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REFERENCE CONDITION APPROACH

A tiered method for discriminant function analysis
models for the Reference Condition Approach:
model performance and assessment

Trefor B. Reynoldson1,4, Stephanie Strachan2,5, and John L. Bailey3,6

1Institute for Applied Ecology, University of Canberra, Australian Capital Territory 2601, Australia
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Ontario, Canada P3E 2C6

Abstract: Reference Condition Approach (RCA) predictive models are used to assess a test site against refer-
ence sites probabilistically matched based on habitat. These models are the basis of several major national
stream bioassessment programs in the UK, Australia, and Canada. In the usual approach to developing predic-
tive models, discriminant function analysis (DFA) is used to assign a test site to a group of matched reference
sites. These groups typically are established by classification of a macroinvertebrate assemblage and matched to
the habitat attributes in a single-step DFA model. We examined an alternative to standard DFA in which a
series of tiered models are used. This tiered method constructs a model for the 1st division in a hierarchical
classification, and then develops models for each further step in the hierarchical classification. We examined
the method with 3 training and validation data sets. Validation data consisted of data from reference sites and
those same sites after they underwent simulated impairment. We compared the tiered approach to the stan-
dard approach based on prediction accuracy and Type 1 and Type 2 error rates for each data set. The tiered
DFA models were similar to or slightly better than the standard single-step DFA models in correctly matching
validation sites to reference groups, but this improvement in accuracy did not necessarily translate into im-
proved bioassessment error rates.
Key words: Reference Condition Approach, BEAST, AUSRIVAS, CABIN, simulated impairment, bioassessment,
predictive modeling, tiered DFA

Reference Condition Approach (RCA) predictive models
are a key component of several major national stream
bioassessment/monitoring programs. First developed and
applied in the UK as part of the River Invertebrate Pre-
diction and Assessment Classification System (RIVPACS;
Wright et al. 1984), these models also underpin national
programs in Australia (Australian River Assessment Sys-
tem [AUSRIVAS]; Simpson and Norris 2000) and Canada
(Canadian Aquatic Biomonitoring Network [CABIN]; Rey-
noldson et al. 1999) and have been tested and applied in
Spain (Pardo et al. 2014), Portugal (Feio et al. 2006), and
Scandinavia (Johnson 2003). The basis of these predictive
models is the probabilistic relationship between biological
assemblages—usually benthic macroinvertebrates—and en-

vironmental variables at reference sites. These models are
used to match a test site to a collection of reference sites,
and assessment is made by comparing the test-site assem-
blage with assemblages from the matched reference sites.
The most common method for building RCA models

for stream assessment has 2 main steps. First, reference
sites from a study area are classified into groups based on
their biological assemblages. These classifications have the
underlying assumption that the groups represent different
natural invertebrate assemblages within a geographic re-
gion. The 2nd step is to develop a quantitative relationship
between a set of predictor habitat variables and the biolog-
ical classification. Discriminant function analysis (DFA) is
most frequently used in this step. DFA identifies a set of
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habitat variables that show the strongest relationship with
the classification created from the biological assemblage.
DFA then establishes a set of coefficients for the selected
set of habitat variables that allows an exposed test site to
be assigned a probability of belonging to each of the bio-
logical groups created by the classification.
Once a model has been developed, it is used to assign a

test site to a reference group for the bioassessment step.
The bioassessment compares the test-site assemblage to the
reference-site assemblage to determine whether the test site
is in reference condition. Two methods are commonly used
for thiscomparison.TheRIVPACS/AUSRIVASmethod uses
the weighted probability that a test site belongs to a group to
determine the likelihoodof ataxon’s occurrence and expected
taxonomic richness (Wright et al. 1984). The BenthicAssess-
ment of Sediment method (BEAST) (Reynoldson et al. 1995)
compares the position of the test site in ordination space to
the distribution of reference sites in the group to which the
test site has the highest probability of belonging.
The nature of classification of the invertebrate assem-

blages in the RCA is hierarchical (Fig. 1A, B). The entire
collection of reference sites is split further and further un-
til a classification is accepted. The decision regarding what
represents a final classification is partially subjective, but
considers several attributes of the classification including:
the number of sites in a group, e.g., Reynoldson and Wright
(2000) suggested a minimum group size of 10 sites; among-
and within-group dissimilarities and similarities; the distri-
bution of sites in ordination space, and the accuracy and
performance of preliminary DFA classification. These attri-

