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ABSTRACT

The U.S. Environmental Protection Agency’s ToxCast research
program uses high throughput screening (HTS) for profiling
bioactivity and predicting the toxicity of large numbers of
chemicals. ToxCast Phase I tested 309 well-characterized
chemicals in more than 500 assays for a wide range of molecular
targets and cellular responses. Of the 309 environmental
chemicals in Phase I, 256 were linked to high-quality rat
multigeneration reproductive toxicity studies in the relational
Toxicity Reference Database. Reproductive toxicants were
defined here as having achieved a reproductive lowest-
observed-adverse-effect level of less than 500 mg kg�1 day�1.
Eight-six chemicals were identified as reproductive toxicants in
the rat, and 68 of those had sufficient in vitro bioactivity to
model. Each assay was assessed for univariate association with
the identified reproductive toxicants. Significantly associated
assays were linked to gene sets and used for the subsequent
predictive modeling. Using linear discriminant analysis and
fivefold cross-validation, a robust and stable predictive model
was produced capable of identifying rodent reproductive
toxicants with 77% 6 2% and 74% 6 5% (mean 6 SEM)
training and test cross-validation balanced accuracies, respec-
tively. With a 21-chemical external validation set, the model was
76% accurate, further indicating the model’s potential for
prioritizing the many thousands of environmental chemicals
with little to no hazard information. The biological features of
the model include steroidal and nonsteroidal nuclear receptors,
cytochrome P450 enzyme inhibition, G protein-coupled recep-
tors, and cell signaling pathway readouts—mechanistic infor-
mation suggesting additional targeted, integrated testing
strategies and potential applications of in vitro HTS to risk
assessment.

female reproductive tract, fertility, male reproductive tract,
predictive toxicology, reproductive toxicity, toxicology

INTRODUCTION

Current chemical evaluations in the United States range
from those providing either little to no evidence of safety for
most industrial chemicals to an expensive battery of animal
tests for food-use pesticides that offers little mechanistic
insights. No in vivo toxicology test uses more animals than the
rat multigeneration reproductive test. It has been estimated that
70% of the total cost and 90% of the animal use for compliance
with Registration, Evaluation, Authorization, and Restriction of
Chemicals (REACH) will be due to reproductive toxicity
testing [1]. Addressing the existing chemical evaluation
bottleneck can only be achieved through progressive changes
to the current animal testing paradigm. A promising resource
for addressing this bottleneck is computational toxicology, a
field that integrates tools from computer science, bio- and
chemi-informatics, molecular biology, and high throughput
screening (HTS). Currently prescribed in vivo tests for
chemical toxicity are resource-intensive, particularly for multi-
generation reproductive and prenatal developmental assess-
ment. Policy directives such as the Cosmetics Directive of the
European Union (EU) call for the elimination of animals for
evaluating reproductive toxicity by 2013 for cosmetic products
and development of alternative methods for safety evaluation.
In the past, significantly less attention has been spent modeling
or predicting chemical-induced reproductive toxicity relative to
efforts spent modeling cancer and other endpoints. Reasons for
the meager effort in this area include a lack of reference animal
toxicity data to model as well as the molecular and
physiological complexity of maternal-fetal interactions, life
stages, and generational sensitivities [2]. Recent efforts
capturing in vivo reproductive toxicity studies into databases
and in vitro bioactivity profiling have enabled the development
of predictive, mechanistic, and pathway-based models for these
complex reproductive outcomes.

The Toxicity Reference Database (ToxRefDB) has been the
primary tool for storing and accessing high-quality toxicology
studies and is available online for searching and download [3].
ToxRefDB has characterized thousands of studies using a
standardized vocabulary, a uniform structure across study
types, and a high level of internal and external quality control
(QC) for the extraction of endpoints useful in developing
predictive models [4]. The primary study for assessing
reproductive effects of chemicals is the multigeneration
reproductive test (Office of Prevention, Pesticides, and Toxic
Substances 870.3800 and Organization for Economic Cooper-
ation and Development [OECD] 416), which is typically
conducted under continuous exposure to male and female rats
from 10 wk premating through lactation in the second
generation. From multigeneration reproductive studies in
ToxRefDB, we have the capacity to identify individual or
aggregated endpoints for predictive modeling across hundreds
of chemicals and have made comparisons across generations to
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identify adverse impacts on developmentally sensitive repro-
ductive endpoints based on the prevalence of specific endpoints
at later generations compared to the first generation [5].
Generational comparisons using ToxRefDB have also been
part of the OECD evaluation of the proposed Extended One-
Generation Reproductive Toxicity Study (EOGRTS). Tox-
RefDB was the primary database used in the large-scale
retrospective analysis aimed at evaluating the impact of the
second generation on risk assessments and classification and
labeling (C&L) in Europe [6]. However, the acceptance of the
EOGRTS in lieu of the existing two-generation test will not
alleviate the chemical testing bottleneck for the many
thousands of chemicals in commerce. One set of solutions to
this testing bottleneck are alternative methods for chemical
prioritization and intelligent, targeted testing decisions.

The use of alternative methods as part of an integrated
reproductive and developmental toxicity testing strategy is
currently being developed as a battery of in silico, in vitro, and
in vivo tests [7, 8]. One component of this toolbox is the large-
scale bioactivity profiling of chemicals in HTS and high-
content assays. The ToxCast research project of the U.S.
Environmental Protection Agency (EPA) has produced a
substantial amount of HTS data on environmental chemicals
for developing predictive models of toxicity [9]. Phase I of
ToxCast profiled 309 toxicologically well-characterized chem-
icals in more than 500 assays using nine technologies,
including cell-free HTS assays and cell-based assays. ToxCast
HTS data and multigeneration reproductive toxicity data from
ToxRefDB provide an effective dataset for developing
predictive toxicology models. In the present study, we present
a robust and stable predictive model of chemically induced
reproductive toxicity that demonstrates external predictivity
useful for targeting testing prioritizations and significantly
advancing predictive and computational toxicology.

MATERIALS AND METHODS

Chemical

Phase I of the U.S. EPA’s ToxCast program employed a chemical library
containing 320 samples consisting of 309 unique structures, with five
duplicates that were differently sourced and three triplicates as technical
repeats for internal QC. The rationale for chemical selection was based on
several criteria: extensive chronic, cancer, multigeneration reproductive, and
developmental assay data available (95% of compounds met this criteria);
soluble in dimethyl sulfoxide (DMSO;�1 , log P , 6 [i.e., log of the octanol/
water partition coefficient]; 97.5% met this criteria); molecular weight range of
250-1000 (90% met this criteria); and commercially available with purity of
greater than 90% (98% met this criteria). These criteria were largely satisfied
with a diverse set of pesticide active ingredients that have had guideline in vivo
toxicology studies conducted as part of their registration process with the U.S.
EPA. Several other miscellaneous chemicals of environmental concern meeting
these criteria were also included in the library. Despite its large representation
of pesticidal actives, the Phase I chemical library spans a wide range of
property values and is quite structurally diverse, representing more than 40
chemical functional classes (e.g., pyrazole, sulfonamide, organochlorine, and
pyrethroid) and more than 24 known pesticidal mode-of-action classes (e.g.,
phenylurea herbicides, organophosphate insecticides, and dinitroaniline
herbicides). A complete listing of the quality-reviewed and structure-annotated
chemical library is available for download as a Structure Data Format (SDF)
file at the DSSTox website [10].

Chemicals comprising the ToxCast Phase I library were commercially
procured and plated by BioFocus DPI. Supplier-provided certificates of
analysis indicated a purity of greater than 97% for the majority of chemicals
(87%) and of greater than 90% for all but a few instances of technical grade or
known mixtures. Follow-up analysis of an original solution plate by BioFocus
DPI using liquid chromatography/mass spectrometry subsequent to assay
screening has confirmed mass identification, stability, and purity for more than
83% of the chemical library. For the majority of the remaining chemicals,
currently employed methods of analysis are known or suspected to be
inadequate for confirming sample purity, and for the remaining 8% of the

chemicals, follow-up studies have provided some evidence of sample
decomposition in DMSO over time. A QC summary result mapped to chemical
solution sample is provided on the ToxCast website in association with assay
results [11]. All chemicals were included in the analysis regardless of analytic
results but were accounted for throughout the analysis process.

