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ABSTRACT
Elucidating the diet of Neotropical migratory birds is essential to our understanding of their ecology and to their long-
term conservation. Reductions in prey availability negatively impact Neotropical migrants by affecting their survival as
both nestlings and adults. Beyond broad taxonomic or morphological categories, however, the diet of Neotropical
migrants is poorly documented. Using the molecular techniques of DNA barcoding and next-generation sequencing,
we elucidated the diet of Louisiana Waterthrush (Parkesia motacilla) nestlings in Arkansas and Pennsylvania, USA.
Waterthrush have been shown to respond negatively to the reduced availability of aquatic insects in the orders
Ephemeroptera, Plecoptera, and Trichoptera (EPT taxa). We hypothesized that Louisiana Waterthrush nestling diet
would be primarily composed of these pollution-sensitive aquatic taxa, and that changes in the riparian insect
community would be reflected in their diet. Unexpectedly, the orders Lepidoptera (92%) and Diptera (70%) occurred
frequently in the diet of Louisiana Waterthrush nestlings. Among EPT taxa, only the order Ephemeroptera (61%) was
frequently detected whereas Plecoptera (7%) and Trichoptera (1%) were poorly represented. The frequency at which
aquatic Ephemeroptera and terrestrial Lepidoptera were detected in waterthrush nestling diet differed significantly
over the nesting period in Pennsylvania but not in Arkansas, suggesting that phenological shifts in the availability of
non-EPT prey taxa may be an important yet undescribed factor influencing the foraging ecology of waterthrush on the
breeding grounds. Furthermore, these findings suggest that terrestrial insects may be more important to waterthrush
nestlings than previously thought, which enhances our understanding of this biological indicator and Neotropical
migrant.

Keywords: birds, DNA barcoding, Diptera, Ephemeroptera, Lepidoptera, molecular diet analysis, next-generation
sequencing

Análisis molecular de la dieta de los polluelos de Parkesia motacilla, un ave migrante neotropical de larga
distancia

RESUMEN
Elucidar la dieta de las aves migratorias neotropicales es esencial para nuestro entendimiento de su ecologı́a y para
su conservación a largo plazo. La reducción en la disponibilidad de las presas impacta negativamente a los
migrantes neotropicales al afectar la supervivencia de jóvenes y adultos. Sin embargo, más allá de categorı́as
taxonómicas o morfológicas gruesas, la dieta de los migrantes neotropicales ha sido pobremente documentada.
Usando las técnicas moleculares de códigos de barras de ADN y secuenciación de nueva generación, elucidamos la
dieta de polluelos de Parkesia motacilla en Arkansas y Pensilvania. Se ha demostrado de P. motacilla responde
negativamente a la disponibilidad reducida de insectos acuáticos de los órdenes Ephemeroptera, Plecoptera y
Trichoptera (taxones EPT). Formulamos la hipótesis de que la dieta de los polluelos de P. motacilla estarı́a compuesta
principalmente por estos taxones acuáticos sensibles a la polución y que los cambios en la comunidad de insectos
ribereños se reflejarı́an en su dieta. Inesperadamente, los órdenes Lepidoptera (92%) y Diptera (70%) fueron
frecuentes en la dieta de los polluelos de P. motacilla. Entre los taxones EPT sólo el orden Ephemeroptera (61%) fue
detectado frecuentemente, mientras que Plecoptera (7%) y Trichoptera (1%) estuvieron pobremente representados.
La frecuencia con la que los Ephemeroptera acuáticos y los Lepidoptera terrestres fueron detectados en la dieta de
los polluelos de P. motacilla fue significativamente diferente a lo largo del periodo de anidación en Pensilvania pero
no en Arkansas, lo que sugiere que los cambios fenológicos en la disponibilidad de taxones EPT podrı́an ser un
factor importante no descrito que influye en la ecologı́a de forrajeo de P. motacilla en las áreas de reproducción.
Además, estos resultados sugieren que los insectos terrestres podrı́an ser más importantes para los polluelos de P.
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motacilla de lo que se pensaba previamente, lo que mejora nuestro entendimiento de este importante indicador
biológico y migrante neotropical.

Palabras clave: análisis molecular de dieta, aves, código de barras de ADN, Diptera, Ephemeroptera, Lepidoptera,
secuenciación de nueva generación.

