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SPECIAL SECTION: SPATIAL ANALYSIS, MAPPING, AND MANAGEMENT OF MARINE FISHERIES

Two-Stage Boosted Regression Tree Model to Characterize
Southern Flounder Distribution in Texas Estuaries at Varying
Population Sizes

John T. Froeschke*
Gulf of Mexico Fishery Management Council, 2203 North Lois Drive, Suite 1100, Tampa,
Florida 33511, USA

Bridgette F. Froeschke
Biology Department, College of Natural and Health Sciences, University of Tampa,
401 West Kennedy Boulevard, Box U, Tampa, Florida 33606, USA

Abstract
Linking trends in fish population abundance to environmental characteristics is often difficult because fish use a

variety of habitats throughout their ontogeny and may exhibit large interannual fluctuations in abundance. We
developed a two-stage boosted regression tree model to investigate spatiotemporal patterns of Southern Flounder
Paralichthys lethostigma abundance and distribution in Texas estuaries. We used a 36-year fishery-independent data
set (1977–2012) to correlate distribution with environmental conditions and seasonal or long-term changes in
abundance. Adult Southern Flounder were sampled with gill nets using a random-stratified design. Predictions
of abundance were made to grids of environmental data to identify “hot spots” as well as seasonal or decadal shifts
in distribution. Models were fit using cross validation, and variance was estimated using nonparametric
bootstrapping. Depth, temperature, distance to a tidal inlet, and salinity were the primary environmental determi-
nants of Southern Flounder distribution and abundance. Because distribution and response to environmental
conditions can depend on population abundance, we also developed a standardized index of annual abundance
using the same two-stage boosted regression tree model. The index identifies a long-term decline in abundance
punctuated by recent recovery (possibly in response to management actions). Mapped results identify a coastwide
decline in abundance between 1980–1984 and 2005–2009 but the magnitude varied substantially, suggesting
disproportionate changes in abundance across the study area.

Characterizing spatial and temporal patterns of abundance
is a cornerstone of the management of exploited species
(Hildalgo et al. 2011; Campbell 2015; Thorson et al. 2015).
The spatial and temporal components of sample data are
jointly important but are often considered independently

(Thorson et al. 2015). Historically, resource management has
focused on characterizing temporal patterns of abundance
(Lo et al. 1992; Campbell 2015) using time series analyses
or regression models that may include environmental variables
to improve estimates of changes in stock abundance (Maunder
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and Punt 2004; Froeschke et al. 2013a). Growing interest in
ecosystem-based fishery management (Pikitch et al 2004) has
elevated the need for spatially explicit descriptions of species
distributions in relation to environmental factors and fish
population size (Essington and Punt 2011; Drexler and
Ainsworth 2013; Collie et al. 2016). To properly interpret
these data, it is appropriate to consider the relative abundance
of a species during the period from which the survey data used
to build the model are collected (Jensen et al. 2005). This
seems less common in practice as this information is often
unknown, but recent research has demonstrated that species–
environment relationships can change with abundance and that
abundance may be more closely linked to environmental
conditions at low population sizes (Hildalgo et al. 2011).

In the Gulf of Mexico, Southern Flounder Paralichthys
lethostigma are harvested both recreationally and commercially
and support an economically important fishery, but declines in
abundance (Froeschke et al. 2011) have led to reduced recrea-
tional and commerical catches. Southern Flounder populations
declined from the 1970s to 2008 in Texas (Froeschke et al.
2011) before rebounding in recent years, coinciding with more
restrictive fishery regulations. Texas recently reduced daily
possession limits (March 2009) from 10 to 5 fish for every
month but November. Peak spawning occurs in November, and
adults migrate offshore to spawn and are more vulnerable to
fishing pressure during migration. Thus, anglers are limited to a
2-fish daily bag limit during that month and gigging (harvesting
using a multipronged spear) is prohibited in both commerical
and recreational fishing.