In Vivo (Class Data)

Multigeneration reproductive toxicity testing study design and treatment
group information along with all treatment-related effects were manually
collected into the U.S. EPA’s ToxRefDB. The database structure, standardized
vocabulary and ontology, and QC procedures have been described previously
[4]. To date, ToxRefDB has captured 393 acceptable reproductive studies
across 353 chemicals, equating to 14, 347, and 32 one-, two-, and three-
generation studies, respectively. An acceptable study can be defined as any
study that adequately followed the multigeneration testing guideline, primarily
determined by regulatory toxicologists from the U.S. EPA’s Office of Pesticide
Programs and for which the review of the study contains sufficient information
for complete entry into ToxRefDB. Of the 309 ToxCast chemicals, 256
chemicals have been linked to an acceptable reproductive study entered in
ToxRefDB, with 242 exact structural matches, 4 close structural matches
presumed to be toxicological equivalents (e.g., parent-to-salt, salt-to-parent, or
different isomeric forms) not already linked to a ToxCast chemical, 4 close
structural matches already linked to a ToxCast chemical (e.g., fluazifop-butyl
and fluazifop-p-butyl), and 6 parent-to-metabolite pairs (e.g., diethylhexyl
phthalate, phthalic acid, and mono-2-ethylhexyl ester). An additional 39
chemicals have unacceptable reproductive studies, whereas 14 chemicals have
no data available in ToxRefDB.

In ToxRefDB, 650 unique effects were observed across the entire
multigeneration reproductive toxicity study dataset, ranging from body weight
decreases to organ weight changes to litter survival to fertility decrements. Each
unique effect was mapped to one of three multigeneration study categories:
parental (e.g., body weight, liver weight, and other systemic toxicities),
reproductive (e.g., primarily fertility and early offspring survival), and offspring
(e.g., offspring weight, longer-term offspring survival, and other systemic
offspring toxicities during their juvenile period). Specifically, 120 effects were
directly related to reproductive outcomes, and another 175 effects indicated
adverse offspring outcomes, with the remainder being systemic parental effects
[5]. Based on the review of each study, primarily by regulatory toxicologists
from the U.S. EPA’s Office of Pesticide Programs, lowest-observed-adverse-
effect levels (LOAELs) were established for the parental, offspring, and
reproductive categories based on the weight of evidence and expert judgment of
the reviewer. The reproductive LOAEL (rLOAEL) was used to delineate a
positive and negative set for reproductive toxicity based on a 500 mg kg�1

day�1. This cutoff value approximates the testing limit of 1000 mg kg�1 day�1

in the reproductive test guideline and accounts for the large uncertainty around
the dose intake measurements and standard conversions used in capturing the
dosing information across hundreds of chemicals and more than 30 yr of
toxicity testing. Any chemical with an rLOAEL of less than or equal to the
cutoff was considered to be positive for reproductive toxicity, and any chemical
with an rLOAEL of greater than the cutoff or that was not assigned an rLOAEL
by the study reviewer was considered to be negative for reproductive toxicity.
Specific effects within this endpoint category include reproductive performance
measures (e.g., fertility, mating, and gestational interval), male and female
reproductive tract effects (e.g., testis, epididymis, ovary, and uterus pathology
and weight, along with sperm measures and morphology), and sexual
developmental landmarks (e.g., preputial separation, vaginal opening, and
anogenital distance). Teratogenic endpoints from prenatal toxicity testing were
not included as part of the definition of a reproductive toxicant for the purposes
of this modeling effort. Additional information regarding the treatment groups,
including the life stage and generation of the animals and the administered
dose, were captured in ToxRefDB to provide additional context for each
chemical’s reproductive toxicity potential.

In Vitro (Features)

As part of the ToxCast research program, the chemical library was tested in
more than 500 assays across nine technologies, including cell-free HTS assays
and cell-based assays in multiple human and rodent primary and derived cell
lines. A complete overview of the assays, assay selection, analysis methods,
quality measures, and assay annotation have been previously published [12]. In
general, concentration at half-maximal efficacy (AC

50
) values or lowest-

effective concentrations (LECs) were derived for each assay and time point,
where applicable. The complete dataset, including AC

50
/LEC values and

corresponding concentration response data for all chemical-assay measurement
pairs, is available from the U.S. EPA’s ToxCast website [11]. For the purpose
of predictive modeling, assays form the input features and can be thought of as
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the right side of the equation, where some linear combination of these assays or
sets of assays is equal to the class data (the reference in vivo endpoint).

The AC
50

/LEC values were �log
3

transformed (�log
3
[AC

50
/1000]), and a

value of zero was given to all negative assay results. A log
3

transformation and
setting negatives to 1000 lM was used over a log

10
transformation and setting

negatives to 1 mol/L, as has been done in previous publications of ToxCast
results [12], to enhance the scoring range between high- and low-potency active
chemicals and to decrease the distance between active (i.e., achieving an AC

50
and defined as a hit in the assay) and inactive chemicals. Therefore, the ‘‘assay
score’’ where the AC

50
was 100 lM would have a value of roughly two,

whereas one where the AC
50

was 100 nM would have a value of roughly eight.
A ‘‘gene score’’ or ‘‘gene-set score’’ was derived based on the average assay
score across a set of closely related assays (e.g., assays mapped to a single gene
or gene family). Any chemical active in 10 or fewer assays (�2% aggregate
active) was removed from the initial model development due to the lack of
information provided by the chemical’s bioactivity fingerprint to discern active
and inactive for any toxicity. The rationale for excluding the chemicals with
little or no in vitro activity is based on the following logic: Specific chemicals
may lack activity in in vitro assays for a number of reasons, including chemical
degradation, aqueous insolubility, lack of metabolic activation, or volatility.
Such chemicals would be characterized by little to no activity across a broad
range of in vitro assays. Because this behavior is, at least to some extent,
relevant only to the in vitro systems, these chemicals are not good candidates
for including in a model predicting in vivo activity. They were thus excluded
from the training set. However, their exclusion is making no statement of a
chemical’s true reproductive toxicity potential.

Model (Class and Features)

The first step in the development of a predictive model was univariate
feature selection. Each assay was compared to the training set of chemicals,
both positive and negative for reproductive toxicity, using continuous and
dichotomous statistical methodology, including linear (Pearson) correlation
test, chi-square test, and t-test, with the level of significance returned as P-
values. Each assay with a P-value of less than 0.1 from any method passed the
initial feature selection filter. The resulting assays were then grouped by gene
or assay family, as described above, to form the input features for subsequent
modeling. In some instances, assays that were not statistically significantly
associated but that provided orthogonal or complimentary readouts for the same
target were included in model development. This was performed for various
nuclear receptor targets in which cell-based transcription factor assays were
significantly associated with reproductive toxicity, whereas the more specific
cell-free binding assays were not because of the low number of active
chemicals. The highly specific assays provide increased evidence that a
chemical interacts with a particular target. Significantly associated assays that
were part of a large assay family or that were highly correlated to other higher
prioritized assays, based on relative P-value and correlation, were excluded to
minimize the total number of assays moving into the model development phase.
For example, as part of ToxCast, 54 G protein-coupled receptor (GPCR)-
binding assays were evaluated, with 18 being significantly associated with
reproductive toxicity. Of those 18 GPCR assays, five were selected based on
having the greatest correlation collectively; adding further GPCR assays only
lowered the overall association to reproductive toxicity.

