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Introduction
Groundwater quality deterioration is a fundamental concern 
world over. Its quality characteristics in sub-Saharan Africa 
exhibit a wide spatial and temporal variability.1,2 The high 
volcanic fluoride (>1.5 mg/L) according to World Health 
Organization3 depicts widespread variability in groundwater 
aquifers of the African Rift.4,5 Continued urbanization is also 
rapidly causing increasingly poorer quality groundwater.1,2 
However, the resource is strategically most reliable to extermi-
nate the emergent demand.2 Improved hydrochemical charac-
terization of aquifers in such highly heterogeneous areas, 
decoupling the relation between groundwater quality and aqui-
fer lithology, could enhance their effective management.6-8 
Pazand9 observed that sustainable development and manage-
ment of the quality of groundwater resources in arid and semi-
arid lands is achievable through improved understanding of 
geochemical evolution and groundwater processes.

The determination of groundwater evolutionary processes 
concerning groundwater quality in fractured confined aquifers is 
complex. Large field experimental and geochemical laboratory 
data sets require proper management, elaboration, and interpre-
tation tools and techniques.6 Güler et al10 noted that the inter-
pretation of associations exclusively based on graphical 
techniques is fraught with difficulties owing to the simultaneous 
nature of aquifer processes and their effects. Recent studies by 

Nwankwoala,11 Pazand,9 Moghimi,12 and Rotiroti et al6 estab-
lished the value of multivariate techniques such as principal 
component analysis (PCA) and hierarchical clustering analysis 
(HCA) in the provision of quantitative measures of correlation 
between water quality parameters and fundamental aquifer pro-
cesses. PCA is widely utilized to characterize groundwater pol-
lution sources,9 while HCA is used to deduce spatial variability 
among sampling sites.13 An integrative application of PCA and 
HCA was employed by Rotiroti et al6 and Moghimi12 to inter-
pret processes affecting groundwater hydrochemistry and by 
Yidana et  al,7 to evaluate evolutionary trends of groundwater 
dynamics and by Majeed et al14 to assess spatial patterns of pol-
lutants in water. Several investigators15,16 utilized z-score or log 
conversions to normalize physical and chemical data acquired 
from groundwater sources. However, Everitt et al17 noted that 
such transformations could eliminate legitimate data values from 
the analysis. It is therefore suggested that Ward’s Linkage 
agglomeration procedure could automatically rescale metric data 
into a range and yield good recovery of clusters.

Despite the significance of groundwater,2 the reported high 
fluoride variability,4,5 and emergent urbanization1,2 in the region, 
knowledge on groundwater evolution and quality remain elusive. 
In this study, we postulate an evolutionary trend of a fractured 
volcanic aquifer based on multivariate statistics of groundwater 
quality data of the area. These joint hydrochemical evaluations of 
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relationships among deep groundwater wells and time-series 
groundwater quality variations are a fundamental step needed 
vis-à-vis variability in groundwater processes.

Materials and Methods
Study area

The Olbanita aquifer system is located in the lower Baringo 
basin of the Kenyan Rift (Figure 1). It is characterized by prox-
imity to the equator and by its elevation which ranges from 
1750 meters to 1880 meters above sea level. According to 

National Council for Population and Development,18 the 
demographic profile for Nakuru County (wherein the Olbanita 
aquifer system is located) in 2009 was 1 602 637 and is pro-
jected to increase to 2 400 367 in 2030 and 3 013 869 in 2050. 
The city of Nakuru, situated in the upper Lake Nakuru Basin 
in the south, relies heavily on the 8 wells drilled in the adjacent 
Lower Baringo basin for potable water supply. As noted by 
GOK,19 water availability problems in the greater Nakuru and 
Baringo basins had negatively impacted on resident communi-
ties and the regional gross domestic product. Within the city, 
where the abstracted water is used, high incidences of 

Figure 1. Location of Olbanita aquifer in Kenya showing sampled boreholes (blue circled dots).
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diarrhoeal infections become significant within the overall dis-
ease burden.20

The hydrogeology of the area comprises fractured and weath-
ered volcanic rocks and lacustrine sediments. The weathered 
tuffs sandwiched between the Samburu basalts and the Wasagess 
flows (phonolites and trachytes) of the Rumuruti group form the 
best aquifers in Olbanita area. The near N-S trending fault sys-
tems interrupting the aquifer system at 5 sites provide ground-
water high porosity pathways. At a regional semi-arid climate, 
the open-faulted drainage, together with the semi-arid climate, 
renders groundwater in the area indispensable for human sub-
sistence. The confined aquifer in the area recharges from the 
high altitude areas of Bahati (east of the area) and Menengai, 
where ecological conditions permit households to grow coffee, 
tomato, and maize as high-value enterprises.