Despite dramatic declines in the abundance of Southern
Flounder in Texas, declines in recruitment have been rela-
tively minor (Froeschke et al. 2011). The decline in adult
Southern Flounder abundance has likely resulted from
increased adult or subadult mortality (Froeschke et al.
2011). However, very little is known about the spatial and
temporal environmental requirements for adult Southern
Flounder and how their distribution changes with abun-
dance. This has implications for resource managers and
harvesters, as some areas may be disproportionately affected
by changes in abundance. We developed statistical models to
characterize species–environment relationships for Southern
Flounder using boosted regression trees (BRTs). This is a
model-averaging (ensemble) method that allows for both
explanation and prediction (Elith et al. 2008). Ecological
applications of BRTs are recent but increasing rapidly
(Friedman 2001; Leathwick et al. 2006; Elith et al. 2008;
Froeschke et al. 2010; Froeschke and Froeschke 2011). This
type of model allows for continuous or categorical predic-
tors, accommodates missing values, and is unaffected by
data transformations or extreme observations. This algorithm
can fit interactive and nonlinear relationships and often has a
predictive performance superior to that of other common
methods (e.g., generalized linear models; Elith et al. 2008).
The objectives of this study were (1) to characterize

species–habitat relationships for Southern Flounder, (2) to
depict their spatial distribution patterns, and (3) to evaluate
changes in their distribution relative to changes in their
abundance during the survey period.

METHODS
Field collections.—Fishery-independent Southern Flounder

catch data were provided by the Texas Parks and Wildlife
Department from its estuarine gill-net survey initiated in 1975.
For this analysis, data were included from 1977 through 2012.
Data were collected using a stratified cluster sampling design in
which each estuary was a stratum with a fixed effort (n = 45 per
estuary per season [20 per estuary per season in Sabine Lake]).
Sampling occurred each spring (April, May, and June) and fall
(September, October, and November); specific sample sites
were selected independently and without replacement each
season (Martinez-Andrade et al. 2009). Gill nets were 183 m
in length and set perpendicularly to the shore. Each net
contained four panels with stretched mesh sizes of 76, 102,
127, and 152 mm. The gill nets were deployed approximately
1 h prior to sunset, allowed to soak overnight, and retrieved the
following morning.

Southern Flounder are strongly influenced by abiotic envir-
onmental conditions, including temperature (Froeschke et al.
2013b, 2013c) and salinity (Froeschke et al. 2013c). Salinity,
temperature, dissolved oxygen, and depth were measured con-
comitantly with the gill-net sets and were treated as explana-
tory variables in the model (described below). Sampling
month and year were also included as variables. Soak time
was used as an additional explanatory variable to control for
effort-related effects on catch (Maunder and Punt 2004). The
distance from each sample location to the nearest tidal inlet
was calculated using the cost-distance function in ArcGIS
(Whaley et al. 2007; Froeschke et al. 2010). Two cost-distance
surfaces were created, one without Packery Channel inlet
(which did not open until June 2005; Figure 1) and one that
included Packery Channel inlet (which applied to all sampling
events after June 2005).

Modeling approach.—Preliminary analyses indicated that
Southern Flounder catch data were “zero inflated” with a
long tail (i.e., there were a few samples with very large
catches), which is typical of many fishery data sets (Martin
et al. 2005; Arab et al. 2008). A delta-lognormal approach
(Lo et al. 1992; Ingram et al. 2010) was used to develop a
standardized index of abundance across time and space. This
method combines two submodels: one including an analysis of
the probability of capture (occurrence) and one including an
analysis of the log-transformed catch on positive sets
(abundance). The delta approach uses these submodels to
construct a single, standardized CPUE index (Lo et al. 1992).

The standardized CPUE (Li) is defined as

Li ¼ cipi;
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where ci is the estimate of ln(catch) for each positive sample
i and p is the estimated probability of occurrence for sample i.
Both ci and pi were estimated using boosted regression trees
(Elith et al. 2008). The Southern Flounder catch data were
assumed to have a lognormal distribution for abundance and a
binomial distribution for occurrence and were modeled using
the following equations:

ln cð Þ ¼ Xβþ ε and

p ¼ eXβþ ε=ð1þ eXβþ εÞ

where c is a vector of positive catch data, p is a vector of
presence/absence data, X is the design matrix for the main
effects, β is a vector of parameters for the main effects, and
ε is a vector of independent, normally distributed errors with
mean 0 and variance σ (Ingram et al. 2010). A standardized
delta index for each calendar year was calculated as the
annual mean delta value for all samples within the year.

Confidence limits were estimated using nonparametric boot-
strapping with replacement (n = 500; Efron and Tibshirani
1993). Analyses were completed in R (version x64 3.1.;
R Development Core Team) using the “gbm” library and
functions from Elith et al. (2008) and J. T. Froeschke
(unpublished).

