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Wilmington, North Carolina 28409, USA
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Abstract
Accurate fishing effort information is fundamental to the successful management of fisheries resources.

Automated, independent, and reliable methods for quantifying fishing effort are needed. The use of vessel speed
from Global Positioning System (GPS) data to identify fishing activity has worked well for trawl fisheries but has
been less successful in stationary fisheries. Therefore, five trips on four vessels from a vertical hook-and-line reef
fish fishery were used to examine the efficacy of GPS (speed and time) and electronic video monitoring (EVM)
sensor (drum and video) data to corroborate an observer’s account of effort using binary logistic regression
classification (logit) models as well as a simple speed and time filter (filter). One minute was the minimum data
collection interval examined that documented 100% of fishing events. As no fishing occurred at night, opportunis-
tically defined as the 7 h between 2200 and 0500 hours, these records were excluded from analyses. During the day,
vessels spent on average 45.2% of the time fishing. Classification success of the approaches examined ranged from
82.4% to 89.5%. Models that included both GPS and EVM sensor data outperformed the filter and GPS-only
models. In general, the filter and most model results can be used as a proxy for observer effort data, at least for the
trips examined here. The GPS-based speed + time logit model was chosen as the preferred approach because of its
discriminatory power compared with the filter and the existing widespread use and lower costs of GPS data
collection relative to EVM systems and sensors. The speed + time logit model outlined here may have broad utility
in this and similar vertical-line fisheries, including the offshore marine recreational fishing sector.

Accurate fishing effort information is fundamental to the
successful management of fisheries. High-resolution accounts
of fishing effort, collected and interpreted with minimal

subjectivity, are preferred because of their increased utility
for use in fisheries and ecosystem management (Kracker
1999; Witt and Godley 2007; Hamel and Andrefouet 2010).
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More recently, autonomously collected fishing effort data
coupled with catch information has served as the basis for
both theoretical (Hiddink et al. 2006; Bastardie et al. 2014;
Russo et al. 2014b) and management applications (Chang
2011; Gerritsen and Lordan 2011; Russo et al. 2014a).

While there are numerous approaches for collecting fish-
ing effort information, those discussed in this study are
listed and defined in Table 1. At-sea observers have long
been considered the highest standard in data collection
(Liggins et al. 1997). However, observer coverage can be
prohibitively expensive for many fisheries (NMFS 2011).
Logbooks completed by fishermen are the most economical
and problematic collection method for effort data (Fox and
Starr 1996; McCluskey and Lewison 2008; Roman et al.
2011). Video-based electronic monitoring (EVM) has
recently emerged as an effective alternative for observer
coverage in some fisheries (Ames et al. 2007; Stanley
et al. 2009). The cost of EVM implementation can be less
than equivalent observer coverage (Stanley et al. 2011).
Electronic video monitoring is perhaps most cost effective
when it is used as a tool to audit self-reported logbook data
(Stanley et al. 2011). Satellite-based vessel monitoring sys-
tems (VMSs) (Deng et al. 2005; Harrington et al. 2007;
Witt and Godley 2007; Lee et al. 2010; Hintzen et al. 2012;
Jennings and Lee 2012; Russo et al. 2014a) and even simple
GPS data loggers (GPSDLs) (Marrs et al. 2002; Gallaway
et al. 2003a, 2003b) are also capable of effort accounting.
The raw, unfiltered data produced from these two systems
are also useful for general enforcement and compliance
(Chang 2011; Enguehard et al. 2013; Porter et al. 2013).
The costs associated with VMSs can be significant and
impractical for use on very small vessels (NMFS 2013).
In general, GPSDLs can perform the same functions as
VMSs but at lower costs and with reduced at-sea reporting
capabilities (NMFS 2015). Two additional, but less studied
approaches, include the use of the fishery observing system
(Falco et al. 2007) and the automated identification system
(Natale et al. 2015). In general, the fishery observing system
combines environmental and oceanographic data to assist in
the analysis of catch and effort data (Carpi et al. 2015). The
automated identification system appears to offer the same
data as a VMS but with an improvement in terms of
temporal resolution (Natale et al. 2015). Regardless of the
approach, there is a need to continue exploratory electronic
effort data collection and validation in fisheries, such as
with simple GPS data.

A growing body of literature supports the use of a vessel
speed rule to predict fishing and nonfishing activity (Lee et al.
2010; Gerritsen and Lordan 2011; Natale et al. 2015).
However, most studies to date have analyzed gear types that
require substantial vessel movement to actively harvest fish,
such as trawls. Investigators that previously examined more
stationary gear types, such as hook and line (longline) (Lee
et al. 2010), pot gear (Mullowney and Dawe 2009), and purse

seines (Walker and Bez 2010; Bez et al. 2011; Joo et al. 2011,
2015), all described some degree of difficulty with regard to
identifying fishing activity based on vessel speed alone. To
date, no one has attempted to analyze a stationary, vertical
hook-and-line reef fish fishery. In addition, little emphasis has
been placed on logit modeling to classify fishing activity from
GPS data. In order to document and model fishing activity in
relation to vessel speed and potentially other variables, obser-
vers and high-frequency electronic data collection are
required.