INTRODUCTION

Elucidating the dietary composition and food preferences

of migratory birds is essential to understanding their

ecology, population dynamics, and conservation. Through-

out the annual cycle, the availability of food is considered a

major limiting factor for populations of birds that migrate

from the Neotropics (Martin 1987, Newton 2004) and has

been shown to affect migration departure and return rates

(Studds and Marra 2005, Cooper et al. 2015), body

condition (Marra et al. 1998, Strong and Sherry 2000,

Latta and Faaborg 2002), breeding and non-breeding

distributions (Burke and Nol 1998, Johnson and Sherry

2001), and rates of predation (Hoover et al. 1995).

Furthermore, food availability has been shown to influence

fecundity, which is considered one of the most critical

factors for sustaining populations in long-distance Neo-

tropical migrants (Sherry and Holmes 1992, Bohning-

Gaese et al. 1993, Holmes et al. 1996, Sillett and Holmes

2005). Food limitations on the breeding grounds negatively

affect fecundity by influencing the survival and body

condition of nestlings (Rodenhouse and Holmes 1992,

Sillett et al. 2000). The influence of food on fecundity is of

particular conservation interest given the long-term

decline of Neotropical migrants (Robbins et al. 1989,

Sauer and Link 2011, Sauer et al. 2014); therefore, a

detailed understanding of diet is essential to identify

potential vulnerabilities and develop effective conservation

strategies for these important migratory birds.

Currently, our understanding of Neotropical migrant

diet is primarily derived from foraging observations and

the morphological identification of insect remains from

regurgitates (e.g., Robinson and Holmes 1982), gut

contents (e.g., Eaton 1958), and fecal material (e.g.,

Deloria-Sheffield et al. 2001). These approaches are

labor-intensive, expensive to analyze, require expertise in

systematic entomology, and often provide an incomplete

understanding of diet due to the limitations associated

with identifying digested insect remains (Symondson 2002,

Pompanon et al. 2012). These limitations are particularly

relevant to Neotropical migrants, which commonly prey

upon soft-bodied, larval Lepidoptera (e.g., Rodenhouse and

Holmes 1992) that may be difficult to identify after

digestion (Ralph et al. 1985, Parrish 1997).

The use of molecular techniques to describe diet from

animal feces is an increasingly utilized method for studying

trophic interactions. Molecular diet analyses provide

ecologists with genus- or species-level taxonomic identifi-

cation and can be applied to a wide range of study taxa

(King et al. 2008). Fecal samples are useful for molecular

diet studies because they contain residual prey DNA and

can be collected with minimal disturbance to the animal

(Pompanon et al. 2012). DNA barcoding coupled with next-

generation sequencing technologies have enabled ecologists

to investigate diet using fecal material from felids (Shehzad

et al. 2012), small mammals (Brown et al. 2014), bats (Clare

et al. 2014), and seabirds (Deagle et al. 2010, Bowser et al.

2013), all of which would otherwise be difficult to study.

Relative to its widespread use in most major taxonomic

groups, however, molecular diet analyses that utilize avian

feces are underrepresented in the scientific literature. This

deficiency is particularly true of perching birds (order

Passeriformes), by far the largest avian order with .50% of

all extant avian taxa (Raikow 1986). Notably, a recent study

of Western Bluebird (Sialia mexicana) demonstrated the

feasibility of using Illumina sequencing to elucidate diet

from fecal samples (Vo and Jedlicka 2014) but has not yet

resulted in widespread application. Such molecular ap-

proaches enable avian ecologists to generate a comprehen-

sive understanding of diet, which has not been explored in

such a descriptive and noninvasive manner.

The LouisianaWaterthrush (Parkesia motacilla) is a long-

distance Neotropical migratory wood-warbler (family Par-

ulidae). Louisiana Waterthrush are obligate riparian song-

birds that occupy linear breeding territories along headwater

streams throughout eastern North America (Mattsson et al.

2009; Figure 1). Louisiana Waterthrush are considered

aquatic insect foraging specialists and an important

biological indicator for the integrity of riparian ecosystems

(Brooks et al. 1998, Prosser and Brooks 1998, Mattsson and

Cooper 2006). Waterthrush that nest along degraded

streams with suboptimal water quality must establish larger

territories to acquire sufficient prey resources (Mulvihill et

al. 2008), and they lay smaller, delayed clutches (Mulvihill et

al. 2008) and rarely attempt a second brood (Mulvihill et al.