Sampling and analysis methods

The sampling design in this study involved 6 out of 8 sampling 
sites constituted of boreholes in the Olbanita aquifer system 
located in the Kenya Rift (Figure 1). The sampling sites were 
located using a Garmin GPSmap60CSx model. At each sam-
pling site, 4 replicate samples were taken monthly in 250-mL 
high-density plastic bottles which had already been precleaned 
by using concentrated nitric acid and drenched in deionized 
water. The samples were screened through Millipore mem-
brane filters of pore size 0.2 micrometers to remove suspended 
solids. Thereafter, the water samples for sulfate analysis were 
precipitated using 0.2 M Zn(CH3COO)2 while samples for 
metal analysis were acidified in concentrated HCl or HCO3

−  
1 mL per 100 mL sample. In situ parameters (pH, electrical 
conductivity, and total dissolved solids) were measured using 
Hanna Instruments multiparameter meter model HI98194. 
Out of the 4 samples taken in plastic bottles, 2 replicate sam-
ples were stored in ice and taken to the laboratory for determi-
nation of geochemical parameters, namely Na+, K+, Ca2+, Cl−, 
F−, SO4

2− , H2S, Total CO2, CO3
2− , HCO3

− , H2CO3, and NH4
+.  

The concentrations of sulfate and chloride components in this 
study were quantified using ultraviolet-visible spectrophoto-
meter model UV-1800 while the ions of Na, F, Ca, K, and NH3 
were quantified using an Ion-Selective Electrode (ISE) model 
ELIT 9801 as detailed by Victoria and the US Environmental 
Protection Agency (US EPA).21 Concentrations of nonionic 
components namely total carbonate carbon (TCC) and H2S 
were quantified using titrimetric methods as also described in 
Victoria and the US EPA.21 Before ISE analysis, the acidified 
samples were re-digested using a strong alkali solution. TCC 
was further speciated into CO3

2−, CO2, H CO2 3
−, and HCO3

−.
To evaluate the appropriateness of geochemical data for fac-

tor analysis, Kaiser-Mayer-Olkin (KMO) measure of sampling 
adequacy and Barlett’s test of sphericity were performed.22,23 
The KMO index was found to be 0.6 indicating a moderate 
degree of correlation among the variables could be appropriately 
carried out. In addition, Barlett’s test of sphericity was significant 

(Bartlett χ2 = .570, 66 df, P < .001), confirming the suitability of 
factor analysis on the data collected in this study. The results of 
the assessment depict a lower number of variables (factors) that 
may be used to elucidate the variability in the hydrochemical 
data. The correlation matrix was further inspected for correlation 
coefficients greater than 0.3.24 Statistically significant correla-
tions in physical-chemical data sets for each season were identi-
fied through the application of the Spearman’s rho for 
nonnormally distributed data. Most of the correlation coeffi-
cients are over 0.3 indicating that factor analysis may be utilized 
to provide significant reductions in data dimensionality. Helsel25 
and Rangeti et al26 warn about the dangers of such simplified 
substitutions for nondetectable concentrations (by using numer-
ical surrogates such as one-half the detection limit). Data were, 
therefore, automatically rescaled for HCA (because each predic-
tor variable adopted a different scale of measurement), though 
exempted data sets for PCA. The laboratory geochemical data 
sets were utilized for PCA considering that the bottom-line cor-
relation matrix (based on the Spearman rank) has the effect of 
standardizing the variable data.27 Therefore, it is a more robust 
estimation technique that is less responsive to outliers compared 
with the widely used Pearson correlation matrix.27

Groundwater quality data were further subjected to PCA and 
HCA. All statistical computations were executed using of MS 
Excel spreadsheet and SPSS software version 20.0. For the PCA 
matrix, orthogonalization of factors was based on the rotated 
varimax method (with significant eigenvalue loadings > ±0.5) 
and a derived scree plot (with the criterion of eigenvalues >1) 
was inspected for purposes of extracting varifactors.28 For HCA, 
the software’s algorithm utilized Euclidean distances and “sum 
of squared errors” to minimize the criterion function.