Several factors make the commercial fishery in the U.S.
southern Atlantic Ocean for snappers (family Lutjanidae) and
groupers (family Polyprionidae) a suitable candidate for an
effort characterization pilot study. First, the fishery relies on
industry self-reported logbook data for catch and effort infor-
mation (SEDAR 2003; SAFMC 2006). No dedicated funding
exists for observer coverage (NMFS 2011) and electronic
devices (VMSs and GPSDLs) are not utilized for management
or enforcement. Researchers have recently implemented short-
term projects in attempts to characterize the fishery with both
observers (GSAFF 2010) and EVM (Baker and Von Harten
2009). Second, many of the 61 species in the fishery exhibit
aggregation behaviors and life history traits that may lead to
overexploitation (Coleman et al. 2000; SAFMC 2010). In
order to protect some of the deepwater species within the
fishery, a series of eight marine protected areas (MPAs) were
created in 2009 that range in size from 21 km2 to 388 km2

(SAFMC 2009). Most of the MPAs are located far offshore
from land, which makes enforcement of prohibited fishing
activity difficult (SAFMC 2009). Utilization of an approach
to independently estimate effort, or perhaps validate logbook
accounts of effort, could serve as both a fisheries management
and enforcement tool.

Perhaps of broader interest would be the potential appli-
cation of effort characterization in the marine charter (for
hire) and private recreational vertical-line reef fish sector.
Here there is the potential to collect GPS data from more
common personal devices, like smartphones. As of April
2015, 64% of Americans own and use a smartphone of
some kind (Smith 2015). Therefore, the likelihood of having
at least one smartphone among a group of offshore fishermen
aboard a vessel should be quite high. Dedicated smartphone
applications (apps) like “iSnapper” have been developed and
successfully utilized to self-report angler catch in a spatial
context and are deliverable in near real time (M. Johnson, G.
Stunz, and D. Yoskowitz, paper presented at the 141st annual
meeting of American Fisheries Society, 2011).Even standard
cell phones have been used to communicate self-reported
accounts of catch and effort data for fisheries through manual
data entry and text messaging (Baker and Oeschger 2009).
Native smartphone apps can be run while the vessel is at sea
providing a virtual track log for inspection and management
purposes (Johnson, Stunz, and Yoskowitz, unpublished). Just
as importantly, this type of location data can be collected
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passively by participating anglers (Martin et al. 2014;
Papenfuss et al. 2015). The possibility of a legal requirement
to have a smartphone app or GPSDL onboard to record
vessel position, speed, and time of day is conceivable.
Requirements and standards for data collection, data use,
privacy, and confidentiality would all have to be carefully
considered (Hinz et al. 2013); however, the technology exists
to collect such data with smartphones and certainly with
small, inexpensive cellular GPSDLs like that currently used
in the U.S. Gulf of Mexico shrimp (order Decapoda) fishery
(NMFS 2015).

The goal of this study was to determine the potential for
GPS and select EVM sensor data to match observer-documen-
ted fishing effort in a stationary, vertical-line reef fish fishery.
Specifically, the study objectives were as follows: (1) deter-
mine the minimum data collection interval required to record
the locations of all the fishing events in this type of fishery, (2)
describe the variables collected by GPS units and EVM sen-
sors in relation to fishing and nonfishing activity, and (3)
examine the effectiveness of a simple data filter and four
nested binary logit models to predict fishing and nonfishing
activity as confirmed by observer data.

METHODS
Description of fishery and study area.—The United States

southern Atlantic Ocean snapper–grouper commercial fishery
is geographically widespread, covering the area of the United
States East Coast, ranging from Cape Hatteras, North
Carolina, to Key West, Florida, and includes both nearshore

and offshore waters (Figure 1). In 2013, the fishery consisted
of 10,054 trips and 18,431 d away from port and accounted
for 2,490 metric tons of landed catch comprised of over 61
fish species (National Marine Fisheries Service [NMFS]
Southeast Fishery Science Center Logbook Program). The
fishing fleet is composed of over 500 small (mostly < 12 m)
vessels (SAFMC 2006). Although not well described, vessel
characteristics of the greater fleet are thought to be similar to
those vessels that operate in the Gulf of Mexico reef fish
fishery described in Scott-Denton et al. 2011. Bycatch and
mortality associated with regulatory discards is a primary
concern in this fishery as many species have low annual
catch limits (SAFMC 2010). The majority of fishing
activity is thought to occur in midshelf and shelf-break
waters (Stephen and Harris 2010). While nighttime fishing
is allowed, most fishing is reported to occur between sunrise
and sunset (Rudershausen et al. 2007; Stephen and Harris
2010). The area of interest for this study is the northern
portion of the management area off the coasts of North
Carolina, South Carolina, and Georgia. This area accounts
for approximately 56% of the total annual landings (SAFMC
2006) for the fishery.