butes are all considered in an iterative procedure for deter-
mining the optimal classification and models. Once a final
set of groups is established, DFA is used to determine the
subset of variables that best classify this grouping. Six
groups are shown in the classification in Fig. 1A. Use of the
standard DFA approach would result in a single model that
assigns sites to the 6 groups created by the classification
step (Fig. 1A). However, as RCA predictive modeling has
evolved, the ability of DFA to assign sites to the correct
biological group has become more problematic. The accu-
racy of the prediction declines, and the number of predictor
variables required tends to increase as the number of sites
to be assigned increases. This problem is illustrated in data
sets from the UK and North America (Table 1), and meth-
ods to improve the prediction accuracy of these models are
under consideration.
We described a new approach to DFA based on the use

of a set of tiered models (Fig. 1B) that attempts to partition
and exclude superfluous variation in the habitat. We used
2 measures of model performance to test whether this
method is an improvement over the standard single-DFA
model. First, we tested the accuracy of the model based
on a training data set, and second, we tested the error in
the assessment. We used 3 data sets from 2 habitat types
and 2 continents to test whether the performance of the
2 models was in general agreement and whether attributes
of a data set affected the model performance.

METHODS
DFA identifies the best subset of candidate predictor

variables (in this case, environmental variables) to use to
separate groups of objects (in this case, the groups of sites
formed by the invertebrate assemblage). In the standard
approach, all the groups are assigned in a single-DFA step.
We used the new tiered-DFA approach to assign groups
hierarchically.
We conducted all DFAs in SYSTAT (version 11.0; Systat,

Chicago, Illinois). We used forward-stepwise analysis with
the p-value for entry and removal set at 0.15 and the mem-

Figure 1. Hypothetical classification of a reference data set
showing 6 reference groups and 2 modeling approaches A.—A
single model discriminating groups in a one-step discriminant
function analysis (DFA). B.—Tiered DFA models for different
levels in the classification.

Table 1. Ability of standard discriminant function analysis
models of varying complexity to correctly predict sites (model
accuracy). Data for the River Invertebrate Prediction and Classifi-
cation System (RIVPACS) model from the UK are from Reynold-
son and Wright (2000).

Model Sites Predictors used Model accuracy (%)

Yukon 1 90 9 55

Yukon 4 286 14 46

Fraser 1 127 10 63

Fraser 4 389 17 49

RIVPACS UK 1 268 11 66

RIVPACS UK 4 614 12 52
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bership priors set as equal. After the initial forward-stepwise
analysis, we used an iterative process to refine the set of
predictors with the F-values for entry and removal as a
guide to obtain the best possible classification. All classifica-
tion results were reported from cross-validation.
In the tiered approach, DFA models are created for each

branch of the classification (Fig 1B), so that a model (model
1 in Fig. 1B) is built to discriminate group 1 (35 sites) from
group 2 (52 sites). A 2nd model is built to separate groups
1A and 1B (model 1a in Fig. 1B). This 2nd model does not
include the 52 sites in group 2 and, therefore, does not have
to explain all the variability associated with those 52 sites.
Similarly, a model is created for group-2 sites, excluding
the 35 group-1 sites, and a model is built to predict sub-
sequent groups (model 2a in Fig. 1B) following the same
procedure until the classification is resolved. Each step in
this tiered DFA method focuses on only part of the classifi-
cation, thereby eliminating the variability among all the
sites that must be explained in the standard single-model
approach.
We constructed tiered models for each of 3 different

data sets with the objective of improving the accuracy of
predicting sites to the biological groups. Once these mod-
els were developed, we used them to assign validation (test)
sites to a reference group. We conducted standard BEAST
assessment using ordination of the test site with its pre-
dicted set of reference sites and a 90% confidence ellipse
constructed around the reference sites. For this compari-
son, a site was considered to be in reference condition if
it was inside the 90% ellipse and out of reference condition if
it was outside the 90% ellipse. We chose semi-strong hybrid
multidimensional scaling (Belbin 1991), which uses linear
regression for association values <0.9 and ordinal regression
for higher association values. We used 2 or 3 axes depend-
ing on the stress value (the correlation between the associa-
tion matrix and the ordination). If stress was <0.15 with
2 axes, we used 2 axes. If stress was >0.15, then we used a
3rd axis.
The method was applied to the same 3 freshwater

reference-site data sets used by other authors in this special
series (Bailey et al. 2014). Two data sets were from large
regions in North America: the Yukon River basin, Yukon
Territory (YT) (323,800 km2), and the Laurentian Great
Lakes (GL) (244,000 km2) in Canada. The 3rd data set, from
the UpperMurrumbidgee River basin in the Australia Capi-
tal Territory Region (ACT), represented a much smaller
geographic area (12,000 km2). The data included benthic
invertebrate assemblage and environmental variables. Sam-
ple collection, taxonomic resolution, and types of habitat
data collected varied among data sets (Bailey et al. 2014).
Each data set was divided into a training set of reference
sites used to build assessment models and a validation set of
reference sites used to test the model performance. Further
details on the data sets are available in Bailey et al. (2014).