Results and Discussion
General consideration of data sets

Based on the test of skewness which uses the arithmetic mean 
and standard deviation, the physical-chemical parameters such 
as total dissolved solids (TDS), pH, electrical conductivity 
(EC), and the ions such as Cl−, Na+, F−, Ca2+, SO4

2− , H CO2 3
− ,  

CO3
2− , and H2S are not considered to follow a normal fre-

quency distribution29 across the study area and between the 
sampling seasons. On the contrary, CO2 and NH4 depicted 
Gaussian distribution (ie, a significant departure from normal-
ity with a skew statistic >2) (Table 1). The binomial nature of 
the former is an indication of natural substandard waters char-
acterized by high mineralization. Supersaturation of Olbanita 
groundwater may be linked to processes like the dissolution of 
halide, ion exchange, and weathering of sodium-rich plagio-
clases (usually giving rise to clay mineralogy). The high concen-
tration of H2S is an indication of very deep circulation attaining 
anoxic conditions accompanied by abundant bacterial activity.

To offset the effects on mineral dissolution caused by dilu-
tion by meteoric waters from the analyses, seasonal data sets 
were analyzed independently. The initial step in the analysis 
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was to account for the extent of mutual variability between 
individual pairs of water quality variables during the separate 
seasons. The inter-item correlation matrix of the measured 
parameters during the dry season and the wet season is pro-
vided in Tables 2 and 5, respectively.

Generally, the rotated component matrix was found to con-
tain both positive and negative loadings (Tables 4 and 7). The 
work of Liu et al30 as enumerated in Mohapatra et al31 observed 
that eigenvalue loadings near ±1 designate a strong association 
between a variable and a principal component (PC); eigenval-
ues exceeding ±0.75 represent strong correlation, eigenvalues 
between ±0.5 and ±0.74 represent moderate correlation and 
those approaching 0 depict weak correlations. Each PC was 
attributed to a process owing to which the corresponding vari-
ables are probably linearly linked. The underlying processes 
occurring within the aquifer as construed from the consequent 
eigenvalue loadings are presented in Tables 4 and 7 where sig-
nificant eigenvalue loadings are indicated by using the * mark. 

Dry season water quality parameters

For the dry season data, the pairs pH-F, TDS-EC, TDS-CO2, 
TDS-HCO3, EC-CO2, EC-HCO3, Cl-SO4, Ca-K, Ca-NH4, 
F-NH4, CO2-HCO3, as well as HCO3-CO3 showed strongly 
significant relationships. The pairs pH-Na, pH-Ca, pH-H2CO3, 

pH-NH4, TDS-Na, EC-Na, K-Cl, Cl-CO2, Cl-HCO3, Na-F, 
Na-HCO3, S04-CO2, S04-HCO3, Ca-F, NH4-H2CO3, and 
HCO3-H2S depicted moderate correlations (Table 2).

Principal components extracted. Based on the eigenvalues > 1 cri-
terion, 4 principal components explained variability in ground-
water quality at the site (Figure 2). Based on the cumulative 
variance of the rotation sums of squared loadings of the dry sea-
son, the retained latent constructs account for 90.1% of the vari-
ance in the data set (Table 3). PC1 with the largest eigenvalue 
accounted for a maximum of the total variability (34.8%). PC 2 
accounted for the total variation of 21%. The third PC explained 
20.8% of the total variance, whereas final PC explained 13.6% of 
the remaining variation in the data. Observed eigenvalue decom-
position corresponds to earlier observations by Hossain et al32 
that after the first PC, the second PC explains the greatest of the 
residual variance and so forth.