Descriptions of trips and gear.—This paper examines the
potential for GPS and EVM variables to independently
classify vessel activity at sea as fishing or not fishing based
on observer documentation from actual fishing trips.
Therefore, an EVM system and an observer were placed
onboard four different vessels for a total of five trips (26 sea
days) from June to September 2010. Details regarding the
participating vessels and fishing activity as characterized by

TABLE 1. List of the methods for collecting fishing effort data that are discussed in this study.

Method Meaning Definition

Observer Trained professional onboard a fishing vessel that collects information about fishing
activity. Could be tasked with other duties as required.

EVM Electronic video
monitoring

An integrated system that includes a GPS, video cameras, and possibly other sensors
designed to passively monitor fishing operations through observing and/or tracking.
Also referred to as video monitoring or simply EM.

VMS Vessel monitoring system A satellite-based system that tracks fishing vessel movement, including its position, time
at position, course, and speed. Data is often reported at set intervals (e.g., every 60
min) during normal fishing operations.

GPSDL Global Positioning System
data logger

A simple electronic data logger that can be configured to record GPS data (position,
time, speed) at set, predetermined intervals. Some simply store data onboard the unit
until retrieved, whereas others transmit data over cellular networks when in range.

Logbook A paper logbook in which fishermen self-report landings, discards, and effort data after
trip completion.

AIS Automatic identification
system

A system that allows ships to view marine traffic in their immediate area as well as be
seen by other ships or receiving stations. Data transmitted is similar to that of VMS
and GPSDL systems.

FOS Fishery observing system An approach in which environmental and/or oceanographic conditions at the time and
location of capture are coupled with high-resolution fishing effort information.
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an onboard observer are provided in Table 2. Trips 3 and 4
were completed by the same vessel. Fishing occurred 32–160
km offshore in water depths ranging from 21 to 148 m. The
fishing practices and terminal tackle used by fishermen were
similar to that described in Rudershausen et al. (2007),
Stephen and Harris (2010), and Scott-Denton et al. (2011).

Briefly, fishing vessels were equipped with three to four
electrically powered bandit reels (Figure 2) equipped with
mostly two-hook gear fished vertically in the water column
on or near the bottom. Unlike horizontal longline gear that is
left in the water to passively fish for an extended length of
time, bandit gear is actively deployed and retrieved multiple

FIGURE 1. Map of the study area. Each grid, designated by the National Marine Fisheries Service (NMFS), represents 1° latitude by 1° longitude and is the
unit by which fishing activity is reported and/or accounted for in the commercial snapper–grouper fishery. The dark grids encapsulate the study area.
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times while the vessel is held stationary by anchor or motoring
in place at a fishing location (Table 2).

Logbooks.—Self-reported logbooks are required for all
fishing trips and contain catch and effort information that
includes the general fishing location, date of departure, and
date of return as well as total hours fished per trip (SEDAR
2003). Fishing locations for each species landed and discarded
are reported to the NMFS statistical grid (1° latitude × 1°
longitude), indicating where the majority of fishing activity
or catch took place (SEDAR 2003) (Figure 1). Logbooks were
completed by fishermen after each trip.

Observers.—A single observer collected detailed accounts
of fishing activity throughout the entirety of each trip
(Table 2). Fishing events, defined as a unique geographic
location fished each day of the trip, were documented. Hours
fished was defined by the observer as the period of time when
hooks were being either deployed from the surface, fished in
the water, or retrieved back to the surface using a bandit reel.
For the purposes of this analysis, all other activities (e.g.,
anchoring or positioning the vessel prior to the start of
fishing events, transiting to and from the fishing grounds,

etc.) were not considered fishing. As vessels in this study
hosted either three or four bandit reels and typically the
observer was only able to document fishing activity on a
subsample of those reels during the course of a fishing event
(Scott-Denton et al. 2011), for this study it was assumed that
all fishing reels operated at similar times, unless noted.

Electronic video monitoring system.—The EVM systems
used for this project were custom manufactured by
Archipelago Marine Research in Victoria, British Columbia.
The EVM system components included a single optical
rotational drum sensor mounted to one of the vessel’s
bandit reels, a GPS unit, three to four video cameras, and a
control box in the wheelhouse (Ames et al. 2007). Therefore,
for this study, the EVM systems recorded both GPS (speed,
time, and location) as well as EVM-specific (drum and video)
data at 10-s intervals. The single drum sensor was attached to
the primary bandit reel (Figure 2), defined simply as a reel
that would be fished during every fishing event regardless of
other fishing activity. The drum sensor documented each
revolution of the primary bandit reel. A strip of reflective
tape, affixed to the inside of the bandit wheel, activated the

TABLE 2. Description of trip details as documented by an observer.