2009). These negative impacts on LouisianaWaterthrush are

believed to be the result of reductions in the availability of 3

orders of pollution-sensitive aquatic insects used as biolog-

ical indicators for stream quality: Ephemeroptera, Plecop-

tera, and Trichoptera (EPT; Mattsson and Cooper 2006,

Mulvihill et al. 2008,Wood et al. 2016). Previous studies have

suggested that EPT taxa are important prey for Louisiana

Waterthrush (Mattsson et al. 2009) because they were found

in the gut contents of 15 individuals in the only published

description of waterthrush diet (Eaton 1958). Eaton (1958),

however, classified nearly 60% of Louisiana Waterthrush
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stomach contents as ‘‘undetermined fragments,’’ which, if

identified, may have revealed additional important prey

items. A detailed description of Louisiana Waterthrush diet

is therefore imperative to our understanding of their

foraging ecology and has been identified as a priority for

future research (Mattsson et al. 2009).

In this study, we utilized DNA barcoding and Illumina

sequencing to describe the diet of Louisiana Waterthrush

nestlings in Arkansas and Pennsylvania, USA. Based on

previous diet studies and their documented response to

low EPT availability, we hypothesized that Louisiana

Waterthrush nestling diet would be predominantly com-

posed of EPT taxa, and that nestling diet would differ over

the course of the nesting season by reflecting changes in

the riparian insect community.

METHODS

Sample Collection
Louisiana Waterthrush nests were systematically locat-

ed using behavioral cues along first- and second-order

streams in Van Buren and Conway counties, Arkansas

(Cedar Creek, Sis Hollow, East Point Remove Creek,

and Sunnyside Creek), and Westmoreland County,

Pennsylvania (Camp Run, Linn Run, Loyalhanna Creek,

and Powdermill Run), beginning in mid-April 2013

(Figure 1). Fecal samples were collected by placing

nestlings (3–8 days post-hatching) into a clean paper

bag for ~1 min. Fecal samples were immediately

preserved in 20 mL of absolute ethanol and stored at

room temperature for a period of ~3 months prior to

DNA extraction. To investigate potential changes in

diet over the course of the nesting period, fecal samples

were later subdivided into three 10-day intervals (mid-

May ¼May 12–21; late-May¼May 22–31; early-June ¼
June 1–10). Fecal samples collected outside these

intervals were not included in analyses that investigat-

ed potential changes in diet over the nesting period.

Benthic macroinvertebrates were collected by Surber

sampling (Barbour et al. 1999) at 10 equidistant riffles

along a ~2 km segment of each stream that encompassed

the foraging territories of all sampled waterthrush nests.

All 10 benthic samples were combined to represent the

benthic community for the entire reach and repeated every

2 weeks throughout the breeding season. A subsample of

300 (620%) individuals (Barbour et al. 1999) was randomly

selected from each benthic sample, and individuals were

morphologically identified to genus by a certified aquatic

entomologist (genus-level, Society for Freshwater Science).

Relative abundance values were derived based on the

number of individuals in an order divided by the total

number of individuals in the subsample.

DNA Extraction, Amplification, and Sequencing
DNA was extracted from Louisiana Waterthrush nestling

fecal samples using the QIAmp DNA Stool Mini Kit

FIGURE 1. Location of study sites within the breeding range of Louisiana Waterthrush. (A) Study sites in Conway and Van Buren
counties, Arkansas, and (B) Westmoreland County, Pennsylvania. Louisiana Waterthrush breeding range (shading) based on data
from the North American Breeding Bird Survey (Sauer et al. 2014).
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(Qiagen) and a customized protocol for avian fecal samples

adapted from Zeale et al. (2011; Appendix A). Waterthrush

fecal DNAwas subjected to polymerase chain reaction (PCR)