Based on the selection of a small and balanced feature set, the prediction of
reproductive toxicity potential was performed using linear discriminant analysis
(LDA). Fivefold cross-validation was used to explore the stability of the
resultant model, a process of developing the model using 80% of the chemical
set and testing the model accuracy with the remaining 20% and repeating five
times until all data have been used as both training and test datasets. The
resulting cross-validation statistics are presented as the average and standard
deviation of the training- and test-set balanced accuracies across the five runs.
Additionally, a subset of chemicals with positive findings in unacceptable
studies within ToxRefDB and chemicals with clear literature evidence of
reproductive toxicity or no reproductive toxicity were used to assess the
forward predictivity of the resultant model and to serve as an initial external
validation set.

RESULTS

The quality and forward predictivity of any model is limited
by the quality of the feature and class data being used in the
model development process. Therefore, strict and transparent
methods were used for identifying the training set used in the
initial modeling effort from both in vivo (i.e., class) data and in
vitro (i.e., feature) data perspectives. Of the 256 chemicals
linked to an acceptable reproductive study, 86 reported an

rLOAEL of less than 500 mg kg�1 day�1 (Table 1). The
additional 12 chemicals that reported an rLOAEL from an
unacceptable reproductive study were not incorporated into the
initial model development process but were used for model
assessment and external validation of the model. Six chemicals
had an rLOAEL above the 500 mg kg�1 day�1 cutoff and were
considered to be negative for modeling purposes; these
chemicals included fluoxastrobin (862 mg kg�1 day�1),
trifloxysulfuron sodium (631 mg kg�1 day�1), propoxycarba-
zone sodium (1314 mg kg�1 day�1), oxasulfuron (1115 mg
kg�1 day�1), isoxaben (1000 mg kg�1 day�1), and propamocarb
hydrochloride (1000 mg kg�1 day�1). The toxicity profile for
these chemicals primarily consisted of high-dose systemic
parental and offspring toxicities leading to confounding sexual
developmental landmark findings and early offspring survival
decrements. Of the 98 chemicals identified as reproductive
toxicants (i.e., 86 from acceptable and 12 from unacceptable
studies), 49 chemicals had treatment-related effects on the male
and/or female reproductive tract, 51 caused decrements in
reproductive performance, 67 affected early offspring survival,
and 18 altered sexual development. A combined model of
reproductive toxicity is presented, as opposed to individual
models of each endpoint class, because of the large overlap in
chemicals across these endpoint classes, the lack of gender-
specific phenotypes, and the lack of mechanistic information in
the guideline multigeneration reproductive studies.

A significant number of ToxCast chemicals had little to no
in vitro activity across hundreds of assays. Aggregate activity
for each chemical was calculated as the number of actives
divided by the total number of assays used in this analysis (n¼
512). A 2% activity cutoff was established based on the
minimal impact of aggregate in vitro activity on the sensitivity
and, to a limited degree, specificity of resulting models. In
total, 62 chemicals were identified as falling below the 2%
cutoff and were not used in the initial model development
process. Table 2 summarizes the chemical counts for each
chemical group based on in vivo reproductive study accept-
ability/availability and aggregate in vitro activity. The entire
chemical library was split into these groups to identify a
chemical set with the capacity to develop a stable and robust
model without the negative impacts of low in vivo multi-
generation study quality or potential limited amenability to in
vitro screening. Thus, chemical group A was selected for the
initial development of the predictive reproductive toxicity
model, including internal cross-validation. Groups B, C, and D
were used to evaluate the stability and identify the current
weaknesses, limitations, and gaps of the model. Groups E and
F have also provided insight regarding the forward predictivity
of the model based on available open-literature reproductive
toxicity studies. In conjunction with Table 2, a schematic of the
full decision process, including chemical groupings, class
definitions (i.e., positive or negative for reproductive toxicity),
and final summary model statistics, is provided as an overview
and guidepost to the remaining, more detailed results (Fig. 1).

Of the 206 chemicals used in the initial development of the
predictive reproductive toxicity model (i.e., chemical group A),
68 were identified as reproductive toxicants—roughly one third
of the total. In relating the in vitro bioactivity to these
reproductive toxicants, a set of assays and genes were
identified as significant indicators of reproductive toxicity
based on their univariate association. In total, 36 of more than
500 assays were selected for model development and
subsequently mapped to genes or gene sets (Table 3). The
primary genes identified were nuclear receptors, both steroidal
and nonsteroidal, and included the androgen receptor (AR),
estrogen receptor alpha (ERa; ESR1), and peroxisome
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TABLE 1. Ninety-eight chemicals, linked to 86 acceptable and 12 unacceptable studies in ToxRefDB, achieved a reproductive LOAEL (rLOAEL � 500
mg/kg per day) and used as the positive class set for the training and testing of the predictive model.

CASRN
Chemical

name
rLOAEL*

(mg/kg per day)
Acceptable

study?

Male
reproductive

tract�

Female
reproductive

tract�
Reproductive
performance�

Early
offspring
survival�

Sexual
developmental

landmark�

71751-41-2 Abamectin 0.4 NO P1 F1
30560-19-1 Acephate 25 YES P1 F1/F2
135410-20-7 Acetamiprid 51 YES F1 F1
33089-61-1 Amitraz 12 YES F1
3337-71-1 Asulam 250 YES P2 F1
35575-96-3 Azamethiphos 50 YES F1
1861-40-1 Benfluralin 401 YES P2 F1/F2
17804-35-2 Benomyl 234 YES P1/P2
80-05-7 Bisphenol A 500 YES P2 P1/P2 P1/P2 F1/F2 F1
134605-64-4 Butafenacil 23.8 YES P1/P2 P1/P2
75-60-5 Cacodylic acid 17.9 YES P2
63-25-2 Carbaryl 92.4 YES P2 F2 F1
5234-68-4 Carboxin 20 YES P2
101-21-3 Chlorpropham 150 YES P1/P2
64902-72-3 Chlorsulfuron 541 NO P2 F1
210880-92-5 Clothianidin 31.2 YES P1/P2 F1/F2 F1
1134-23-2 Cycloate 50 YES F1/F2
94-75-7 2,4-D 80 YES P1 F1
94-82-6 2,4-DB 112 YES P1 F1
1596-84-5 Daminozide 500 YES P1/P2
117-81-7 DEHP 391 YES P1/P2 P1 F1 F1
333-41-5 Diazinon 35.2 YES P1/P2 F1/F2
962-58-3 Diazoxon 35.2 YES P1/P2 F1/F2
84-74-2 Dibutyl phthalate 531 YES P2 P1 P1 F1
1918-00-9 Dicamba 419 YES F1
99-30-9 Dichloran 102 YES P1/P2
120-36-5 Dichlorprop 220 YES P1/P2 F1/F2
62-73-7 Dichlorvos 7.2 YES P2 P2
51338-27-3 Diclofop-methyl 7.3 YES P1 P1/P2
115-32-2 Dicofol 2.4 YES P1/P2 F1/F2
141-66-2 Dicrotophos 0.56 YES P1 F1/F2
60-51-5 Dimethoate 6.5 YES P1/P2
122-39-4 Diphenylamine 399 YES P1/P2 F2
298-04-4 Disulfoton 0.12 NO P1/P2 F1/F2
155569-91-8 Emamectin benzoate 1.8 YES P2
66230-04-4 Esfenvalerate 6.7 NO F2
60168-88-9 Fenarimol 1.2 YES P1/P2 F1/F2
114369-43-6 Fenbuconazole 40 YES P1/P2 F1/F2
122-14-5 Fenitrothion 0.68 NO P1/P2 F1/F2
55-38-9 Fenthion 0.7 YES P1/P2 P1/P2 F1/F2
76-87-9 Fentin 1.4 YES P1/P2 P1/P2 F1/F2
120068-37-3 Fipronil 26.3 YES P2 P1/P2 P2 F1/F2
69806-50-4 Fluazifop-butyl 5.8 YES P1/P2 P2 P1/P2 F1
79241-46-6 Fluazifop-P-butyl 5.8 YES P1/P2 P2 P1/P2 F1
79622-59-6 Fluazinam 47.3 YES P2 F2
103361-09-7 Flumioxazin 12.7 YES P2 P1 P1 F1/F2
85509-19-9 Flusilazole 17.5 YES P1/P2 F1/F2
133-07-3 Folpet 180 YES P2
68157-60-8 Forchlorfenuron 544 YES P1/P2 P2 F2
79983-71-4 Hexaconazole 50 YES F2
35554-44-0 Imazalil 80 YES P1/P2 F1/F2
144550-36-7 Iodosulfuron-methyl-na 346 YES P1 F2
55406-53-6 IPBC 37.5 YES F1/F2
77501-63-4 Lactofen 26.2 YES P1/P2 P1/P2 F1/F2
330-55-2 Linuron 54 YES P1/P2 P2 F2
12427-38-2 Maneb 106 YES P2 P2 P2 F1
94-74-6 MCPA 22.5 YES P1/P2
4376-20-9 Mono-(2-ethylhexyl)