The validation sites were used in 2 ways to test the per-
formance of the tiered DFA predictive models modeling
approach: 1) ability to assess validation sites (undisturbed
reference sites) as in reference condition, and 2) ability to
assess simulated-impairment validation sites as not in ref-
erence condition. Erroneous assessment of a validation site
(D0) as disturbed was defined as a Type 1 error, i.e., the
number of reference validation sites (D0) that fell outside
the 90% ellipse. We assessed the same validation sites after
applying mild (D1), moderate (D2), and severe (D3) simu-
lated impairment by eutrophication. These sites were known
to be disturbed, so failure of the model and assessment pro-
cess to identify them as such was defined as a Type 2 error,
i.e., the number of simulated-impairment validation sites
within the 90% ellipse.
Our assessments were based on the assumption that

validation and training assemblages had similar distribu-
tions of biological assemblages. We tested this assump-
tion by comparing the distributions of validation and
training sites in ordination space. Ideally, validation site
assemblages should be within the range of biological var-
iation observed in the training data set. We also tested
whether the models predicted the validation sites as be-
longing to the correct group. Normally, there is no abso-
lute way of knowing to which reference group a test site
belongs. However, in this case, the training and valida-
tion data were from a single set of reference sites, so we
were able to do a classification of both the training and
validation data for each data set. This procedure enabled
us to determine with a high level of confidence the refer-
ence group with which a validation site was most strongly
associated and to check whether it was assigned indepen-
dently to that group by the model.
In summary, the measures we used to describe the per-

formance of the tiered modeling approach were: 1) cross-
validation rates with the training data set, i.e., the accuracy
with which the models assigned training sites to known
groups, based on the error rates from the individual sub-
models and the combined errors from each submodel re-
quired to classify a site (e.g., Fig. 1B: accuracy model 1 ×
accuracy model 1a); 2) the accuracy of assigning validation
sites to the parent group based on the classification of
the validation sites by the model; and, 3) the Type 1 and 2
error rates with validation and simulated-impairment sites.

RESULTS
Tiered models
Construction of tiered models with the 3 training data

sets produced a set of models for each data set. Their
use required a stepwise procedure to estimate the proba-
bility of a site belonging to a reference group.
The YT training data set, with 4 groups (Fig. 2A–C)

and 3 submodels required the fewest steps (Table 2).
The first step, model Y1 with 7 variables correctly (cross-
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validation) predicted 82% of the sites to 2 major groups
(Fig. 2A, Table 2). A site predicted to group 2 (79% accu-
racy) required no further action. However, a site pre-
dicted to group 1 required a 2nd prediction step with
model Y2. This model had an overall accuracy of 84%
with 7 predictor variables. A site predicted to group 1B
(accuracy 73%) required no further action. However, a
site predicted to group 1A required a 3rd prediction step
in model Y3. This model had 6 variables and an overall
accuracy of 73% (Group 1Ai: 71%; Group 1Aii: 76%)

(Table 2). However, these accuracies are for individual
models. In application with new test data, inaccuracies
can compound through each modeling step. For exam-
ple, a site that was in either Group 1Ai or 1Aii would
require the use of 3 models, so the misclassification
could compound. To capture this compounding effect,
classification rates are multiplied. Thus, a site predicted
to Group 1Aii has an actual correct classification rate
calculated as the classification rates from model Y1 ×
model Y2 × model Y3 (0.83)(0.87)(0.76) = 55% (Table 2).

Figure 2. Classification of 118 training reference sites from the Yukon Territory (YT) data set showing 4 groups and the 3 tiered
discriminant function analysis models used to classify to the groups.

Table 2. Performance of tiered models for the Yukon Territory (YT) data set in assigning training sites to reference groups.

Model
Sites correctly predicted

(% accuracy) Predictor variables
Cross-validation

accuracy

Y1 Group 1: 75
of 90 (83%)

Group 2: 22
of 28 (79%)

7: longitude, sedimentary and volcanic bedrock,
ultramafic/metamorphic bedrock, unforested land cover,
June rainfall, annual snowfall, channel depth

82%

Y2 Group 1A: 65
of 75 (87%)

Group 1B: 11
of 15 (73%)

7: stream density, alpine land cover, % lakes in catchment,
minimum June temperature, maximum June temperature,
conductivity, substrate embeddedness

84%

Y3 Gp 1Ai: 29
of 41 (71%)

Gp 1Aii: 26
of 34 (76%)

6: latitude, sedimentary and volcanic bedrock, stream density,
% wetlands, conductivity, dominant substrate