The first principal component, PC1 (the conductivity com-
ponent), is associated with significantly high concentrations of 
electrolytic ions indicated by TDS, EC, Na+, Cl−, SO4

2− , CO2, 
and HCO3

− . TDS depicted a strong correlation with EC 
(+0.99, α = 0.01) due to the extensive range in the solubility 
of/and mineral diversity within the aquifer system. Under 
sluggish flow during the dry season, groundwater can attain 
chemical saturation regarding TDS. Statistical analyses 

Table 1. Descriptive statistical data for all the parameters for the sampling period (n = 6, N = 42).

N STATiSTic RANGE MiNiMUM MAxiMUM MEAN SD SKEWNESS

 STATiSTic SE

pH 42 1.670 7.400 9.070 8.16452 0.441495 0.105 0.365

TDS 42 156.000 242.000 398.000 320.16667 45.152272 −0.231 0.365

Ec 42 312.000 482.000 794.000 641.80952 92.302324 −0.162 0.365

cl 42 10.640 10.180 20.820 14.69536 2.686202 0.948 0.365

Na 42 127.420 134.320 261.740 173.22667 35.178236 1.232 0.365

SO4 42 19.890 0.900 20.790 7.85314 6.578745 0.705 0.365

F 42 9.580 3.230 12.810 6.36310 3.310061 0.804 0.365

ca 42 15.190 2.150 17.340 6.40024 4.675027 1.659 0.365

K 42 11.500 1.970 13.470 6.56071 3.822435 0.284 0.365

cO2 42 168.206 134.404 302.610 230.40724 52.722064 −0.151 0.365

H2cO3 42 28.816 0.758 29.574 8.04064 7.570068 1.358 0.365

HcO3 42 220.384 181.518 401.903 306.08954 69.488132 −0.118 0.365

cO3 42 33.031 0.490 33.522 5.42143 6.540314 2.469 0.365

H2S 42 0.720 0.000 0.720 0.03374 0.109123 6.360 0.365

NH4 42 0.530 0.360 0.890 0.56310 0.159381 0.441 0.365

Valid N 
(listwise)

42  

Units: ppm (except for pH and Ec. Ec in μS/cm).
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associate Na+ with the dissolution or chemical weathering of 
sodium-rich plagioclases (to produce clay minerals) or the dis-
solution of halide.12 The moderate correlation observed 
between Na and F (+ 0.7) and Ca-F (–0.5) coupled with a 
relatively weak association between the pairs; Na-Cl (–0.4) 
supports partial derivation of electrolytic ions from weather-
ing of Na-rich feldspathic rocks, dissolution of accessory min-
eral apatite as well as carbonate materials as opposed to 
dissolution of either halide rocks. The insoluble products of 
rock weathering such as Cl− and SO4

2−  show a strong positive 
correlation (+0.84, α = 0.01) but cumulatively tend to inhibit 
the electrical conductivity of groundwater. Within the hydro-
geological framework, the pattern and, therefore, the prove-
nance of weathering can be accounted for by the roughly N-S 
fracture-fissure zones (Figure 1).

The second principal component, PC 2 (the salinity compo-
nent), is depicted mainly by Cl−, SO4

2− , Ca2+, and K+ ions in 
water. The anomalous distribution of Cl−, SO4

2− , and Ca2+ is 
attributable to ion exchange mechanisms in saturated aquifer 
zones. The relatively strong association between the pairs 
Cl-SO4 (+0.8), and the moderate association between the pairs 
Ca-F, K-Cl, S04-CO2, Cl-HCO3, and S04-HCO3, indicate that 
aquifer water salinity is chiefly attributed to geologic derivation. 
In addition, agriculture is equally a major pollution source 

owing to the skewed distribution of Ca2+ which depicts strong 
correlations with K+ ions (+0.8) and NH4

−  (+0.8) at α = 0.01.
The third principal component, PC 3, is the alkalinity com-

ponent indicated by pH, and Na+, F−, H2CO3, and NH4
− . The 

pH, Na, and F have positive loadings, whereas H2CO3 and 
NH3 have moderate negative loading on this PC. H2CO3 and 
NH3 are slightly broken down (ie, at about 25°C) to release 
H+, HCO3

− , CO3
2− , and NH4

−  thereby reducing the pH. 
Reduced pH significantly increases the rates of weathering 
introducing more Na and F from geologic sources.