The relative importance of predictors was estimated by
averaging the number of times a variable was selected for
splitting and the squared improvement resulting from these
splits (Friedman 2001; Friedman and Meulman 2003).
Response values ranged from 0 to 100, where larger numbers
indicate a greater influence on the dependent variable. A tree
complexity parameter controlled the number of nodes and
allowed the interactive effects to be modeled in an automated
manner with minimal impacts on overfitting (Leathwick et al.
2006). A learning rate parameter was used to control the
relative contribution of individual trees to the ensemble
model and to balance model performance with computation
time.

FIGURE 1. Gill-net sample locations (n = 24,756) from 1977 to 2012.
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Model fitting and selection.—To estimate the probability of
occurrence of Southern Flounder in a given sample based on
the covariates, a BRT was fit to these data using a tree
complexity of 5 and a learning rate of 0.001 with a binomial
error distribution. Trees were added sequentially to minimize
cross-validated residual deviance without overfitting. The
positive samples were log transformed and a BRT was fit to
these data using a tree complexity of 5, a learning rate
of 0.001, and a Gaussian error distribution. A model
simplification routine (“gbm.simplify”) similar to a backward
selection routine in regression (Elith et al. 2008) was used.
Variables were ranked in order of decreasing importance and
were removed until significant increases in residual deviance
were found between the full and reduced models. This routine
was employed separately for both the occurrence and
abundance models and permitted different explanatory
variables to be included in each submodel. A delta value for
each sample was computed as the product of the probability of
occurrence and the un-logged value from the abundance
submodel.

Spatial grids.—Environmental variables were measured at
each gill-net set (n = 24,756) and subsequently interpolated
into raster grids using ordinary kriging (Saveliev et al.
2007; Elith et al. 2008; Froeschke and Froeschke 2011)
via the “autoKrige” function in the automap package in R
(Hiemstra et al. 2009). Environmental grids were developed
for each month (April, May, June, September, October, and
November) and year combination between 1980 and 2012
to permit spatially specific predictions during specific
months and/or time periods. Depth was interpolated into a
single layer (all sample months and years) based on
measured depths during sampling using inverse-distance
weighting, which is less computationally intensive than
ordinary kriging yet performs well with large, closely
spaced samples.

The fitted delta-BRT model was used to predict relative
abundance to the mapped grids of environmental conditions
across the study area for each month–year combination.
Predictions were averaged across months to examine monthly
distribution patterns. Predictions were made to environmental
grids in two periods: (1) 1980–1984 (high abundance) and
(2) 2005–2009 (low abundance). Finally, the percent change
of the fitted grids between time periods was calculated (i.e.,
{[low abundance – high abundance]/ high abundance} × 100)
to identify spatially explicit percent changes of predicted
relative abundance throughout the study area.

Time series.—Long-term changes in relative abundance were
determined by multiplicatively combining the occurrence and
abundance submodels. Mean annual CPUE was then calculated
as the mean of all samples within a given year. The variance of
annual CPUE was calculated using 500 nonparametric bootstrap
iterations (with resampling) based on randomized subsets of 70%
of these sample data.

RESULTS

Southern Flounder Distribution and Habitat Modeling
Southern Flounder were captured in 9,486 of 24,756

samples (39.8%). Abundance per sample ranged
from 0 to 31 (Figure 2), with the vast majority of samples
capturing less than 5 individuals. Southern Flounder were
captured each month during the survey. However, seasonality
was observed, as both the frequency of occurrence and catch
increased each month from April to November, likely asso-
ciated with fall spawning activities. Distribution and abun-
dance patterns were affected by all eight variables included
in the model (Figure 3). In the frequency-of-occurrence sub-
model, the most important predictors were depth (occurrence
decreases with depth), salinity (which produced a bell-shaped
curve peaking at ~25 psu), year sampled, and distance to an
inlet. Time was included in the model to account for inter-
sample variation in set time, and although it was the least
important variable it was still nonnegligible, accounting for
4.8% of the explained variance.