phthalate (MEHP)
391 YES P1/P2 P1 F1 F1

104206-82-8 Mesotrione 1.1 YES F1/F2
950-37-8 Methidathion 1.25 YES P2 P1/P2 P1/P2 F1
9006-42-2 Metiram-zinc 16 NO P2 F1/F2
7786-34-7 Mevinphos 0.5 YES P2 P2 P2
51596-11-3 Milbemectin 65.6 NO F1/F2
2212-67-1 Molinate 0.8 YES P1/P2 P1/P2 P1 F1/F2 F1
131-70-4 Monobutyl phthalate 531 YES P2 P1 P1 F1
88671-89-0 Myclobutanil 50 YES P2 F1/F2
300-76-5 Naled 18 YES F2
27314-13-2 Norflurazon 103 YES P1/P2
116714-46-6 Novaluron 298 YES P2 P1 F1 F1
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proliferator-activated receptors alpha and gamma (PPARA and
PPARG, respectively). These molecular targets have extensive
literature detailing their role in normal reproductive function as
well as reproductive and endocrine toxicity. A number of
cytochrome P450 enzyme (CYP) inhibition assays, including
aromatase (CYP19A1), were also significantly associated with
the reproductive toxicants. Interestingly, besides the human
aromatase assay, rat CYP assays had increased association to
the endpoint as compared to the human CYP assays. For the
purposes of the model and based on the increase in overall
statistical correlation, all associated rodent CYP assay scores,
as well as aromatase, were averaged and used as a single
feature, called CYP. In addition to these genes and assay sets,
individual assays representing cell-based markers of growth
factor stimulation and cell signaling, including epidermal
growth factor 1 (EGFR1), transforming growth factor beta 1
(TGFB1), vesicular monoamine transporter 2 (VMAT2), and
nuclear factor kappa light-chain enhancer of activated B cells
(NFKB), were other positive indicators of reproductive toxicity
potential. These assays were also averaged together as a
miscellaneous set of assays and called OTHER. As part of
ToxCast, 54 GPCR-binding assays were evaluated, with 18
being significantly associated with reproductive toxicity. Of
those 18 GPCR assays, five were selected based on having the
greatest correlation collectively; adding further GPCR assays
only lowered the overall association to reproductive toxicity.
Assays targeting the pregnane X receptor (PXR, NR1L2) were
negatively correlated with reproductive toxicity potential and
used in the model development process with the expectation of

providing some indication of the metabolic clearance of the
chemical or representing general nuclear receptor promiscuity.

Using the combination of the selected gene/gene-set scores,
a multivariate linear classifier was developed using LDA and
fivefold cross validation. The feature set included PPARA
(average �log

3
[AC

50
/1000] across three assays), AR (average

�log
3
[AC

50
/1000] across three assays), ESR1 (average

�log
3
[AC

50
/1000] across seven assays), PPARG (average

�log
3
[AC

50
/1000] across four assays), CYP (average

�log
3
[AC

50
/1000] across seven assays), GPCR (average

�log
3
[AC

50
/1000] across five assays), OTHER (average

�log
3
[AC

50
/1000] across four assays), and NR1L2 (average

�log
3
[AC

50
/1000] across three assays) for a total of eight

features. Figure 2 demonstrates the relative impact on
classification rates between individual assays, genes/gene sets,
and the final model. In general, we find that aggregating
multiple related assays into a single feature increased the

TABLE 2. Chemical groupings based on aggregate in vitro activity across
the over 500 ToxCast assays and in vivo reproductive study acceptability/
availability within ToxRefDB.*

ToxRefDB assessment
In vitro
activity

Little-to-no
in vitro activity
(,2% active)

Total in vivo
chemical
counts

Acceptable reproductive study 206 (A) 50 (B) 256
Unacceptable reproductive study 31 (C) 8 (D) 39
No reproductive study available 10 (E) 4 (F) 14
Total in vitro chemical counts 247 62 309

* Letters in parenthesis identifies letter assigned to chemical group.

TABLE 1. Continued.

CASRN
Chemical

name
rLOAEL*

(mg/kg per day)
Acceptable

study?

Male
reproductive

tract�

Female
reproductive

tract�
Reproductive
performance�

Early
offspring
survival�

Sexual
developmental

landmark�

42874-03-3 Oxyfluorfen 146 YES F1/F2
40487-42-1 Pendimethalin 215 YES F2
335-67-1 Perfluorooctanoic

acid (PFOA)
30 YES F1

1763-23-1 PFOS 3.2 YES P1 F1
2310-17-0 Phosalone 29.4 YES F1 F1
86209-51-0 Primisulfuron-methyl 250 YES P2
67747-09-5 Prochloraz 31.3 NO P2 P2 F1/F2
709-98-8 Propanil 53 YES P2 P1 F1
31218-83-4 Propetamphos 5.5 YES P1/P2 F1/F2
60207-90-1 Propiconazole 238 YES F2
23950-58-5 Propyzamide 123 YES P2
10453-86-8 Resmethrin 70.8 YES P2
83-79-4 Rotenone 7 YES F1/F2
148477-71-8 Spirodiclofen 178 YES P2 P2 F1
118134-30-8 Spiroxamine 44.8 NO F1
122836-35-5 Sulfentrazone 33 YES P2 P2 P1/P2 F1/F2
119168-77-3 Tebufenpyrad 19.3 YES F1
96182-53-5 Tebupirimfos 1.25 NO P1/P2
79538-32-2 Tefluthrin 12.5 NO F1
112281-77-3 Tetraconazole 6 YES P1 F1
153719-23-4 Thiamethoxam 1.84 YES P2
43121-43-3 Triadimefon 90 YES P1 P1/P2 P2
55219-65-3 Triadimenol 25 YES P2 P2
2303-17-5 Tri-allate 30 YES P1/P2 P2
78-48-8 Tribufos 15 NO P1/P2 F1/F2
52-68-6 Trichlorfon 175 YES P2 F2
68694-11-1 Triflumizole 1.5 YES P1/P2 P1/P2 F2
131983-72-7 Triticonazole 250 YES P1/P2 F1/F2
50471-44-8 Vinclozolin 4.9 YES P1/P2 P1/P2 P1/P2 F1 F1

* In enforcing the 500 mg/day cutoff, rLOAEL were rounded to one significant figure due to the uncertainty of dose intake especially at high doses.
� Reproductive effects were grouped into endpoint classes and assigned to the specific generation at which the effect occurred. P1 and P2 refer to adult
parental animals from the first and second generation; F1 and F2 refer to offspring of the first and second generation, respectively.

HTS PREDICTIVE MODEL OF REPRODUCTIVE TOXICITY 331

Downloaded From: https://bioone.org/journals/Biology-of-Reproduction on 23 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



FIG. 1. Decision tree diagram represent-
ing the process by which the 309 ToxCast
chemicals were grouped, based on in vivo
study acceptability/availability and in vitro
aggregate bioactivity, and subsequently
defined as positive or negative for repro-
ductive toxicity, based on having achieved
an rLOAEL of less than 500 mg kg�1 day�1.
Applying the model developed using
chemical group A to all other chemical
groups, individual and combined balanced
accuracy values (average of sensitivity and
specificity) summarize the results across the
entire chemical library and provide context
and summary information; each chemical
group is discussed in greater detail
throughout the Results and Discussion
sections.