The fourth PC represents carbonate equilibrium with exog-
enic pH control. The external factor controlling pH is H2S. 
Sulfide in borehole waters is probably due to inorganic and bac-
terial changes in the deep aquifer under low dissolved oxygen, 
optimum growth range in pH (between 5.5 and 8.5) and opti-
mum temperature (between 24°C and 42°C). Besides the 
authigenic derivation, meteoric waters may also leach agricul-
tural SO4

2−  which may also undergo reduction at depth to 
sulfides.33 Unfortunately, the latter may effectively be ruled 
out due to a complete lack of strong correlation neither with 
sulfide nor with ammonia (Table 2). Deeper depths within the 
bedrock are readily flushed by low mobility, oxygen-deficient 
groundwater; effects that are conditioned by low permeability 
at depth. The sulfate-reducing bacteria, Desulfovibrio desulfu-
ricans obtain energy via the interconversion between sulfates 
and sulfides within the larger sulfur cycle in the aquifer sys-
tem.34,35 Under these conditions, sulfates may be reduced to 
sulfides producing metallic sulfide which is again changed to 
H2S under the action of H2CO3. The dissociation of H2CO3 
yields the CO3

2−  and donates H+ which consequently reduces 
sulfates to sulfides.

Wet season water quality parameters

During the wet sampling season, the pairs pH-F, pH-H2CO3, 
pH-CO3, TDS-EC, Na-F, F-H2CO3, F-CO3, CO2-H2CO3, 
and H2CO3-CO3 showed strong positive correlations at 
α = 0.01 (Table 5). The pairs pH-Na, pH-NH3, TDS-Cl, 
TDS-Na, TDS-F, EC-Cl, EC-Na, Cl-Na, K-Cl, Na-CO3, 
SO4-CO2, SO4-HCO3, SO4-H2S, Ca-F, Ca-CO2, and 
Ca-NH4 depicted moderate correlations at α = 0.01.

Figure 2. cattel scree plot with eigenvalues > 1 criteria.

Table 3. Total variance explained for the dry season data.

cOMpONENT iNiTiAL EiGENVALUES ExTRAcTiON SUMS OF SqUARED 
LOADiNGS

ROTATiON SUMS OF SqUARED 
LOADiNGS

TOTAL % OF 
VARiANcE

cUMULATiVE 
%

TOTAL % OF 
VARiANcE

cUMULATiVE 
%

TOTAL % OF 
VARiANcE

cUMULATiVE 
%

1 6.265 41.763 41.763 6.265 41.763 41.763 5.226 34.842 34.842

2 3.611 24.077 65.840 3.611 24.077 65.840 3.143 20.955 55.797

3 2.082 13.882 79.722 2.082 13.882 79.722 3.117 20.783 76.580

4 1.565 10.434 90.156 1.565 10.434 90.156 2.036 13.576 90.156
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Principal components extracted. Based on the cumulative vari-
ance of the rotation sums of squared loadings of the wet season, 
the retained latent constructs account for 91.1% of the variabil-
ity of the data set (Table 6).

PC1 with the largest eigenvalue accounted for the maxi-
mum of the total variability (23.5%). PC 2 accounted for the 
total variation of 22.8% and corresponds in concept to the first 
PC. The third and fourth PCs explained 22.8% and 22% of the 
total variance, respectively. Cattel’s scree test plot is presented 
in Figure 2.

The first principal component, PC1 (the salinity compo-
nent), is depicted mainly by K+, Ca2+, Cl−, SO4

2− , H2S, and 
NH4

−  ions in water. As the component explains the largest 
variance in the data, it can be inferred that the groundwater in 
the study area is mainly saline. As nearly all carbonate ions 
depict a negative correlation in explaining PC1 and the non-
carbonate alkali exceeds 50% in all (except BH7) boreholes 
(Figure 3), it can be deduced that NaCl constitutes the pri-
mary salinity at Olbanita. Abnormal distribution of Ca2+ and 
SO4

2−  may be characteristically associated with the ion 
exchange mechanisms in saturated aquifer zones. At the wet 
season pH, for instance, the monovalent Na+ is depleted from 
groundwater as it substitutes for divalent Ca+2 on exchange-
able micro-pore surface water interfaces (Table 7). This 

inference is demonstrated by BH 7 where none of the cation 
or anion pairs exceed 50% setting forth a secondary salinity 
characterized by Ca-Mg-SO4 and/or chloride mixed type 
waters (Figure 3). The ions SO4