Level Item Results as documented by an observer

Study Time period Jun 2010 to Sep 2010
Sea days 26
Participation Five trips aboard four vessels
Sets or fishing events 487

Vessels Length Mean (SD) = 12.3 m (1.4); range = 10.4–14.6 m
Trip Duration Mean (SD) = 5.1 d (2.9); range = 1–13 d

Hours fished Mean (SD) = 37.8 h (24.7); range = 12–77 h
Fishing event Number of fishing events per day Mean (SD) = 15.9 (4.7); range = 9–25

Soak time Mean (SD) = 0.5 h (0.5); range = 0.02–5.80 h
Number of reels fished Mean (SD) = 3.0 (0.6); range = 1–4
Number of times gear deployed Mean (SD) = 8.7 (12.0); range = 1–101
Time each hook spent in the water Mean (SD) = 0.09 h (0.09); range = 0.01–0.73 h
Number of hooks fished Mean (SD) = 51.1 hooks (67.5); range = 2–404
Number of hooks per reel Mostly two hooks per reel; range = 2–4
Water depth Mean (SD) = 47 m (12); range = 21–148
Fishing state On anchor = 98%; drifting = 2%

Harvest Landings, ranked by species percent occurrence.
Top five species (shown) represent 82%
of landings.

1. Vermilion Snapper Rhomboplites aurorubens (46%)
2. Gray Triggerfish Balistes capriscus (16%)
3. Red Porgy Pagrus pagrus (10%)
4. Black Sea Bass Centropristis striata (7%)
5. White Grunt Haemulon plumierii (3%)

Discards, ranked by species percent occurrence.
Top five species (shown) represent 78%
of discards.

1. Vermilion Snapper (36%)
2. Red Porgy (20%)
3. Black Sea Bass (13%)
4. Tomtate Haemulon aurolineatum (6%)
5. Scamp Mycteroperca phenax (3%)
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drum sensor with each revolution. To meet vessel power
criteria, the EVM system was to be powered continuously
by a 12-V battery (connected to the vessel alternator for
recharging) while at sea. Data were recorded onto a 500-
GB hard drive in the control box.

Time was recorded by the EVM system in the hhmmss
(hours, minutes, and seconds) format. Specific latitude and
longitude locations were recorded by the EVM system’s GPS
unit. The purpose of the drum sensor in this study was to
activate the video cameras in order to document all fishing
activity. Video, once activated, remained on for a minimum of
10 min unless a subsequent drum rotation caused the 10-min
period to restart, thus extending the video-recording period.
Both video and drum data were converted to a binary response
(on = fishing, off = nonfishing) in order to aid in logit model
analyses.

The electronic dataset utilized in this study has been
repurposed from a previously completed but unpublished
study (Baker and Von Harten 2009). Using the observer-
documented fishing events as a guide, the EVM viewer used
vessel location (GPS), sensor and video imagery, and pro-
prietary EVM system event codes (power failure, manual
shutdown, etc.) to estimate fishing effort (hours fished) for
each trip. Those data will be presented in the results for
comparison purposes. The proprietary event codes collected
by the EVM system were not utilized in this study as this
information would not be available from common GPS
units, such as with a simple GPSDL (Marrs et al. 2002;
Gallaway et al. 2003a, 2003b). We simply analyzed the
selected variables as they were recorded as raw text files
by the EVM system. The authors did not use the accompa-
nying video or the software from Archipelago Marine
Research to define or annotate the database for fishing
activity, only the observer’s account of fishing activity.

Datasets.—All records from trips were first combined into
one dataset and then sorted by trip in chronological order. The

combined dataset consisted on the following columns: vessel,
date, time, location, speed, heading, voltage, video, drum,
observed activity (fishing, not fishing), and set number (if
fishing). Records collected while the vessels were in port
were removed from the database. Next, the electronic
records collected by the EVM system were analyzed for
completeness. Trips 3 and 4 were both 100% complete,
meaning that all the variables that should have been
collected were collected. Trips 1, 2, and 5 had completeness
rates of 61%, 76%, and 60%, respectively. On the trips with
incomplete data, the observer indicated that EVM systems
were periodically and manually powered down during
prolonged periods of nonfishing activity, usually during the
night. During this time, captains often turned off the engine
while at anchor and did not want the possibility of the EVM
system draining the vessel power supply. The observer verified
that no fishing occurred during the periods when the EVM was
turned off. No fishing activity occurred between 2200 and
0500 hours on any trip, regardless of whether the EVM
system was on or off. For this study, this period of time was
opportunistically defined as night.

Given the missing data for three trips, it was not feasible to
document vessel activity electronically over the full 24-h
period. Seventy-two percent of the missing nonfishing records
occurred between 2200 and 0500 hours. Missing records
observed during the day were mostly due to vessels starting
fishing activity after 0500 hours or finishing fishing activity
prior to 2200 hours. As no fishing activity occurred during the
night and this part of the dataset was incomplete, these records
were excluded from analyses.

Data analysis.—To determine what impact the interval of
electronic data collection would have on fishing effort
documentation success, the dataset was analyzed at full
resolution (10 s) and then at intervals of 1, 2, 4, 8, 15, 30,
60 and 120 min, beginning with the first record in the
combined dataset. Fishing event documentation success was
defined as the number of fishing events documented divided
by the total number of fishing events. If the chosen interval
documented at least one record during the course of a fishing
event, the fishing event was considered documented at that
time interval. The percentage of the dataset denoted as fishing
was also documented for each data collection interval
evaluated. The goal was to choose the coarsest interval
capable of documenting 100% of the fishing events for use
in simple filters and logit models.