TABLE 3. Feature selection statistics based on univariate correlations and associations between individual assays or genes/gene-sets and reproductive
toxicants in chemical group A, dichotomously represented (i.e., 1 for positive and 0 for negative).

Individual assay Correlation (P value)* Gene/Gene Set Correlation (P value)

ATG_PPARA_TRANS 0.24 (6.6E-4) PPARA 0.30 (9.6E-6)
NCGC_PPARA_Agonist 0.17 (1.7E-2)
NVS_NR_hPPARA 0.17 (1.6E-2)
NCGC_AR_Antagonist 0.18 (3.6E-3) AR 0.31 (4.8E-6)
NVS_NR_hAR 0.28 (3.7E-5)
NVS_NR_rAR 0.04 (NS)
ATG_ESR1_TRANS 0.17 (1.5E-2) ESR1 0.15 (2.3E-2)
ATG_ERE_CIS 0.04 (NS)
NCGC_ESR1_Agonist 0.05 (NS)
NCGC_ESR1_Antagonist 0.11 (9.3E-2)
NVS_NR_hER 0.10 (NS)
NVS_NR_mESR1 0.10 (NS)
NVS_NR_bER 0.10 (NS)
ATG_PPRE_CIS 0.10 (NS) PPARG 0.14 (4.1E-2)
ATG_PPARG_TRANS 0.09 (NS)
NCGC_PPARG_Agonist 0.06 (NS)
NVS_NR_hPPARG 0.14 (4.1E-2)
NVS_ADME_rCYP2A2 0.30 (1.5E-5) CYP 0.27 (1.1E-4)
NVS_ADME_rCYP2B1 0.23 (7.2E-4)
NVS_ADME_rCYP2C12 0.14 (4.9E-2)
NVS_ADME_rCYP2C11 0.17 (1.5E-2)
NVS_ADME_rCYP2A1 0.21 (2.4E-3)
NVS_ADME_rCYP2C13 0.21 (2.3E-3)
NVS_ADME_hCYP19A1 0.17 (1.3E-2)
NVS_GPCR_hOpiate_mu 0.26 (1.8E-4) GPCR 0.34 (8.6E-7)
NVS_GPCR_h5HT6 0.22 (1.3E-3)
NVS_GPCR_hAdra2C 0.21 (2.0E-3)
NVS_GPCR_hPY2 0.20 (3.3E-3)
NVS_GPCR_gOpiateK 0.19 (7.3E-3)
BSK_hDFCGF_EGFR_up 0.14 (4.5E-2) OTHER 0.28 (4.5E-5)
BSK_BE3C_TGFB1_up 0.08 (NS)
NVS_TR_rVMAT2 0.21 (2.7E-3)
ATG_NF_KB_CIS 0.14 (4.9E-2)
ATG_NR1L2_TRANS �0.14 (4.2E-2) NR1L2 �0.14 (4.5E-2)
ATG_PXRE_CIS �0.11 (NS)
NCGC_NR1L2_Agonist_human �0.09 (NS)

* NS: Not statistically significant (P value . 0.1).
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classification rate and yielded a more balanced and stable
model. Grouping the assays by gene and gene sets also allows
assays with low hit prevalence that would otherwise not be
included in the model to contribute to the overall assessment of
whether a chemical interacts with a specific molecular target.

Using the eight gene and gene-set features, a robust (i.e.,
high predictivity with high balanced accuracy; .70%) and
stable (i.e., high test cross-validation and external validation
accuracies; .70%) classifier or predictive model was gener-
ated as shown by the resulting model statistics (Table 4). The
cross-validation balanced accuracy (equal to the average of
sensitivity and specificity) for the training and test sets,
averaged across all five runs, was 77% and 74% for the training
set and the test set, respectively, with a standard deviation of
2% and 5%, respectively. Conversely, using the single most
significantly associated assay per gene or gene set resulted in
training and test balanced accuracies of 71% and 64%,
respectively, illustrating the loss in predictivity and model
stability when relying on a single assay to represent a
molecular target or pathway. After demonstrating stability

across the cross-validation runs, a model generated using all
206 group A chemicals was optimized, resulting in a balanced
accuracy of 80% (P¼ 4.2E-17), indicating a highly predictive
model for reproductive hazard.

Chemical group B was not included in the initial model
development because of the lack of in vitro bioactivity across
hundreds of assays. Interestingly, a comparable prevalence of
reproductive toxicants was observed in chemical group B, with
18 of the 50 chemicals characterized as active (36% active vs.
64% inactive). Only 20 chemicals in group B were active
across any of the 33 assays or seven input features that
positively indicated reproductive toxicity. If the model is
applied to chemical group B only, the balanced accuracy is
54%, with a very low sensitivity of 11%. If the model is
applied to chemical groups A and B, balanced accuracy and
sensitivity drop to 75% and 66%, respectively. The diminished
model performance, especially in terms of sensitivity when
including low in vitro activity chemicals, provides justification
for considering these chemicals as outside the domain of in
vitro biological applicability, akin to the domain analysis

FIG. 2. Classification or predictivity rates
increase from individual HTS assays to
aggregated genes or gene sets, whereas
misclassification rates proportionately de-
crease, demonstrating the advantage of
combining assays for same genes in model
development. Classification rate (blue line)
was calculated as the proportion of true
positives (greater than the mean assay/gene/
gene set/model and positive for in vivo
reproductive toxicity) over the total number
positives (n ¼ 68). The misclassification rate
(red line) was calculated as the proportion
of false positives (greater than the mean
assay/gene/gene set/model score but nega-
tive for reproductive toxicity) over the total
number of chemicals negative for repro-
ductive toxicity (n ¼ 138).

TABLE 4. Performance metrics for the predictive model of reproductive toxicity, including cross-validation and optimized model statistics and weighting
of model input features.

Cross-Validation Statistics Full Model Statistics Parameter Coefficients

Learner LDA TP 55 F1 73% PPARA 1.37
CV 5-fold FP 28 RR 6.3 AR 0.98
No. F 8 FN 13 OR 17 ESR1 0.45
Assays 36 TN 110 PPV 66% PPARG 0.23
BA Train 77% SENS 81% NPV 90% CYP 0.28
SD Train 2% SPEC 80% Pred 78% GPCR 0.5
BA Test 74% BA 80% P-Value 4.2E-17 OTHER 0.45
SD Test 5% A 80% Cutoff 0.6 NR1L2 �0.21

CV ¼ Cross Validation; No. F ¼ Number of selected features; Assays ¼ Number of assays comprising the selected features; BA ¼ Balanced accuracy
(Average of sensitivity and specificity); SD ¼ Standard deviation of the Balanced Accuracy for each Fold; TP ¼ True Positive Count; FP ¼ False Positive
Count; FN¼ False Negative Count; TN¼True negative count; SENS¼ Sensitivity; SPEC¼ Specificity; A¼Accuracy; P-Value¼Chi-Square P-Value; Cutoff
¼ LDA Model Intercept; F1 ¼ F-measure (harmonic mean of precision and recall); OR ¼ Odds ratio; PPV ¼ Positive predictive value; NPV ¼ Negative
predictive value; Pred¼ Predictivity (Average of PPV and NPV)
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performed in structure-activity studies, and provides no
evidence as to the safety or toxicity of the chemical. In real-
world applications of this reproductive toxicity model,
chemicals could be identified for follow-up analysis ranging
from traditional animal toxicity testing to additional in vitro
screening attempting to address confounding issues such as
chemical decomposition, aqueous insolubility, or volatility to
the application of purely in silico models.