2−  and H2S depict a strong 
positive correlation (+0.8 at α = 0.01) indicating either geo-
logic provenance, probably due to deep circulation of oxygen-
saturated waters causing aerobic conditions (Table 5), or 
anthropogenic derivation, probably due to their simultaneous 
positive contribution to PC1 along with ammonia (Table 7). 
The moderate correlations within the pairs NH3-Ca (+0.7) 
and NH3-H2CO3 (+0.6) imply anthropogenic contributions 
to the pH controls on aquifer water salinity. During the wet 
season, decreases in H+ cause a reduction in the water con-
centrations of K+, Ca2+, and Cl−. Aquifer salinity, therefore, 
is chiefly a construct of water-rock interactions and to a lesser 
extent anthropogenic inputs.

The second principal component, PC 2, depicts carbonate 
equilibrium with external pH control. The external factors 
controlling pH are SO4

2−  and H2S, which are strongly cor-
related (+ 0.8, α = 0.01). Sulfate and sulfide transformations 
in borehole waters are invariably mediated by bacterial 
changes under anaerobic conditions. D desulfuricans may also 
produce H2S under conditions of the measured pH range 
(optimum growth range in pH is between 5.5 and 8.5) and 

Table 4. Extracted factor loadings of the measured parameters during the dry season which suited the provisions of orthogonal varimax rotation.

cOMpONENT cOMMUNALiTiES

 1 2 3 4 ExTRAcTiON

pH 0.037 −0.230 0.885* 0.087 0.844

TDS 0.968* −0.112 0.091 −0.003 0.957

Ec 0.959* −0.083 0.156 0.012 0.952

cl− −0.583* 0.763* −0.126 −0.132 0.955

Na+ 0.725* 0.094 0.613* −0.104 0.921

SO4
2− −0.548* 0.775* 0.086 −0.111 0.920

F− 0.373 −0.053 0.897* −0.056 0.950

ca2+ −0.205 0.889* −0.299 −0.022 0.923

K+ 0.134 0.870* −0.234 −0.183 0.862

cO2 0.952* −0.174 −0.111 0.111 0.961

H2cO3 0.219 0.204 −0.555* −0.543 0.693

HCO3
− 0.943* −0.184 −0.077 0.056 0.932

CO3
2− 0.139 −0.168 0.254 0.904* 0.930

H2S 0.063 −0.045 −0.185 0.902* 0.854

NH4
− 0.370 0.440 −0.728* −0.094 0.869

probable 
process

Electrical 
conductivity

Water salinity Water alkalinity carbonate equilibrium with 
exogenic pH control

 

Note: Significant eigenvalue loadings are indicated by using the * mark.
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optimum temperature between 24°C and 42°C. Under these 
conditions, sulfides (in the form of metal sulfide) undergo 
oxidation to sulfates which are again converted to H2S under 
the action of H2CO3. The dissociation of H2CO3 yields the 
ions CO3

2−  and H+ which causes the reduction of sulfates to 
sulfides. Due to protracted mobility (diminutive residence 
period) of oxygen-saturated water in the wet season, reduced 
dissociation of H2CO3 yields less CO3

2−  and H+ which con-
sequently causes oxidation of sulfides to sulfates. BH 7 
depicts the mixing effects probably conditioned by such pH 
shifts resulting from SO4

2−  and H2S variability (Figure 3).
The third principal component, PC 3, is the alkalinity com-

ponent as indicated by pH, CO3
2− , H CO2 3

− , F− and NH4
− . 

The pH, CO3
2− , and F have positive loading, whereas H CO2 3

−  
and NH4

−  have negative loading on this PC. The PC explains 

the dissolution of fluoride through microbial activity releasing 
ammonia and thereby decreasing the pH. In addition, weak 
acids such as H2CO3 ionize sequentially releasing CO3

2− , 
which again raises the pH of water.