Next, the dataset associated with the chosen interval was
compared against the original dataset. Chi-square tests of
independence (χ2) and two-sample t-tests with equal variance
were used to compare dataset attributes (Table 3).

The combined dataset was first subjected to a combination
speed and time filter (filter) in an attempt to identify fishing
activity. The speed cutoff associated with fishing was based on
the distribution of vessel speeds associated with fishing and
nonfishing activity as identified by the observer. By default,

FIGURE 2. Bandit reels attached to the stern deck of a typical commercial
snapper–grouper fishing vessel.
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the variable time was automatically included in this filter
considering that night records had to be excluded from the
dataset because of missing EVM records.

Logit analyses were performed in an attempt to predict
fishing status with classification success rates significantly
greater than would be achieved by chance alone.
Classification success was defined simply as the sum of the
number of observations classified correctly (both fishing and
not fishing) divided by the total number of observations.
Chance was defined as the binomial distribution of fishing
(45.2%) and nonfishing activity (54.8%) in the combined
dataset. A total of four nested logit models using one to four
variables were analyzed: (1) speed (S), (2) speed + time (ST),
(3) speed + time + drum (STD), and (4) speed + time + drum
+ video (STDV). For this study, models S and ST were based
solely on GPS data, whereas models STD and STDV utilized
both GPS and EVM sensor data. Trip was originally included
as a covariate but was excluded from model runs because it
did not significantly affect model classification success.
Generalized adjusted coefficients of determination were calcu-
lated for each model using the RSQ option of the PROC
LOGISTIC procedure in SAS software version 9.2. Predicted
probability values were obtained from each logit model run,
and the classification success of those predictions was tested
against known fishing status.

Classification success was considered the primary tool to
determine filter and model fit as classification was the intended
use (Peng et al. 2002). Classification success was based on
calculations of sensitivity, specificity, and false positive or
false negative scores (Hosmer and Lemeshow 1980; Peng
et al. 2002). No additional tools were used to assess the

performance of the filter. Secondary tools used to assess the
fit of models included the receiver operating characteristic
(ROC) and the Akaike information criterion (AIC), both pro-
duced using SAS software. Briefly, the ROC provides a per-
formance value (0–1) of a binary classifier system as its
discrimination threshold is varied. Comparisons of ROC
scores between different models applied to the same dataset
were compared using χ2 tests and thus used to select the best
models (Landriault et al. 2009; Weber and McClatchie 2010;
Palialexis et al. 2011). The AIC is a widely accepted measure
of model fit and rewards goodness of fit but assesses a mod-
erate penalty that increases as the number of model predictors
increases (Akaike 1974).

A leave-one-out cross-validation procedure (similar to a
jackknife) was used to check the fit of each model (Arlot
and Celisse 2010). This was done by first fitting each model
to the dataset to generate a ROC score and then using the
cross-validated predicted probabilities to provide a new ROC
score for comparison using a Mann–Whitney U-test. If a
model and its predicted model ROC scores were significantly
different from each other, then the model was excluded from
further consideration.

Next, observer, EVM viewer, logbook, filter, and model
accounts of hours fished by trip were compared. To accom-
plish this, predicted fishing activity for the filter and models
was converted to hours fished for each trip. Next, one logit
model was chosen as the preferred model, with preference
given to classification success, simplicity, and cost of data
collection. Finally, the preferred model was then applied to
each individual trip so that model fit in relation to vessel- and
trip-specific characteristics could be further explored and

TABLE 3. Comparison of native resolution EVM data (10-s intervals) to the minimum resolution (1-min intervals) required to account for all fishing events in
the study. Speed is reported in knots as mean ± SD. Time is reported in hhmm (hours, minutes) as mean ± SD. All variables are reported as individual data points
collected ordering to Status. Records between 2200 and 0500 hours have been excluded because of lack of fishing activity during this period.

Variable Status

EVM resolution

Test10 s 1 min

Activity Fishing 67,600 11,267 χ2 = 0.00016, df = 1, P = 0.999
Nonfishing 82,044 13,672

Speed Fishing 0.22 ± 0.40 0.22 ± 0.39 t = 0.168, df = 78,865, P = 0.433
Nonfishing 4.54 ± 3.12 4.54 ± 3.54 t = 0.003, df = 95,714, P = 0.498

Time Fishing 13.3 ± 4.0 13.3 ± 3.9 t = 0.007, df = 78,865, P = 0.497
Nonfishing 13.2 ± 4.8 13.2 ± 4.8 t = 0.046, df = 95,714, P = 0.481

Drum Fishing, drum = off 45,387 7,590 χ2 = 0.221, df = 3, P = 0.974
Fishing, drum = on 22,213 3,677
Nonfishing, drum = off 80,596 13,431
Nonfishing, drum = on 1,448 241

Video Fishing, video = off 4,582 756 χ2 = 0.079, df = 3, P = 0.994
Fishing, video = on 63,018 10,511
Nonfishing, video = off 53,547 8,918
Nonfishing, video = on 28,497 4,754
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potentially improved. Like with the combined dataset, the
filter approach was applied to each trip individually as well
for comparison purposes.