Chemical groups C and D are comprised of 39 chemicals
that have been tested in guideline reproductive studies that
were deemed to be unacceptable for a variety of reasons,
including quality of the review, dose selection, and guideline
adherence. It would not be expected that these studies were
deemed to be unacceptable because of false-positive findings;
therefore, the 12 chemicals designated as reproductive
toxicants were used to demonstrate external predictivity of
the model. Examples of such chemicals include the putative
antiandrogen prochloraz [13] and the possible endocrine-
disrupting chemical fenitrothion [14], both of which were
predicted to be positive for reproductive toxicity. In total, 7 of
the 12 reproductive toxicants in chemicals groups C or D were
predicted to be positive. The same presumption for the positive
findings cannot be extended to the negative findings across
studies flagged as unacceptable. For example, the male
reproductive toxicant boric acid [15] caused only limited
reproductive effects in the unacceptable guideline multigenera-
tion reproductive study and showed little in vitro activity
(chemical group D), possibly as a result of limited amenability
to HTS.

Chemical groups E and F have no guideline-based multi-
generation reproductive toxicity study entered into ToxRefDB
and, in most cases, have never had such a study performed.
However, of the 14 chemicals in groups E and F, nine were
linked to reproductive toxicity tests available in the open

literature. Varying sources and degrees of evidence can be
found for reproductive toxicity: methoxychlor and its metab-
olite 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE)
based on positive findings in numerous pubertal and other in
vivo assays [16–19], bromoxynil based on EU labeling as a
reproductive toxicant (R62), methyl cellosolve (2-methoxye-
thanol) based on reproductive findings in multiple systemic
repeat-dose and multigenerational studies [20], and mono-
crotophos based on male and female reproductive toxicity
across multiple studies [21, 22]. Equivocal evidence of
reproductive toxicity could be found for alachlor [23] based
on non-dose-dependent effects on ovarian weight and preg-
nancy index effects, which did not result in an rLOAEL being
determined. Dimethyl phthalate and its metabolite methyl
hydrogen phthalate [24, 25] as well as butralin [26] were
considered to be negative for reproductive toxicity based on the
available studies. The model correctly divided this subset of
chemicals as reproductive toxicants or not with the exception
of monocrotophos, which was in the low in vitro activity group
(chemical group F). Interestingly, alachlor, which showed
limited evidence of reproductive toxicity, was predicted to be
positive and was just above the cutoff or model intercept,
which could readily be interpreted as an equivocal prediction.
In summary, five of six chemicals with literature evidence of
reproductive or endocrine toxicity were accurately predicted,
whereas all three negative chemicals were accurately predicted.

The remaining five chemicals had no reproductive toxicity
information available in the literature and were candidates for
forward predictions. Based on the model, symclosene and
phenoxyethanol were predicted to be negative, but it should be
noted that the chemicals had low confidence in their purity
from the analytical QC and/or low in vitro activity. Three
chemicals with no reproductive toxicity data were predicted to
be positives, including diniconazole, niclosamide, and clor-

TABLE 5. External validation chemical set used to test the forward predictivity of the model.

Chemical
group* CASRN Chemical name

Evidence of
reproductive toxicity

Predicted
reproductive toxicant Model score

E 2971-36-0 HPTE Yes Yes 11.9
C 122-14-5 Fenitrothion Yes Yes 5.5
C 67747-09-5 Prochloraz Yes Yes 3.4
E 1689-84-5 Bromoxynil Yes Yes 3.4
E 72-43-5 Methoxychlor Yes Yes 2.7
C 51596-11-3 Milbemectin Yes Yes 2.4
C 9006-42-2 Metiram-zinc Yes Yes 1.6
C 64902-72-3 Chlorsulfuron Yes Yes 0.8
F 109-86-4 Methyl cellusolve Yes Yes 0.8
C 71751-41-2 Abamectin Yes Yes 0.7
C 96182-53-5 Tebupirimfos Yes Yes 0.7
E 15972-60-8 Alachlor Yes Yes 0.7
C 78-48-8 Tribufos Yes No 0.0
C 118134-30-8 Spiroxamine Yes No �0.1
C 79538-32-2 Tefluthrin Yes No �0.1
C 298-04-4 Disulfoton Yes No �0.2
C 66230-04-4 Esfenvalerate Yes No �0.5
E 4376-18-5 Methyl hydrogen phthalate No No 0.0
F 6923-22-4 Monocrotophos No No 0.0
F 131-11-3 Dimethyl phthalate No No �0.2
E 33629-47-9 Butralin No No �0.2
E 120-32-1 Clorophene Unknown Yes 4.4
E 83657-24-3 Diniconazole Unknown Yes 2.4
E 50-65-7 Niclosamide Unknown Yes 1.6
F 122-99-6 Phenoxyethanol Unknown No 0.0
E 87-90-1 Symclosene Unknown No �0.2

* Each chemical is associated with a chemical group based on reproductive study acceptability/availability and aggregate in vitro activity. Chemical group
C showed evidence of reproductive toxicity based on positive findings in an unacceptable multigeneration study, while chemical groups E and F showed
literature evidence of reproductive toxicity.
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ophene. Diniconazole, similar to many of the other conazoles,
demonstrated CYP inhibition, which was highly associated
with decrements in early offspring survival. Niclosamide
displayed fairly potent PPARG agonist activity in multiple
assays (top 5 of 309 chemicals for aggregate PPARG activity),
which was associated most with male and female reproductive
tract effects. AR binding was observed for clorophene at
potencies similar to the CYP inhibition findings, which were
both associated with delays in sexual development and
decrements in reproductive performance. These results provide
examples of how in vitro screening leading to targeted testing
could be used to identify chemicals as potential reproductive
toxicants based on model predictions. Additionally, the
components of the predictive model have increased associa-
tions with specific endpoints and can help make recommen-
dations about study design, including incorporating more
sensitive or mechanistic endpoints into the study. A summary
of the external validation (i.e., chemicals that are not used in
training or testing the model and that have sufficient
ToxRefDB or literature data to confidently classify the
chemical as a reproductive toxicant or not) and forward
validation (i.e., chemicals for which a prediction has been made
but that have no available evidence of whether the chemical is a
reproductive toxicant) chemical sets demonstrates the forward
predictivity of the model and provides examples of predictions
made on chemicals with no reproductive toxicity information
available (Table 5). Of the 21 external validation chemicals, 12
were accurately predicted as reproductive toxicants, 5 were
incorrectly predicted as negative, and 4 were accurately
predicted to be negative, resulting in an external validation
accuracy of 76% and a balanced accuracy of 85%.

In practice, the use of a predictive reproductive toxicity
model can assist in prioritizing further targeted testing. Using
chemical group A, we demonstrate the utility of this model in
decision making and how it could assist in alleviating the
current chemical testing bottleneck. Depending on prioritiza-
tion goals, increasing or decreasing the optimal balanced cutoff
would alter the specificity, sensitivity, and predictivity of the
applied model (Fig. 3). Using a high cutoff, testing the top 30
scoring chemicals would yield 26 reproductive toxicants. On
the other hand, to identify the vast majority of reproductive
toxicants (57 of the 66 total reproductive toxicants), one would
have to test the top 136 of 206 scoring chemicals. If the
prioritization task was to follow up with an expensive and time-

consuming multigeneration reproductive study in a short period
of time, then a more specific approach (i.e., higher cutoff)
might be more appropriate. If the prioritization task was to
follow up with a medium throughput assay capable of testing
many chemicals, then a more sensitive approach (i.e., lower
cutoff) could be used, ensuring the testing strategy catches as
many potential reproductive toxicants as possible. A maximum
sensitivity of 86% and a maximum specificity of 97% are
achieved dependent on the cutoff, which can be adjusted to the
prioritization task.

