution. However, our results also suggest the full biologically rich assortment of large

mammals might *at this time* still be present (albeit in very low densities over a vast area) and that this biodiversity can be stabilized and brought back if proper grazing management and forestry practices are implemented with sustainability as the goal.

Conservation Recommendations

Present grazing and to a lesser extent tree harvesting practices are likely having a long-term negative impact on many species of wildlife and are not sustainable for domestic livestock production. As the rural population grows the number of households will increase and so will community pressure on grazing lands. Moreover, this negative impact is multiplied because each household has at least five domestic animals. When the distance people travel by foot in a day to search for their livestock is reached (as is likely the case already) forest clearing to support domestic livestock production will increase (or the number of livestock held by each household will decrease – an unlikely possibility). Once the land is cleared of forest, domestic livestock will maintain the pastures. Tree replanting efforts can also be improved with little effort.

Allowing the present grazing management system to continue is inviting more domestic livestock disease outbreaks that will negatively impact humans and wildlife alike. Review and revision of domestic livestock management practices is thus vital not only to support sustainable livestock production but also to preserve the large mammalian biodiversity of western Sichuan. Viewed this way, a grazing management practice designed to benefit humans will likely be beneficial to wildlife as well.

Further surveys are necessary to confirm the possible existence of Argali sheep at Danba. This is far from their known distribution but local people informed us that they had observed this species in the area. Wildlife in Yajiang was more easily observed than at the other sites we visited. Therefore, economic development of ecotourism in Yajiang should be explored.

References

- Boufford, D.E., P.P.van Dijk and L. Zhi. 2004. Mountains of Southwest China. *In*: Mittermeier, R.A., P. Robles Gil, M. Hoffmann, J. Pilgrim, T. Brooks, C.G. Mittermeier, J. Lamoreux and G.A.B. da Fonseca (eds.). Hotspots Revisited. Cemex. Pages 159 – 164.
- Yufeng, Y., Drubgyal, Achu, L. Zhi, and J. Sanderson. 2007. First photographs in nature of the Chinese mountain cat. Cat News 47:6-7.
- He, L., R. García-Perea, M. Li and F. Wei. 2004. Distribution and conservation status of the endemic Chinese mountain cat *Felis bieti*. Oryx 38(1): 55-61.
- IUCN. 2006. 2006 IUCN Red List of Threatened Species. Web site: www.iucnredlist.org. Downloaded on 23 May 2007.
- Redford, K.H. 1992. The Empty Forest. BioScience 42(6): 412-422.
- Valdiya, K.S. 2001. Himalaya. Universities Press, Hyderabad, India.
- Wang, Y. and J. Hu. 1999. The colour handbook of the mammals of Sichuan. China Forestry Publishing House. Beijing, China.
- Wang Sung and Xie Yan. 2004. China Species Red List. Higher Education Press, Beijing, China.