RESULTS

Fishing Event Documentation
The landings, discards, and overall fishing practices

observed in this study (Table 2) were similar to previous exam-
inations of this fishery (Rudershausen et al. 2007; GSAFF
2010; Stephen and Harris 2010). On average, each trip in this
study had 15.9 fishing events per day, with each event lasting
approximately 30 min (Table 2). Mean fishing event documen-
tation success by electronic data collection interval ranged
from 100% at 10 s to 24% at 120 min (Figure 3) and was
best fit using a three-order polynomial curve (R2 = 99%). The
percentage of the dataset documented as fishing remained
relatively unchanged at each interval examined (Figure 3).
One minute was the coarsest interval examined that documen-
ted at least a portion of all 487 fishing events.

Electronic Video Monitoring Dataset
As the 1-min-interval dataset was not significantly differ-

ent from the original dataset collected at 10-s intervals
(Table 3), the truncated dataset was used from this point
forward. Descriptive statistics of the variables speed, time,
drum, and video associated with fishing and nonfishing are
provided in Table 3. Analysis of speed while fishing indi-
cated an unrealistic value (> 3.5 knots, consistent with
Lee et al. 2010) for a small segment (< 1%) of fishing
activity. This speed cutoff exceeded the maximum speed
associated with drifting fishing (Table 2) (mean = 0.8
knots, range 0.2–3.1 knots, < 2% of fishing activity). The
outliers are likely nonfishing records incorrectly coded as

fishing activity, an unfortunate consequence of manually
merging a high-resolution EVM dataset with observer records
over the course of five combined trips. Like Lee et al. 2010,
we considered these records outliers. However, we included
them in our analyses as they did not have a significant impact
on the model results. Vessel speed followed a bimodal dis-
tribution with peaks at less than 1 knot and at 6 knots
(Figure 4). A total of 95% of fishing activity and 53% of
nonfishing activity occurred at vessel speeds ≤ 0.4 knots
(Figure 4, inset). All fishing activity occurred between 0500
and 2200 hours (Figure 5). Outside these hours, vessels sat at
anchor, moved to other fishing locations in the study area, or
transited between their home port and the fishing grounds. The
drum sensor was activated during 33% and < 1% of records
denoted as fishing and nonfishing, respectively. The video
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sensor was activated during 93% and 35% of records denoted
as fishing and nonfishing, respectively. A visual example of the
relationship between vessel speed, time, drum, and video
relative to fishing status is shown in Figure 6.

Filter and Logit Models
The classification success of this filter approach was 82.4%

(Table 4). Specifically, the filter eliminated 6.8% of fishing
activity and 73.4% of nonfishing activity. For this analysis,

only records with speed values ≤ 0.4 knots and/or consistent
with daytime (between 0500 and 2200 hours) were categor-
ized as fishing.

The results of the four nested logit models applied to the
combined dataset are also presented in Table 4. The classi-
fication success of the GPS logit models was similar to the
results obtained by the filter. Classification success was
lowest but identical in the S and ST models, intermediate
in the STD model, and highest in the STDV model. Note
that despite having identical rates of classification success,
the ST logit model performed significantly better than the S
model as dictated by ROC scores. Overall, the ROC scores
indicate that model fit improved significantly as the vari-
ables were added to each nested model. The AIC values
support the differences identified by the ROC scores. In
general, the model classification success was 1.8–2.0 times
more effective than classification success by chance alone
(45.2%). Leave-one-out cross-validation results indicated
that all models except the S model were acceptable
(Table 4).

Accounts of effort by method controlling for trip (length)
are shown in Figure 7. Results are shown for the filter as well
as the best performing models based on GPS (ST) and GPS +
EVM sensor (STDV). Logbook effort was in excess of that
reported by the observer in three out of five trips. The EVM
viewer produced effort estimates in close agreement to that of
the observer and the STDV model, as would be expected
given that observer data were used as a reference. Filter and
model results appeared to align closer with the observer in
short (≤ 3 d) as opposed to longer trips. When the results of
the two logit models and the filter were compared to the
observer record, the slopes (F3, 16 = 0.19, P = 0.904) and
intercepts (F3, 16 = 0.08, P = 0.972) of the four regression lines
were not significantly different (Figure 7). A Tukey
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and nonfishing activity as documented by an observer. For the drum and
video, the on position indicates fishing. Time was recorded by the EVM
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general, drum response underestimates fishing and video response overesti-
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TABLE 4. Results of a simple filter and four binary logistic regression models applied to the dataset of all trips combined. Records between 2200 and 0500
hours were excluded from analyses because of missing records and because no fishing activity occurred during this time. An asterisk indicates that model
coefficients are significant at P < 0.05. Different letters indicate significant differences (P < 0.5) between ROC scores.