Beyond the accurate prediction of reproductive toxicants
identified solely from animal studies, we have compiled the
available EU C&L for reproductive toxicity (R60&62 for
fertility and R61&63 for developmental toxicity) in Table 6. Of
the 206 group A chemicals, 19 have been reviewed for EU
classification, and of these 19 chemicals, 7 have been classified
for fertility (R60&62), 8 for developmental toxicity (R61&63),
and 4 for neither. In all, 14 of the 15 R60&63 classified

FIG. 3. Chemicals ordered by their repro-
ductive toxicity model score with the
positive training set on the left and the
negative training set on the right. The
optimal cutoff was determined to be 0.6
(black line) and achieved a balanced
accuracy of 80%. Depending on the prior-
itization goals, an increased or decreased
cutoff could greatly alter your confidence in
detecting a reproductive toxicant. Using an
increased cutoff, one could test the top 32
scoring chemicals and expect to have 27 be
reproductive toxicants (cutoff of 1.8 in
blue). On the other hand, to accurately
predict 59 of the 68 total reproductive
toxicants, one would have to test the top
scoring 137 of 206 chemicals (cutoff of .0
in red).

TABLE 6. Comparison of predictive model results to classification and
labeling for reproductive toxicity.

Chemical name
Predicted
positive Repro C&L*

Model
score

Bisphenol A Yes R62 6.1
Vinclozolin Yes R60&61 4.7
Flusilazole Yes R61 4.6
Linuron Yes R62&61 2.9
Myclobutanil Yes R63 2.4
Fenarimol Yes R62 2.5
Fentin Yes R63 3.5
Fluazifop-P-butyl Yes R63 1.7
Flumioxazin Yes R61 0.9
Cyproconazole Yes R63 1.2
Diethylhexyl phthalate (DEHP) Yes R60&61 0.9
Isoxaflutole Yes R63 0.6
Fluazifop-butyl Yes R61 1.0
Dibutyl phthalate Yes R62&61 0.8
Benomyl No R60&61 0.0
Diuron No — 0.4
Lindane No — 0.0
Propazine No — �0.3
Propargite No — �0.5

* Repro C&L is the European Union classification and labeling for
reproductive toxicity, with R60 and 62 referring to fertility impairment and
R61 and 63 to developmental toxicity.
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chemicals were predicted by the current model to be positive.
Only the metabolically activated benomyl was a false negative
using the predictive model [27]. All four nonclassified
chemicals were predicted to be negative, but it should be
noted that these chemicals could have been unclassified as a
result of insufficient data to assess C&L. As opposed to the risk
assessment process, in which quantitative dose-response
information is needed, the C&L process evaluates the intrinsic
hazard of a substance. The output of the predictive reproduc-
tive toxicity model appears to be well suited to C&L.

DISCUSSION

The results of the present analysis demonstrate that in vitro
HTS data can be used to predict developmentally sensitive
reproductive toxicity in the rat. The capacity to use ToxCast
HTS data, costing roughly $20,000–$30,000 per chemical for
more than 500 assays, in predicting the reproductive toxicity of
hundreds to thousands of chemicals could transform the way in
which chemicals are prioritized and selected for targeted
reproductive toxicity testing. Reproductive toxicity testing is
animal intensive, time-consuming, and costly. Current testing
requirements are expanding internationally beyond conven-
tional pesticides to industrial chemicals and other chemical
domains. Past, present, and future multigeneration reproductive
studies characterize reproductive toxicity through the integrat-
ed assessment of more than 100 potential endpoints across
varying life stages and generations. Even with these large
numbers of measured endpoints, the imprecise nature of many
of the endpoints limits the ability to identify gender and life-
stage specificity, let alone mechanisms of action. The
complexity of the biology, physiology, and study design are
primary reasons for using molecular and cellular markers to
model reproductive toxicity, but these complexities are also the
reasons why previous modeling efforts have not shown
dramatic success. Therefore, we have focused not only on
the model development but also on the detailed capture and
uniform assessment of the reference in vivo reproductive
toxicity information leading to a predictive and biologically
relevant model that can be applied not just to testing
prioritization but also to refinement or even replacement.

The overall accuracy and predictivity of the current model
based on the cross-validation statistics and examples of
forward predictivity demonstrate its potential for use in an
integrated evaluation strategy for environmental chemicals.
Additionally, the model is specific to reproductive toxicity and
is not modeling general systemic toxicity, as evident by the
lack of concordance with the systemic parental and offspring
LOAELs. It should be noted that the ToxCast assay data are
being used concurrently to develop independent predictive
models of cancer as well as systemic and developmental
toxicities. Once further model performance assessment has
been performed on models developed using ToxCast data, the
models could be combined into an integrated testing strategy.
As a starting point in this process, the current reproductive
toxicity model underwent performance-based assessment
demonstrating its strengths and limitations. For example,
chemicals that require metabolic activation, such as benomyl
or molinate, will not be predicted as a reproductive toxicant by
this model, at least not until HTS data using metabolically
competent systems are available [27, 28]. Additionally,
chemicals such as boric acid, which likely causes its male
reproductive toxicity through nonmolecular interactions, dem-
onstrate limitations of the current model [15, 28] and point to
the larger issue of chemical domain of applicability. The
ToxCast Phase I chemical set contains a large number of

conventional pesticides. The ToxCast Phase II chemical library
contains approximately 700 chemicals with more diverse
structural and use characteristics, including on-the-market and
failed pharmaceuticals, food additives, antimicrobials, and
other industrial chemicals. ToxCast Phase II will provide a
robust external validation set testing the forward predictivity of
the current model and evaluating the model’s chemical domain
of applicability. An advantage of developing predictive models
using quantitative HTS data linked to genes, proteins, and
pathways is the ability to identify gaps in the mechanisms
covered by the model. Additionally, chemicals predicted to be
reproductive toxicants that caused minimal reproductive
toxicity in the multigenerational study have at times instead
been shown to cause reproductive-related effects in either
chronic, developmental, or other types of studies. Examples of
reproductive related effects for triclosan and bensulide [29, 30]
from other study types demonstrate the difficulty in definitively
calling training-set chemicals positive or negative for repro-
ductive toxicity.

Among the 21 chemicals selected for external validation, the
model provided accurate predictions for 16 of the chemicals.
The five chemicals with inaccurate predictions provide
valuable insight regarding potential limitations or gaps of the
model. Interestingly, the five chemicals had a common
phenotypic profile with respect to reproductive toxicity.
Tribufos, spiroxamine, tefluthris, disulfoton, and esfenvalerate
all caused reduced early offspring survival, particularly litter
size decrease, with little to no accompanying effects on
reproductive performance or reproductive tract pathology. The
rLOAELs for all five chemicals were set at the high dose tested
based on the early offspring survival effects, and the parental
and offspring LOAELs were set at the lower dose levels. Based
on the inclusive definition used for defining a positive for
reproductive toxicity for model development, all five were
considered to be positive, but all five lack evidence of specific
fertility-related or developmentally sensitive reproductive
outcomes. Nonetheless, a gap in model predictivity has been
identified and could potentially be filled using additional assay
technologies, physical-chemical properties and structural
descriptors, or acute or short-term in vivo studies.

The model development process identified biologically
plausible features and pathways from more than 500 assays
mapped to hundreds of genes and spanning many reproduc-
tively relevant modes of action. PPARa activity was clearly
associated with reproductive toxicity, with all 10 PPARa
agonists in the training set (chemical group A) causing
reproductive toxicity. Putative PPARa agonists (lactofen
[31], imazalil [32], diclofop-methyl [32], DEHP [33], MEHP
[33], and PFOA [33]) and environmental chemicals identified
as potential PPARa agonists through the ToxCast research
program (fluazinam, emamectin benzoate, vinclozolin, and
fenthion) span many chemical classes yet share a relatively
common reproductive toxicity profile—namely, a decrease in
reproductive performance (i.e., decreased fertility) in 8 of the
10 chemicals. Although a mechanistic link between PPAR
activity and fertility or other reproductive impairments remains
unclear [34], the role of PPAR in steroid metabolism and its
activity in reproductive tissues allows us to infer that it is a
plausible target for disruption of endocrine signaling and
altered gametogenesis.