73%
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We calculated these classification rates for each tiered
model (Table 3).
The GL training data set with 7 groups (Fig. 3A–C)

was more complex and required a total of 6 submodels
(Table 4, Fig. 3A–C). However, any site required only 2
or 3 steps for a final prediction, with the sequence being
model GL1, then either model GL1A for groups 1Ai,
1Aii, and 1B followed by model GL1B for groups 1Ai
and 1Aii (Table 4, Fig. 3A–C). If a site was predicted to
group 2 by model GL1, then model GL2 was used, fol-
lowed by either model GL2A for groups 2Ai and 2Aii or
model GL2B for groups 2Bi and 2Bii. None of the mod-

els used >5 variables and model GL2B required only 3
variables (Table 4, Fig. 3A–C). Individual submodels
ranged in accuracy from 76 to 92%, but for all the re-
quired steps accuracy ranged from 39–62% (Table 3).
The ACT training data set with 6 groups contained 4

submodels (Table 5, Fig. 4), and each site required either
2 or 3 steps for complete prediction (Table 5, Fig. 4).
The 1st step used model A1 (Table 5) with 4 variables
and an overall accuracy of 82% (group 1: 74%; group 2:
87%). Sites predicted to group 1 required the use of
model A1A (4 variables; 74% accuracy) to separate group
1A from group 1B (Table 5, Fig. 4). Sites predicted to

Table 3. Summary of performance of tiered discriminant function analysis (DFA) models and a standard single-DFA model in
assigning training sites to the correct group (cross-validation %) for the Yukon Territory (YT), Laurentian Great Lakes (GL), and
Australian Capital Territory (ACT) data sets.

Data set

Tiered model

Standard model
(Strachan and Reynoldson 2014)

Within levels All levels

Submodel (range) Total Groups Average

YT (n = 118) 73–84% 75% 51–79% 64% 58%

GL (n = 124) 76–92% 81% 39–62% 52.2% 62%

ACT (n = 87) 67–82% 70% 38–61% 51% 56%

Figure 3. Classification of 124 training reference sites from the Laurentian Great Lakes (GL) data set showing 7 groups and the
6 tiered discriminant function analysis models used to classify to the groups.
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group 2 required model A2 and, if predicted to group 2A,
a final step with model A2A that predicted sites to 1 of
3 groups (Table 3, Fig. 4). Correct classification rates
ranged from 38 to 61% (Table 3).

Model performance
The cross-validation performance of correctly assign-

ing the training sites for the tiered models ranged from
67 to 82% for the ACT (Table 5), 76 to 92% for the GL
(Table 4), and 73 to 84% for the YT data sets (Table 2).
Within the individual models for the various models in
the classification this performance is substantially better
than the typical RCA models we have constructed which
typically fall in the 50 to 60% accuracy range (Reyn-
oldson et al. 2000, 2001). However, when the classification
rates are adjusted to account for the use of each model step
required to acquire a final classification then the models

perform slightly better (YT) than or similarly (GL, ACT) to
single models (Table 3). Strachan and Reynoldson (2014)
showed that the accuracy of the standard method with
these data sets was typically 56 to 62%. The tiered ap-
proach was markedly better than the standard method
(Table 3) in terms of correctly assigning sites to groups.
Fourteen to 19% more training sites were correctly as-
signed (Table 3), but because of the additive effects of mis-
classifications the classification performance with test sites
was not as clear.
The group membership of the validation sites was

known, so we were able to compare the observed accura-
cies (i.e., the groups to which the sites were predicted)
with the expected accuracies based on the model error
rates. These data are shown for the YT validation sites
(Table 6). Of the 13 validation sites belonging to group
1Ai only 6 (46%) were predicted to that group, but we

Table 4. Performance of tiered models for the Laurentian Great Lakes (GL) data set in assigning training sites to reference groups.
TOC = total organic C.

Model
Groups sites correctly predicted

(% accuracy) Predictor variables
Cross-validation

accuracy

GL1 Group 1: 52
of 64 (81%)

Group 2: 44
of 60 (73%)

4: depth, silt %, 75th percentile particle size,
MgO(sediment).