In the abundance submodel, only five of the eight variables
considered contributed significantly. Distance to an inlet,
month sampled, and depth were the most important contribu-
tors to the explained deviance (Figure 4). In relation to
distance to an inlet, abundance had a bimodal distribution, as
sample locations at intermediate distances from the tidal inlets
yielded the fewest animals in positive samples. As in the
occurrence model, fitted abundance increased every month
from April to November.

Time Series
The resulting time series for CPUE shows an approxi-

mately linear decline from 1977 to 2008. From 2009 to
2012, however, CPUE increased rapidly and by 2011 attained
levels not observed since the early 1990s (Figure 5).

Spatial Patterns
Predicted abundance increased each month, with the high-

est intensity near tidal inlets in the fall (October and
November). Abundance also increased modestly from the
north to south in a pattern that is consistent across the months
sampled (Figure 6). As spatial distribution patterns can be
affected by population abundance, the predicted distribution
was also derived for periods of relatively high (1980–1984)
and low (2005–2009) abundance. During the period of high
abundance, Southern Flounder were more evenly distributed
across the bays, with typical seasonal peaks in October and
November. Coastwide reductions in CPUE were observed
during the study, reaching their lowest levels during the period
of low abundance. To examine spatially explicit changes in
CPUE between time periods, the percent change between
1980–1984 and 2005–2009 was calculated for each cell
(Figure 7). The greatest declines were observed in the
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southernmost estuaries (upper and lower Laguna Madre).
Notable declines were also evident in Baffin Bay during the
October–November spawning period. South Texas estuaries
support the greatest proportion of age-2 and older Southern
Flounder, and this was the most variable region when periods
of historically high and low abundance were compared.

DISCUSSION
The distribution and abundance of age-2 and older

Southern Flounder were influenced by temporal, physical,
and spatial processes, and correlative relationships were iden-
tified for both the probability of occurrence and abundance
using a two-stage boosted regression tree model. The prob-
ability of occurrence was most closely related to depth,
salinity, and year sampled. It was greatest at locations near
tidal inlets, at shallow depths, and during the fall months
(October and November), and this pattern was consistent
throughout the study period. Many estuarine species (includ-
ing Southern Flounder) spawn offshore and juveniles recruit
into estuaries via tidal inlets (Nañez-James et al. 2009). As a
result, the abundance of such species is often greatest near
inlets during the fall spawning season (Whaley et al. 2007;
Froeschke et al. 2010, 2013b; Froeschke and Froeschke 2011).
Our results also indicate greater abundance in the areas
furthest from the inlets. We hypothesize that this reflects the
abundance of Southern Flounder in the southern estuaries that

are isolated from the tidal inlets. These areas are shallow,
productive areas with large seagrass meadows and are distant
from major human population areas (Mckee 2008). Overall,
the current study considered inlets and depth ranges across a
variety of habitat types, and it suggests that inlet proximity
and depth are important features of habitat quality across
biotic habitat types.

Salinity is probably the most important environmental
variable influencing the distribution of macrofaunal organisms
in northern Gulf of Mexico estuaries (Rakocinski et al. 1997).
In this analysis, salinity was the most important environmental
predictor of occurrence and the only water quality variable
that was retained in the abundance submodel. In both submo-
dels, the response to salinity was bell-shaped, peaking at
~25 psu with a range of 10–40 psu; this suggests that habitat
affinity is reduced at elevated salinities. This pattern is con-
sistent across many estuarine species and indicates some
potential ramifications of reduced freshwater inflow into
these bay systems as historic inflows are increasingly diverted
for human usage (Montagna et al. 1992). In addition to pro-
viding salinity balance, freshwater inflows perform many
other functions in estuaries, including the transport of sedi-
ment, nutrients, and allochthonous organic matter. They may
also affect the timing and extent of migration of estuarine
species (Longley 1994). For this reason, examination of sali-
nity patterns across time and space can provide a valuable
indicator of estuarine habitat condition and function. The