The AR and ESR1 activity was also associated with
reproductive toxicity. The ToxCast receptor profiling identified
most, if not all, of the known antiandrogenic and estrogenic
chemicals in the current dataset, including well-studied
chemicals such as vinclozolin, bisphenol A, methoxychlor,
HPTE, and clorophene. The role of potency in determining a
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chemical’s relative reproductive toxicity potential needs to be
explored further, considering that five of the top seven scoring
ESR1 activators (i.e., active across multiple ESR1 assays and at
relatively low concentrations) did not cause substantial
reproductive toxicity in vivo, including flumetralin, fenhex-
amid, fludioxonil, pyridaben, and endosulfan. Additionally, the
impact of weak or partial nuclear receptor agonists and
antagonists on reproductive toxicity potential and other
toxicities needs to be explored further.

Inhibition of the CYP enzyme, as compared to gene
induction, was significantly more associated with reproductive
toxicity. Alterations in steroid metabolism through CYP
induction have been previously associated with reproductive
impairment [35]; however, the nonspecific inhibition of CYPs
may be a surrogate for a chemical’s capacity to disturb steroid
metabolism, including inhibition of key CYPs involved in
steroidogenesis (e.g., CYP19 and CYP17). Related to CYP
activity, NR1L2 interestingly displayed a negative correlation/
association with reproductive toxicity. In general, NR1L2
lowered the false-positive rate of the model by lowering the
model score of chemicals with nonspecific and low-potency
nuclear receptor activity. Robust NR1L2 activity is an indication
of potent xenosensing and potentially rapid metabolism.

The pyrethroid class of pesticides has shown limited
reproductive toxicity in guideline toxicity studies, although
limited evidence does link pyrethroid exposure to decreased
human sperm quality [36]. Of the 10 pyrethroids in chemical
group A, only resmethrin was considered to be a reproductive
toxicant based on the criteria described in this manuscript. All
10 pyrethroids displayed low-potency activity across one or
more of the selected features, including AR, ESR1, and
PPARG, but not CYP. Without the down-weighting based on
each of their NR1L2 activities, the pyrethroids would have all
been predicted to be reproductive toxicants.

A major component of the model not directly related to
nuclear receptor biology and xenobiotic/steroid metabolism
was GPCR binding. Numerous GPCR-binding assays were
significantly associated with reproductive toxicity. Those
chosen to represent the GPCR family were selected for
statistical, not biological, reasons, because the literature
contains limited information on their role in reproduction, in
contrast to their well-characterized role in nervous system
function.

Platforms measuring EGFR, TGFB1, and NFKB activity
were also associated with reproductive toxicity and make up
the OTHER feature. All three gene products have been shown
to modulate the relative sensitivity of developmental toxicants,
especially aryl-hydrocarbon receptor signaling [37, 38], and
may be indicative of altered xenobiotic metabolism, cellular
proliferation, cell-cell signaling, or potential epigenetic effects
[39, 40].

Overall, the key targets in the model identify plausible
modes of action leading to reproductive toxicity covering
antiandrogenic, estrogenic, cholesterol/steroid metabolism,
limited coverage of disruption of steroidogenesis, and altered
xenobiotic metabolism modes of action.

Limited efforts have been made toward the development of
models predictive of reproductive toxicity, due in part to the
lack of reference data with which to model. One resource for
predictive models have come from structure-based methods
(i.e., quantitative structure-activity relationship [QSAR] mod-
els), but the accuracy and predictivity of the resultant models
have been limited. A comprehensive effort toward the
prediction of reproductive and developmental toxicity was
undertaken by the U.S. Food Drug Administration [41]. The
resultant QSAR models were developed for endpoints such as

sperm effects, female reproductive toxicity, and male repro-
ductive toxicity and generally were highly specific, with an
average specificity across all generated models being 88%.
However, the average balanced accuracy across all models was
58%, with the maximum balanced accuracy for any single
model being 68% for predictive trans-species female repro-
ductive toxicity. It is difficult to assess the true accuracy and
forward predictivity of the models based solely on the
summary statistics, but the balanced accuracy values provide
the most direct and unbiased comparison to the current model.
Most likely, the limitation lies in the physiological complexity
of reproductive toxicity and structural diversity of reproductive
toxicants. The current predictive model has improved accuracy
compared to any published QSAR model of reproductive
toxicity and provides additional mechanistic information and
indications of specific reproductive effects. The model also can
be extended to include new data either covering the gene
targets in the current model or new gene targets of other
potential reproductive toxicity modes of action. Additional
international efforts are underway with the goal of using
alternative testing approaches in the detection of reproductive
toxicants and have shown promise on limited chemical sets
[42]. However, the current ToxCast-based approach utilizes
hundreds of diverse biological-chemical activities associated
with many potential modes of action leading to reproductive
toxicity. The output of the current model provides a binary
classification. Applications beyond hazard identification and
testing prioritization may require dose-response and even
mechanistic information. To accomplish this, research is
underway incorporating toxicokinetic information into the
modeling process using primary rodent and human hepato-
cytes, plasma protein binding, and pharmacokinetic modeling
intended to reverse engineer the expected oral dose required to
achieve a particular in vitro bioactivity level [43]. Experimen-
tally and computationally deriving dosimetry relevant to in
vivo exposures has the potential to provide quantitative dose-
response information that can be incorporated into the
modeling process. For example, the in vitro constitutive
androstane receptor (CAR, NR1L3) and NR1L2 activity on a
set of conazole fungicides in ToxCast Phase I demonstrated the
dose-response relationship between the equivalent in vivo
levels required to observe the NR1L3/NR1L2 activity and the
known dose levels causing rodent liver toxicity [44]. Examples
such as this provide a path toward incorporating in vitro assay
data into the risk assessment process, but they also demonstrate
the amount of prior knowledge currently required to perform
such an analysis. The vast majority of environmental chemicals
have little to no prior toxicity data, and those that do commonly
lack information regarding potential modes of action or human
relevance. The reality is that among the thousands of
environmental chemicals, few will ever have a multigeneration
reproductive study run. Over the past 30 years, only 500
chemicals have been run in multigeneration reproductive
studies because of the high animal and financial burdens for
such large-scale animal testing [1, 6]. A practical solution and
pressing need, especially with regards to reproductive toxicity
testing, is for prioritization tools, such as the current model, to
make more informed reproductive toxicity testing decisions.

Cross-validation and external validation sets used to
develop and assess the quality of the reproductive toxicity
model helped identify strengths and weaknesses of the present
model and will help focus future research. Using HTS assays as
the input into the model provided mechanistic insights and
helped further characterize the predicted chemicals beyond
negative and positive prediction outcomes. However, a subset
of chemicals were deemed to be outside the domain of
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applicability based on low in vitro activity as a result of
physical-chemical characteristics, biological gaps, chemical
decomposition, or volatility. Further research is needed to
better characterize this chemical subset to expand the current
model’s domain of applicability. A limited number of
chemicals selected from the ToxCast Phase I chemical set
were used for external validation and provided supporting
evidence of the model quality. A large set of chemicals from
ToxCast Phase II will have a full complement of in vitro
bioactivity data, and rodent reproductive toxicity studies will
be used to further evaluate, validate, and expand the predictive
model. Additionally, ToxCast Phase II contains a library of
failed pharmaceuticals with preclinical and clinical toxicity
outcomes as well as reference chemicals with known
mechanisms of reproductive toxicity. In addition to diversify-
ing the current chemical library, these chemicals will aid in the
expansion of predictive reproductive toxicity model develop-
ment toward mechanistic and human reproductive toxicity
models useful in risk assessment applications.

The ability of this predictive reproductive toxicity model to
externally predict numerous chemicals with biological and
structural diversity demonstrates suitability for chemical testing
prioritization. Although the model does not provide quantita-
tive dose-response information, it does provide accurate
predictions of a chemical’s reproductive toxicity potential.
Because the model is based on HTS data, it is amenable to
screening and prioritizing thousands of chemicals. Additional-
ly, the biological features of the model provide mechanistic
insights regarding modes of action useful in developing an
integrated testing strategy for reproductive toxicity.
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