77%

GL2A Group 1A: 42
of 54 (78%)

Group 1B: 7
of 10 (70%)

4: longitude, alkalinity(water), TN(sediment),
P2O5(sediment)

77%

GL3A Group 1Ai: 21
of 29 (72%)

Group 1Aii: 20
of 25 (80%)

5: alkalinity(water), pH(water), 75
th percentile

particle size, TOC (sediment), Al2O3(sediment)

76%

GL2B Group 2A: 23
of 25 (92%)

Group 2B: 27
of 35 (77%)

3: longitude, depth, alkalinity(water) 83%

GL3B Group 2Bi: 7
of 10 (70%)

Group 2Bii: 22
of 25 (88%)

5: latitude, depth, alkalinity(water), 25
th percentile

particle size, LOI(sediment)

83%

GL3C Group 2Ai 10
of 11 (91%)

Group 2Aii 13
of 14 (93%)

4: latitude, TOC (sediment), Na2O(sediment),
MnO(sediment)

92%

Table 5. Performance of tiered models for the Australian Capital Territory (ACT) data set in assigning training sites
to reference groups.

Model Sites correctly predicted (% accuracy) Predictor variables
Cross-validation

accuracy

A1 Group 1: 26
of 35 (74%)

Group 2: 45
of 52 (87%)

4: longitude, bankfull width, alkalinity(water),
% boulder(substrate)

82%

A2A Group 1A: 12
of 18 (67%)

Group 1B: 14
of 17 (82%)

4: latitude, catchment area, bankfull width,
% gravel(substrate)

74%

A2B Group 2A: 36
of 45 (80%)

Group 2B: 5
of 7 (71%)

5: %riffle, % boulder(substrate), % cobble(substrate),
% pebble(substrate) , % gravel(substrate)

79%

A3 Group 2Ai: 6
of 11 (55%)

Group 2Aii: 14
of 19 (74%)

Group 2Aiii: 10
of 15 (67%)

7: altitude, bankfull width, bankfull height,
water velocity, pool-riffle ratio,
% bedrock(substrate) , % boulder(substrate)

67%
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would expect 7 (55% from the combined error rates in
the tiered model). In general the model was less accurate
than anticipated. Only 15 of an expected 25 sites were
correctly assigned (Table 6).

Site assessment
Assessments were conducted on the validation sites,

undisturbed sites known to be in reference condition (D0
sites), and on simulated-impairment validation sites (D1–
D3) (Table 7). For the ACT data set, 14 of the 20 valida-
tion sites (D0) were assessed as disturbed (equivalent to a

Type 1 error rate = 70%). Sixteen D1 sites were correctly
assessed as disturbed, and 4 were incorrectly assessed as
not disturbed (Type 2 error rate = 20%). The Type 2 error
rates for D2 and D3 sites were 15 and 10%, respectively
(Table 7). For the GL data set, the Type 1 error rate was
47.5%, and the Type 2 error rates were 52.5, 62.5, and
57.5% for D1, D2, and D3 sites, respectively (Table 7). For
the YT data set, the Type 1 error rate was 45%, and the
Type 2 error rates were 57.5, 37.5, and 22.5% for the D1,
D2, and D3 sites, respectively (Table 7).
We have no way of knowing a priori what the Type 2

error rates should be, and this error is, in a sense, a mea-

Table 6. Comparison of inferred group membership of Yukon Territory (YT) validation sites
from classification to that predicted by the model.

Group to which validation site belongs

Predicted to group

Total1Ai 1Aii 1B 2

1Ai 6 (46%) 2 1 4 13

1Aii 2 4 (33%) 1 5 12

1B 1 2 1 (20%) 1 5

2 4 2 0 4 (40%) 10

Expected accuracy 7 (55%) 6 (51%) 4 (72%) 8 (79%) 25

Figure 4. Classification of 87 training reference sites from the Australian Capital Territory (ACT) data set showing 6 groups and
the 4 tiered discriminant function analysis models used to classify to the groups.
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sure of the power of the assessment. However, we would
expect a Type 1 error rate for D0 validation sites of ∼10%
because α is set at 0.10 by the 90% probability ellipse. In
fact, the Type 1 error actually ranged between 45 and 70%
(Table 7) and 51 of the 100 validation sites (for the 3 data
sets) were assessed as not in reference condition (Table 7).
At least 2 explanations exist for the high Type 1 error rate.
First, the validation sites might not have been representa-
tive of the training data set. Second, the models might have
incorrectly assigned validation sites to reference groups so
that they were not assessed with the appropriate set of
reference sites.
As described by Bailey et al. (2014), the validation sites

were selected so as to be within the central range (25th–
75th percentile) of the habitat characteristics of the entire
data set. However, this criterion does not guarantee that
they are necessarily in the same range of the benthic as-
semblage. We plotted both training and validation sites in
nonmetric multidimensional scaling (NMDS) ordination
space to compare the distribution of the invertebrate as-
semblages at training and validation sites (Fig. 5A–C). For
the ACT data set, only 2 of the 20 (10%) validation sites
were outside the training 90% ellipse (Fig. 5A), and the
average similarity of the training and validation sites to the
training site median differed little. For the GL data set, 9 of
40 (22.5%) validation sites were outside the 90% ellipse