FIGURE 2. Histogram of the number of Southern Flounder captured in gill-net samples from 1977 to 2012.
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FIGURE 3. Smoothed partial-effects plots for the model of Southern Flounder occurrence. A boosted regression tree (BRT) model was used to relate the
probability of occurrence to various environmental, spatial, and temporal variables. The solid lines represent the mean fits, the gray polygons the 95% confidence
intervals of the partial effects determined using a generalized additive model. The y-axes are on the logit scale with mean zero; the x-axes have the following
units: mean depth (m), salinity (psu), year, inlet distance (cost-distance units), month, temperature (°C), dissolved oxygen (DO; mg O2/L), and soak time (h;
included to account for minor variations in soak time among samples). The percentages indicate the proportions of explained deviance attributable to each
predictor variable.
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opening of the Packery Channel inlet in 2005
(Reese et al. 2008) at the northern end of the Laguna Madre
and the recent dredging of the inlet near Port Mansfield may
mitigate some of the concerns about increasing salinity;

however, this also complicates the relationship between fresh-
water inflow and salinity. A full-scale analysis of spatiotem-
poral salinity patterns was beyond the scope of this study, but
it remains an area in need of further investigation to improve

FIGURE 4. Smoothed partial-effects plots for the model of Southern Flounder abundance. A BRT model was used to relate lognormal abundance to various
environmental, spatial, and temporal variables. See Figure 3 for additional details.
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our understanding of species–environment relationships in
estuaries.

The mapped distribution patterns from the combined delta-
BRT model depict strong seasonal variation in abundance,
peaking in the fall months (October and November). This
pattern is most likely related to fall spawning behavior
(Stunz 2000) and was consistent throughout the study period,
albeit with changes in intensity related to varying stock abun-
dance or environmental conditions. Spatially explicit distribu-
tion information is an important tool for the management of
exploited species, but it is infrequently available for species at
a scale of use to management (Leathwick et al. 2006).
Fortunately, improved analytical tools and spatially explicit
data make such information available for many species and
regions, and this can allow better integration of the role of
humans in the environment and an exploration of the effects of
management actions on the resource throughout the manage-
ment area (Colloca et al. 2003).

A unique feature of this study is that sampling occurred
over a long time period (>35 years) and encompassed periods
of both historically high and low abundance. Hildalgo et al.
(2011) demonstrated that stock depletion can enhance the
impact of environmental forcing on fish populations, as both
the catch per unit effort of European hake Merluccius merluc-
cius and its correlation with environmental variables increased

FIGURE 5. Mean annual standardized CPUE (i.e., the predicted number of
fish per net set) of Southern Flounder in Texas coastal waters, 1977–2012. The
solid line shows the mean annual fit from the delta-BRT model; the gray lines
reflect individuals bootstrap iterations (n = 500).

FIGURE 6. Monthly predictions of Southern Flounder CPUE from the fitted delta-BRT model averaged across the years 1980–2012.
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during periods of low population size. A similar result is
plausible with Southern Flounder and would result in
increased risk of decline during periods (or regions) with
unfavorable environmental conditions even if the declines
were driven by fishing exploitation rather than environmental
forcing. From a fishery perspective this could affect our ability
to determine appropriate harvest levels, and our results suggest
that the impacts would be unevenly distributed across the
study area. The historical decline of Southern Flounder in
Texas is thought to be driven by exploitation (Stunz 2000;
Froeschke et al. 2011). The more restrictive harvest regula-
tions implemented in recent years (https://tpwd.texas.gov)
coincide with increasing Southern Flounder CPUE through
the terminal year of the study period.

As with all statistical modeling approaches, there are lim-
itations to this methodology because data mining techniques
can only identify relationships (correlations) if they actually
exist (Brodley et al. 1999) and the residual deviance in the
BRT submodels suggests that not all of the variables affecting
distribution and abundance were included. While some of

these factors can be examined in future studies (e.g., the role
of predators and food web dynamics), other, more complex
patterns (e.g., ocean circulation and long-term climate pat-
terns) may continue to challenge this and other approaches
trying to link animal distribution with the environment. In
summary, fisheries management practices in many regions
are aiming toward ecosystem-based approaches that consider
aspects (including spatial distribution and abundance patterns)
that enable identification of critical habitat or predict the
effects of place-based perturbations (Pikitch et al. 2004).
This study demonstrates that the relative stock size during
the sampling period greatly affects spatial distribution patterns
and can affect our identification of the regions and environ-
mental conditions that support fish populations.

ACKNOWLEDGMENTS
Gill-net data for adult Southern Flounder were courtesy of

Mark Fisher of the Texas Parks and Wildlife Department,
Coastal Fisheries Division.

FIGURE 7. Percent changes in predicted Southern Flounder CPUE between 1980–1984 and 2005–2009.
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