The fourth PC is the electrolytic conductivity component 
which is associated with significantly high concentrations of 
electrolytic ions indicated by TDS, EC, Na+, and F−. 
Statistical analyses (eg, Pazand9) associate F− with weather-
ing of the fluoro-apatite and silicate mineralogy, whereas 
Moghimi12 linked Na+ with the dissolution or weathering of 
sodium-rich plagioclases (clay mineralogy) or the dissolution 
of halide. The strong correlation observed between Na+ and 
F− (+ 0.9) and the weak association between Na+ and Cl− 
(–0.6) supports weathering plagioclase feldspars as the chief 
source as opposed to the dissolution of halide. Na and F ions 

Table 6. cumulative variance explained for the wet season data.

cOMpONENT iNiTiAL EiGENVALUES ROTATiON SUMS OF SqUARED LOADiNGS

TOTAL % OF VARiANcE cUMULATiVE % TOTAL % OF VARiANcE cUMULATiVE %

1 5.691 37.938 37.938 3.519 23.460 23.460

2 4.423 29.489 67.427 3.427 22.844 46.304

3 2.273 15.154 82.581 3.420 22.799 69.103

4 1.278 8.521 91.102 3.300 21.999 91.102

Figure 3. Major composition in groundwater during the wet season.
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are the intrinsic constructs responsible for electrolytic con-
duction, as supported by their strong correlations with TDS. 
Within the hydrogeological framework, the pattern and, 
therefore, the provenance of weathering can be accounted for 
by the roughly N-S fracture-fissure zones. The component 
accounts for the lowest variability because of the reduced resi-
dence time of groundwater during the wet season exerting 
substantial reduction in TDS.

The dry to wet seasonal shift in variability from electro-
lytic conduction to low alkali salinity, respectively, is probably 
due to differential seasonal rates of weathering, flow and dilu-
tion processes in the aquifer. Significant correlations (at 
α = 0.01) in the pairs Cl-SO4, Ca-K, Ca-NH3, F-NH3, CO2-
HCO3, HCO3-CO3, Na-F, and F-H2CO3 indicate that the 
water is alkaline to mildly acidic which are a manifestation of 
authigenic and to a lesser scale anthropogenic imprints. Key 
groundwater evolutionary trends suggest that silicate, carbon-
ate, and/or accessory mineral apatite dissolution, as well as 
ion exchange at sorption sites with the clay-water interface, 
are the central sources of variability in the groundwater 
chemistry of the aquifer. Protracted mobility of oxygen-satu-
rated water in the wet season, probably conditioned seasonal 

by SO4
2−  and H2S variability, though being an exogenic factor, 

restrained the pH constraint and hence carbonate equilibrium 
mixing reactions.

Spatial variability between sampling sites

The results of hierarchical clustering procedures were discrete 
clusters presented graphically in the form of a dendrogram by 
an averaging algorithm (Figure 4).

Based on rescaled Euclidean distances and the “sums of 
squared errors,” 2 main borehole clusters are conspicuous in the 
area. {Where to “prune” the tree (eg, using the continuous bold 
lines) is a vital factor in interpreting the results of the analysis. 
The within-cluster medium depict translational invariance in 
sample composition. Alternate shading was thus introduced to 
facilitate review}. The first cluster (forming the left-hand group) 
consists of the western zone cases (boreholes 2, 3, 4, 5 and 6), 
whereas the second cluster (forming the right-hand group) con-
sists of the eastern zone borehole cases (boreholes 1, 7, and 7A). 
The former boreholes were deciphered to be hydraulically con-
nected by a major inferred north west – south east fault which 
corresponds to a calibrated transmissivity-formation resistivity 

Table 7. The factor loadings of the measured parameters during the wet season which suited the provisions of orthogonal varimax rotation.

cOMpONENT cOMMONALiTiES

 1 2 3 4 ExTRAcTiON

pH −0.166 −0.169 0.948* 0.157 0.980

TDS −0.148 0.292 0.060 0.934* 0.983

Ec −0.194 0.280 0.010 0.921* 0.964

cl− 0.830* −0.292 −0.155 −0.379 0.942

Na+ −0.071 −0.203 0.285 0.925* 0.983

SO4
2− 0.694* −0.702* 0.043 −0.059 0.980

F− −0.071 −0.246 0.735* 0.596* 0.961

ca2+ 0.865* 0.002 −0.191 −0.307 0.879

K+ 0.929* −0.040 −0.198 0.148 0.926

cO2 −0.088 0.967* −0.147 0.092 0.974

H2cO3 0.102 0.485 −0.762* −0.023 0.827

HCO3
− −0.102 0.968* −0.122 0.100 0.973

CO3
2− −0.118 0.237 0.944* 0.061 0.966

H2S 0.572* −0.503* 0.081 −0.237 0.643

NH4
− 0.519* 0.367 −0.529* −0.038 0.685

 Aquifer salinity carbonate equilibrium with 
external pH controls

Alkalinity of water Electrolytic 
conduction

 