(Fig. 5B), and for the YT data set, only 3 of 40 (8%) sites
were outside the 90% ellipse (Fig. 5C). For the GL data set,
the validation sites were more different from the training
sites than would be expected (>2× as many sites as expected
were outside the 90% ellipse; Fig. 5B), and the selection of
the validation sites may explain part of the high Type 1
error rate (Table 7). However, this was not the case for the
ACT or YT data sets, where the number of validation sites
outside the 90% ellipse was equal to or less than expected
(Fig. 5A,C).
The 2nd explanation for high Type 1 errors was inac-

curate matching of sites to reference groups. Our com-
parison of the groups to which the validation sites were
predicted relative to the group to which they actually be-
longed (Table 6) suggests inaccurate matching as a cause
for the observed errors.

DISCUSSION
We examined 2 aspects of the tiered modeling ap-

proach: the accuracy of the model and the error in assess-
ment. Commonly used RCA methods use the reference
group(s) predicted for a test site as the basis of comparison
in the site-assessment step. Both the observed/expected
(O/E) score (RIVPACS, AUSRIVAS) and the ordination ap-
proach (CABIN) use the probability that a test site belongs
to a reference group. Therefore, the greater the accuracy in

Table 7. Summary of the assessments of validation and simulated-impairment sites for the Australian Cap-
ital Territory (ACT), Laurentian Great Lakes (GL), and Yukon Territory (YT) data sets. For each data set,
the results are presented (Table 3) for the number of validation sites assessed as undisturbed (D0) and dis-
turbed (D1, D2, D3), using the Benthic Assessment of Sediment (BEAST) 90% ellipse, for each level of dis-
turbance. Error rates (%) are equivalent to Type 1 error for the D0 sites and the Type 2 error for the D1–
D3 sites. For comparison the error rates are reported for the standard Benthic Assessment of Sediment
(BEAST) method by Strachan and Reynoldson (2014).

Data set

Level of disturbance

None (D0) Mild (D1) Moderate (D2) Severe (D3)

ACT (n = 20)

Assessed as undisturbed 6 4 3 2

Assessed as disturbed 14 16 17 18

Error rate (%) 70.0 20.0 15.0 10.0

*BEAST error (%) 70.0 20 20 5

GL (n = 40)

Assessed as undisturbed 21 21 25 23

Assessed as disturbed 19 19 15 17

Error rate (%) 47.5 52.5 62.5 57.5

*BEAST error (%) 30 65 60 55

YT (n = 40)

Assessed as undisturbed 22 23 15 9

Assessed as disturbed 18 17 25 31

Error rate (%) 45.0 57.5 37.5 22.5

*BEAST error (%) 53 43 25 25
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matching the test site to a reference group, the more confi-
dence a user may have in the assessment.
The individual tiered models provided much higher

accuracy than the single-step model. Fourteen to 19%

more training sites were correctly classified by the tiered
models than by the standard approach. From this per-
spective, the tiered models performed better than the stan-
dard approach. However, when the accumulated misclas-
sifications accrued through multiple tiered models, the
performances of the tiered and standard models were
similar. Tiered models with as few levels as possible are
desirable.
Comparison of the tiered and standard models on the

basis of assessment of validation sites yielded equivocal
results. Type 1 error rates ranged from 45 to 70%. Given
the α level of 0.10 (90% probability ellipse), these Type 1
error rates are much higher than the 10% expected. The
comparison with the standard BEAST method (Strachan
and Reynoldson 2014) showed that Type 1 error rates
were the same between methods for the ACT data, higher
with the tiered method for the GL data (47.5 vs 30%), and
lower with the tiered method for the YT data set (45 vs
53%) (Table 7). Type 2 error rates ranged from 10% (ACT,
D3) to 62.5% (GL, D2) (Table 7).
Each data set had particular issues. With the ACT data

set, the Type 1 error rate was high, the trend for the as-
sessment of D1 to D3 sites was as expected, but the differ-
ence among the 3 levels of simulated impairment was
small. However, the ACT data consisted of relative abun-
dances. Therefore, a change in total abundance, which in
ordination-based assessment contributes substantially to
the assessment, would have no effect on the assessment
and might explain the lack of discrimination among the
levels of disturbance. The GL data set was particularly
problematic because more D0 sites (19) than D3 sites (17)
were assessed as different from reference. The selection of
validation sites resulted in a higher Type 1 error than ex-
pected, and it appeared that the greater the disturbance,
the fewer the number of sites assessed as out of reference.
The YT data set behaved as expected. More sites were
assessed as disturbed as the level of disturbance increased,
but the Type 1 error rate was high.
The selection of validation sites is part of the issue