Filter GPS models GPS + EVM sensor models

Item ST S ST STD STDV

Intercept 1.223* 0.991* 0.711* –0.616*
Speed (S) –1.135* –1.232* –1.444* –1.203*
Time (T) 0.018* 0.012* –0.029*
Drum (D) 2.195* 1.351*
Video (V) 2.76*
Classification success (%) 82.4a 82.5 82.5 82.8 89.5
AIC 18,757 18,739 17,213 13,589
ROC 0.861 z 0.866 y 0.897 x 0.945 w
Leave-one-out cross-validation ROC 0.827*b 0.864 0.896 0.945

aIt was not possible to examine a simple speed filter alone due to nighttime activity already being removed from the dataset.
bSignificant difference between the model ROC and the leave-one-out cross-validation ROC at P < 0.05.
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comparison of least square means revealed no significant
differences between the observer (37.8 h), ST (51.5), STDV
(40.2), and filter (47.1) accounts of mean hours fished

(P > 0.05). These results indicate that output from the filter
and models examined can be used as proxies for observer
effort, at least for the trips examined here.

The GPS-based ST model was selected as the preferred
approach because of its discriminatory power compared with
the filter and the existing widespread use and lower costs of
GPS data collection relative to EVM systems and sensors.
The application of the filter and ST model to each of the five
individual trips is shown in Table 5. The classification suc-
cess scores and ROC values indicate that the filter and ST
model both fit the data well despite the variation in trip
length (Table 2) and percentage of fishing activity by trip
(Table 5).

DISCUSSION

Filter and Logit Model Performance
The datasets available for this analysis allowed for a

limited comparison of nested logit models to a simple
combination speed and time filter to determine fishing
activity. While the filter produced equivalent rates of clas-
sification success as that of the S, ST, and STD models,
the logit approach proved to be more flexible and infor-
mative than the filter for our exploratory purposes. For
example, model fit diagnostics indicated that the ST
model significantly outperformed the S model. This is
likely because of the lack of fishing activity during
0500–0700 and 1900–2200 hours relative to other times
of the day (Figure 5). The binary filter as examined could
not detect any such differences. In addition, the filter
approach relies on expert knowledge, or in this case obser-
ver data, in order to assign practical speed and time para-
meters. Moving forward, the filter approach might be
useful now that typical fishing practices have been char-
acterized for this fishery.

Vessel speed clearly contributed to the classification suc-
cess of both approaches. The range of vessel speed associated
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3 and 4 (6 and 2 d, respectively) were conducted by the same vessel.

TABLE 5. Results of a simple combination speed and time filter and the binary logistic regression model speed + time (ST) applied to five different trips
individually. Records between 2200 and 0500 hours were excluded from the analyses because no fishing activity occurred during this time. Trips 3 and 4 were
conducted by the same vessel. An asterisk indicates that model coefficients are significant at P < 0.05.

Trip identity (trip length in days)

Item 1 (3) 2 (12) 3 (6) 4 (2) 5 (8)

Fishing activity (%) 50 53 45 36 35
ST logit model
Intercept 2.344* 2.260* –0.314* 1.455* 0.863*
Speed (S) –1.954* –1.666* –1.023* –0.672* –1.614*
Time (T) 0.045* –0.041* 0.076* –0.076* 0.041*
Classification success (%) 87.7 86.1 73.9 71.9 88.0
ROC 0.899 0.896 0.803 0.804 0.936
ST combination filter
Classification success (%) 86.4 84.7 72.2 68.0 90.3
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with fishing activity was similar to other studies that examined
stationary gear. Unfortunately, it was not possible to truly
examine speed as a stand-alone predictor given that the exclu-
sion of night records was built into the dataset.

Multiple data sources suggest that the temporal fishing
preferences observed in this study (Figure 4) are similar to
general patterns observed elsewhere in the study area
(Rudershausen et al. 2007; Stephen and Harris 2010) and
the region. Analysis of an additional unobserved 87 EVM
monitored trips by some of the same vessels used in this
study revealed that the fishing activity occurring between
2200 and 0500 hours only accounted for 2% of the total
hours fished (M. S. Baker Jr., unpublished data). A query of
the NMFS reef fish observer database consisting of both
southern Atlantic Ocean trips (2006–2011, n = 3,089
observed fishing sets) and Gulf of Mexico trips (2006–
2013, n = 28,606 observed sets) indicated that, in general,
99% and 97% of observed fishing activity, respectively,
occurred during daylight hours, which is defined as the
period between sunrise and sunset (Liz Scott-Denton,
NMFS, personal communication).

The addition of EVM sensor data clearly improved the
classification success of logit models. However, the drum
sensor alone failed to capture a large percentage of fishing
activity (mean = 33%) because the bandit reels did not
spin while terminal tackle was positioned on or near the
seafloor. This is the case with any vertical fishing reel
operation, including rod and reel. However, the use of
the drum sensor alone practically insures that all activity
recorded is fishing activity, which may be useful in identi-
fying specific fishing locations. Video provided an over-
estimate of fishing activity because the 10-min run-on
period caused the video to remain on even at times when
fishing activity had ceased (Figure 6). The EVM video
run-on period was set at 10 min prior to the start of the
study but can be adjusted as needed.

The small increase in classification success through the
addition of drum and video sensors came at a substantial
cost considering the price differences alone for data collection
equipment. For example, at the time of this study, the EVM
system cost approximately US$10,000, whereas a GPS or
GPSDL costs less than $500. These figures are for equipment
alone and do not include other costs associated with data
retrieval and analysis.