Note: Significant eigenvalue loadings are indicated by using the * mark.
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model for the aquifer. Intrinsic permeability was empirically 
elevated along major fracture traces, consequently increasing 
yields of the affected boreholes. In addition, some wet season 
samples obtained from boreholes 4 (sample Nos. 27 and 33), 5 
(sample Nos. 28, 34 and 40), and 6 (sample Nos. 29, 35 and 41) 
formed a mini-cluster within the former main group. The sam-
ples represent the effects of a high permeability fault/fracture 
structure which accentuates deep circulation of oxygen-satu-
rated waters from recent precipitation events coupled with dilu-
tion within the corresponding season. We suggested low 
residence times of groundwater in the zone. Worth noting was 
the strong indication of low-carbonate alkali to mildly acidic 
mixed waters in the western zone at BH 6, which transits to 
become Ca-Mg sulfate and/or chloride water types of at BH 7 
in the eastern periphery in the wet season.

The latter cluster contains boreholes located in the eastern 
compartment of the aquifer. Elevated values of Cl−, SO4

2− , and 
exceptionally low values of EC, TDS, pH, Na+, T-CO2, and 
HCO−

3 were recorded in these groundwater boreholes. 
However, values of EC, TDS, Ca2+,SO4

2− , and K+ depicted an 
upward trend, whereas those of Na+, T-CO2, CO3

2− , and 
HCO3

−  showed a downward trend from the dry season toward 
the wet season for these boreholes. By contrast, boreholes in 
the zone are not hydraulically connected via major fault struc-
tures. We, therefore, suggested that pore-level adsorption/
desorption processes in which vast quantities of monovalent 
ions such as Na+ and K+ are removed from the groundwater in 
exchange for divalent ions control the observed variability in 
groundwater hydrochemistry in this zone. Lack of aquifer-
scale hydraulic networks and the presence of clay micropores 
signify extended groundwater residence time favoring ion 
exchange reactions in the zone. Borehole 8 drilled in this zone 
dried-up after its completion because a clay layer was inadvert-
ently targeted for production.

Conclusions
PCA and HCA are robust methods for establishing aquifer evo-
lutionary structures. In this study, the PCA technique condensed 
multidimensional data into factors that explained seasonal vari-
ability in groundwater aquifer trends and quality. The dry to wet 
seasonal shift in variability from electrolytic conduction to salin-
ity, respectively, is probably due to differential seasonal rates of 
weathering, flow, and dilution processes in the aquifer. The 
authors believe that key groundwater evolutionary trends, water-
rock interactions, as well as ion exchange at sorption sites with 
the clay-water interface are the central restrictions of groundwa-
ter chemistry variability. HCA partitioned the aquifer into 2 dis-
crete spatial associations, in spite of their indicated shared 
recharge area. These agglomerative scheduling validated in an 
integrative approach (with groundwater flow predictions using a 
calibrated petrophysical groundwater model for the area), linked 
each aquifer compartment to aquifer spatial heterogeneities and 
processes. The authors incontrovertibly deciphered groundwater 
residence periods for each compartment, diminutive for the 
western zone and protracted for the eastern zone. It is convinc-
ingly essential, therefore, based on pH shifts per season to design 
a groundwater quality monitoring plan and policy that reduces 
the number of measured parameters purposely to provide an 
opportunity cost in terms of resources for measurements else-
where. A sustainable alternative would be to measure (as surro-
gates for the presence of the remaining parameters) EC during 
the dry season and K+, Ca2+, and Cl− during the wet seasons. 
The additional analyses may be required during extended dry 
periods accompanied by an upward trend in EC measurements.
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