with the GL data set, but the other major concern in
terms of the assessments is that many validation sites
appear to be incorrectly matched to groups. To remove
the error associated with the incorrect assignment of vali-
dation sites, we recalculated the error rates for only those
sites that were correctly predicted to the group to which
they belong based on classification of the complete data
set (Table 8). The results have error rates much closer to
those expected, particularly for the YT and ACT data
sets. The YT data set did have high Type 2 error for D1
sites. However, the error rates for the GL data set re-
mained high, and the Type 2 error rate remained incon-
sistent with expectations (higher Type 2 error with D2
than with D1 sites). In the case of the GL model, the
classification itself may have to be re-examined.

Figure 5. Nonmetric multidimensional scaling (NMDS) or-
dination of reference data sets from the Australian Capital Ter-
ritory (ACT) (A), Laurentian Great Lakes (GL) (B), and Yukon
Territory (YT) (C). For each data set the training (open) and val-
idation (solid) sites are shown with a 90% probability ellipse con-
structed around training sites only.
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Several DFA models have been reconstructed to include
new reference-site data. For models constructed for the
Fraser River (British Columbia), the Yukon, and the UK
(Reynoldson and Wright 2000), the capacity of models to
predict sites accurately decreased as the number of refer-
ence sites increased and the models become more complex
(Table 1). This situation is not surprising because includ-
ing more reference sites in a model increases the variation
and complexity that must be partitioned with a single-DFA
model. Our experience when presenting a model to users
has been that a model with 50% accuracy does not inspire
confidence, particularly in the case of ordination-based as-
sessment where the test site is compared only to the group
with the highest probability of occurrence. Low prediction
accuracy creates the perception that assessment accuracy is
poor. However, the basis for such an opinion must be con-
sidered in light of the number of groups. For 2 groups, 50%
prediction accuracy would be no improvement over a null
model, but with 10 groups, it would be 4 times better than
a null model. Furthermore, ordination-based assessment
carries a high degree of redundancy or robustness because
many reference-site groups overlap in ordination space so
that often, regardless of a low probability of prediction to a
reference group, sites in adjacent groups share similar or-
dination space and, therefore, have comparable reference
sites.
Based on our analyses alone, we find it difficult to rec-

ommend the tiered method over the standard method.
We have no way to state absolutely that one model is an
improvement over another, but the desirable attributes
of RCA models for model builders are fewer predictor var-
iables, more groups, and higher accuracy. The initial clas-
sification in the tiered approach is much superior to the
classification in the standard approach. However, the po-
tential accumulation of misclassifications through the levels
may result in a similar performance between the 2 methods,
particularly if several tiered models are required to resolve
a classification. Classification with a single-tier model had
high accuracy (79%), but accuracy was 60 ± 8% (SD) when
2 models were required and 50 ± 5% with 3 tiers. On the
other hand, tiered models used more reference groups

for the data sets explored in this series than reported for
the standard approach (Strachan and Reynoldson 2014).
Thus, their resolution with DFA models was more com-
plex and provided greater partitioning of the natural var-
iation with potentially higher sensitivity in assessment.
Moreover, the tiered models required fewer predictor var-
iables. The standard approach used 8 (GL) or 9 (ACT,
YT) variables (Strachan and Reynoldson 2014), whereas
the tiered models used 3 to 7 variables (Tables 2, 4, 5).
Models built with the tiered DFA method allowed more
groups to be similarly or more accurately predicted with
fewer predictor variables compared with the standard
DFA method.
In summary, the model prediction performance with

the training sites can be better with the tiered method
than with the standard approach using a single model.
However, with the data used in our study, this improve-
ment does not yield lower error rates. Both Type 1 and
2 errors were similar to that produced by the single-step
method (Strachan and Reynoldson 2014). The overall
poor performance, particularly the high Type 1 error
rates, are problematic. They were related, in part, to the
selection of the validation sites (GL), but also to inaccu-
racies in matching of sites to reference groups. Thus,
approaches using validation and back-checking of model
performance are critical when building models, and re-
sults of these tests should be reported. Tests with simu-
lated impairment data sets, or some equivalent, should
be standard when testing assessment performance. We
also suggest that both standard and tiered models be
considered. However, we see no obvious way to decide a
priori which approach is likely to result in more accurate
prediction, and prediction accuracy seems to be critical
for the quality of the assessments. Some compromises
were made in assembling these data sets, and these com-
promises, particularly those related to availability of hab-
itat variables, could have reduced model performance.
However, it also should be acknowledged that this exer-
cise probably is one of the few examples where an assess-
ment approach has been so rigorously tested.
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Table 8. Number of correctly matched validation (D0) and
simulated-impairment validation sites (D1–D3) in the Austra-
lian Capital Territory (ACT), Laurentian Great Lakes (GL), and
Yukon Territory (YT) data sets assessed as different from reference.
Type 1 and Type 2 error rates are in parentheses.