Future studies could build on this work by evaluating the
use of a new algorithm to combine and replace the effect of
actual drum and video sensor data in the logit model.
Specifically, an algorithm should be considered that maintains
the predicted status “fishing” for subsequent records for an
ideal run-on period after fishing has been predicted based on
speed and time. Considering that a 10-min run-on period led,
in part, to overestimated fishing activity, the run-on period
could be set initially to 1 min to coincide with the coarsest
data collection interval determined to document all observed

fishing activity (Figure 3). Using this approach, it may be
possible to achieve classification success at levels greater
than the full model (STDV) but without the use of actual
EVM sensors.

While the filters and logit models examined here performed
well, no approach achieved the 100% classification success
that is typically assumed for observer data. This study relied
on a single observer to define vessel activity as fishing or
nonfishing, among other duties. A key problem with observer
data, however, is that it too can contain errors (Liggins et al.
1997; Karp and McElderry 1999; Ames et al. 2007). Any
difference in classification success between filters, models,
and observers can be partly attributed to human error by the
observer.

Had EVM data been collected over the full 24-h period for
all trips, the classification success scores obtained from both
the filter and model approaches could have been higher. For
example, the incorporation of night records (all records
between 2200 and 0500 hours) would have effectively
increased classification success by an average of 6.3%
(Table 4). The impact of this addition would have been greater
still when considering that fishing activity on average dropped
to 29.4% over the 24-h period versus 45.2% over the 17-h
period (this study). The combination of increased classifica-
tion success and lower fishing activity would have made the
filter or logit model approach 3.0–3.2 times more effective at
designating fishing activity in the dataset than chance alone,
much closer to the 100% classification success assumed for
the observer.

It is not uncommon to encounter a substantial portion of
missing records in EVM pilot studies. An EVM pilot study
conducted on the Gulf of Mexico longline reef fish fishery
(M. J. Pría, H. McElderry, M. Dyas, and P. Wesley,
Archipelago Marine Research, unpublished report) pro-
duced average EVM dataset completeness values of 65%,
similar to that observed in this study. In both studies,
manual shutdown of the EVM system by the captains
accounted for > 90% of incomplete sensor data. The fact
that two of the five trips (one of four vessels) had 100%
EVM dataset completeness suggests that EVM systems
would have functioned as designed had they not been
manually powered down.

Implications for U.S. Reef Fish Fisheries
Multiple lines of evidence support that the small dataset of

vessels and trips analyzed here is representative of the
greater fleet in the study area as well as perhaps the region
(e.g., Gulf of Mexico reef fish fishery). From a regional
perspective, the southern Atlantic Ocean snapper–grouper
fishery (Table 2) and the Gulf of Mexico reef fish fishery
fishing practices (GSAFF 2010; Scott-Denton et al. 2011) are
also quite similar. Given the high classification success in
this study, the use of the models or even the filter developed
here should be considered for evaluation in other similarly
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prosecuted commercial fisheries, such the Gulf of Mexico
reef fish fishery.

The relatively low percentage of unique fishing events
documented by common intervals of electronic data collection
(e.g., every 60 min, such as with VMSs in the similarly
prosecuted U.S. Gulf of Mexico reef fish fishery) provides
further evidence that the snapper–grouper fishery may be
difficult to characterize fully without observers or a combina-
tion of GPS and higher resolution self-reported logbook data.
If the management objective is to document the locations of
100% of fishing events during trips, then a data collection
interval of 1 min would be required based on this study.
Logbooks would also need to be redesigned to collect data at
the fishing event level as opposed to the trip-level data cur-
rently collected. If the objective is to simply corroborate hours
fished and the general location (e.g., 1° × 1° NMFS logbook
grid) of fishing activity as reported by fishermen, the results
suggest that the coarsest resolution examined (120-min inter-
vals) would suffice.

If vessel position data could be captured uniformly from
a representative number of vessels over an extended period
time, it may be possible to begin to identify the general
area of fishing operations and provide perspective on the
overlap or repeat visitation patterns of unique vessels to
specific fishing areas. For example, Murawski et al. 2005
used VMS, observer, and log book data to examine spatial
trends in fishing activity before and after the implementa-
tion of MPAs and determined that fishing patterns shifted
after the MPAs were put in place. This approach would be
useful to the snapper–grouper fishery as a series of MPAs
are currently in place and more may be under consideration
in the future.

Conclusions
Our results suggest that vessel speed and time of day

collected from a simple GPS unit can serve as a powerful
predictor of fishing activity in this stationary, vertical-line
reef fish fishery. For fisheries that do not have dedicated and
continuous sources of funding available for traditional at-
sea monitoring programs, self-reported logbooks in either
paper or digital format will likely continue to be the pre-
ferred effort reporting method. The addition of GPS data
capture and integration with or in comparison to logbook
records could add value for industry and management.
Given the recent advances in GPS data collection technol-
ogy, some form of automated, spatial effort accounting tool
might provide the most accurate effort data for this and
similar fisheries.
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