Disturbance
None
(D0)

Mild
(D1)

Moderate
(D2)

Severe
(D3)

ACT (n = 5) 1 (20%) 3 (40%) 3 (40%) 5 (0%)

GL (n = 15) 6 (40%) 6 (60%) 2 (87%) 5 (67%)

YT (n = 15) 2 (13%) 2 (87%) 7 (53%) 11 (27%)

Volume 33 December 2014 | 1247

Downloaded From: https://bioone.org/journals/Freshwater-Science on 23 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



LITERATURE CITED
Bailey, R. C., S. Linke, and A. G. Yates. 2014. Bioassessment of
freshwater ecosystems using the Reference Condition Ap-
proach: comparing established and new methods with com-
mon data sets. Freshwater Science 33:1204–1211.

Belbin, L. 1991. Semi-strong hybrid scaling, a new ordination
algorithm. Journal of Vegetation Science 2:491–496.

Feio, M. J., T. B. Reynoldson, and M. A. S. Graça. 2006. Effect
of seasonal and inter-annual changes in the predictions of
the Mondego River model at three taxonomic levels. Inter-
national Review of Hydrobiology 91:509–520.

Johnson, R. 2003. Development of a prediction system for lake
stony-bottom littoral macroinvertebrate communities. Archiv
für Hydrobiologie 158:517–540.

Pardo, I., C. Gómez-Rodríguez, R. Abraín, E. García-Roselló, and
T. B. Reynoldson. 2014. An invertebrate predictive model
(NORTI) for streams and rivers: sensitivity of the model in
detecting stress gradients. Ecological Indicators 45:51–62.

Reynoldson, T. B., R. C. Bailey, K. E. Day, and R. H. Norris. 1995.
Biological guidelines for freshwater sediment based on BEnthic
Assessment of SedimenT (the BEAST) using a multivariate
approach for predicting biological state. Australian Journal of
Ecology 20:198–219.

Reynoldson, T. B., M. Bombardier, D. B. Donald, H. O’Neill,
D. M. Rosenberg, H. Shear, T. Tuominen, and H. H. Vaughan.
1999. Strategy for a Canadian aquatic biomonitoring network.
NWRI 99-248. Environment Canada, Burlington, Ontario.

Reynoldson, T. B., K. E. Day, and T. Pascoe. 2000. The develop-
ment of the BEAST: a predictive approach for assessing sedi-

ment quality in the North American Great Lakes. Pages 165–
180 in J. F. Wright, D. W. Sutcliffe, and M. T. Furse (editors).
Assessing the biological quality of freshwaters. RIVPACS and
other techniques. Freshwater Biological Association, Amble-
side, UK.

Reynoldson, T. B., D. M. Rosenberg, and V. H. Resh. 2001. Compar-
ison of models predicting invertebrate assemblages for biomon-
itoring in the Fraser River catchment, British Columbia. Cana-
dian Journal of Fisheries and Aquatic Sciences 58:1395–1410.

Reynoldson, T. B., and J. F. Wright. 2000. The reference condi-
tion: problems and solutions. Pages 293–303 in J. F. Wright,
D. W. Sutcliffe, and M. T. Furse (editors). Assessing the bio-
logical quality of freshwaters. RIVPACS and other techniques.
Freshwater Biological Association, Ambleside, UK.

Simpson, J. C., and R. H. Norris. 2000. Biological assessment of
river quality: development of AusRivAS models and outputs.
Pages 125–142 in J. F. Wright, D. W. Sutcliffe, and M. T.
Furse (editors). Assessing the biological quality of freshwa-
ters. RIVPACS and other techniques. Freshwater Biological
Association, Ambleside, UK.

Strachan, S. A., and T. B. Reynoldson. 2014. Performance of the
standard CABIN method: comparison of BEAST models
and error rates to detect simulated degradation from multi-
ple data sets. Freshwater Science 33:1225–1237.

Wright, J. F., D. Moss, P. D. Armitage, and M. T. Furse. 1984. A
preliminary classification of running-water sites in Great Brit-
ain based on macroinvertebrate species and the prediction of
community type using environmental data. Freshwater Biology
14:221–256.

1248 | Tiered DFA T. B. Reynoldson et al.

Downloaded From: https://bioone.org/journals/Freshwater-Science on 23 Apr 2024
Terms of Use: https://bioone.org/terms-of-use