using the general arthropod ‘‘mini-barcode’’ primers ZBJ-

ArtF1c and ZBJ-ArtR2c, which amplify a 157 bp region of

the cytochrome c oxidase I (COI) mitochondrial gene (Zeale

et al. 2011). These primers were selected based on their

ability to amplify degraded DNA and provide species-level

taxonomic assignments from 13 arthropod orders (including

EPT taxa; Zeale et al. 2011). Mini-barcode primers were

modified by the addition of 50 adapter sequences comple-

mentary to the Illumina multiplex indexing primers used in

downstream sequencing protocols (Illumina 2013). PCR was

conducted in 20 lL reactions with 10–100 ng of DNA

template input, 4 lL of 5X high-fidelity reaction buffer

(ThermoFisher Scientific), 400 lM dNTPs (ThermoFisher

Scientific), 0.8 lM modified forward primer ZBJ-ArtF1c

(with 50 adapter), 0.8 lM reverse primer ZBJ-ArtR2c (with 50

adapter), and 0.1 units of Phusion Polymerase (Thermo-

Fisher Scientific). All reactions were prepared on ice and

amplified using the following conditions: an initial denatur-

ation phase of 2 min at 988C, 50 cycles of 10 s at 988C, 30 s at

458C, 30 s at 728C, and a final extension of 10 min at 728C.

Amplification of the COI barcode was visually confirmed by

ultraviolet trans-illumination following electrophoresis

through a 2% agarose-ethidium bromide gel. Amplicons

were enriched through an additional PCR reaction following

the standard Illumina amplicon indexing and purification

protocol (Illumina 2013). Indexed amplicons were combined

at equimolar concentrations into a 250 bp, paired-end
Illumina MiSeq sequencing run at the Genomics Facility of

the Biotechnology Resource Center, Cornell University

(Ithaca, NY).

Sequence Analysis
Sequences were quality trimmed in CLC Genomics

Workbench 7.0.3 and filtered using Galaxy 15.10 (Giardine

et al. 2005, Blankenberg et al. 2010, Goecks et al. 2010).

Once trimmed of primers and adapters, any sequences that

deviated from the expected amplicon size of 157 bp were

removed from the analysis. All retained sequences

exhibited a mean Phred quality score �30, which

translates to a base-call error rate of 1 per 1000 bases

(Ewing and Green 1998, Richterich 1998).

Filtered sequences were clustered into molecular opera-

tional taxonomic units (MOTUs) based on 97% similarity

(appropriate for insects as discussed in Clare et al. 2011)

using the bioinformatics program QIIME 1.8.0 (Caporaso et

al. 2010). After excluding MOTUs with infrequent haplo-

types (�10 copies), representative sequences for each

MOTU were compared to reference sequences in the

Barcode of Life Database (BOLD; Ratnasingham and Hebert

2007). To ensure an accurate description of Louisiana

Waterthrush diet from short fragments (157 bp) of the full-

length (658 bp) COI barcode region (Hebert et al. 2003),

only MOTUs that exhibited 100% similarity to a BOLD

reference sequence were included in subsequent analyses

(Appendix B and Supplemental Material Table S1; discussed

in Clare et al. 2011).

The number of reads assigned to each successfully

identified MOTU in a fecal sample was transformed into

a presence or absence dataset (Supplemental Material Table

S2). LouisianaWaterthrush nestling diet was summarized at

the order-level based on the frequency of occurrence

(number of fecal samples in which an order was detected

divided by the total number of fecal samples) for each

sampling region and time interval (e.g., Razgour et al. 2011,

Bowser et al. 2013). This analysis approach is necessary for

DNA metabarcoding studies because the proportion of

sequencing reads within a sample does not necessarily

reflect the relative quantities of prey consumed (Deagle et

al. 2010, Pompanon et al. 2012). Tests of statistical

significance across nestling diets were calculated in R using

a 2-sample proportion test (function: prop.test, alternative¼
two.sided). Nestling diet was summarized at the order-level

in the programMEGAN 5.10.6 (Huson et al. 2011) based on

the number of MOTUs that matched a BOLD reference

sequence at 100%. Species accumulation curves and

asymptotic species richness estimates were generated in R

3.2.2 using the library vegan (functions: specaccum, method

¼ exact; poolaccum, index¼ chao; Oksanen et al. 2007).

RESULTS

Field Sampling
Louisiana Waterthrush nestling fecal samples were col-

lected from nests along all study streams in both Arkansas

(16) and Pennsylvania (16; Supplemental Material Table

S2). Sample collection dates were similar between

Arkansas (May 14–June 19, 2013) and Pennsylvania

(May 15–June 24, 2013) study regions. We collected 48

fecal samples from nestlings in Arkansas and 82 in

Pennsylvania. One nest in Arkansas (3 fecal samples) and

another in Pennsylvania (5 fecal samples) occurred

uncharacteristically late in the breeding season (June 19

and June 24, respectively). Because these nests occurred

beyond our analysis intervals, they were removed from our

analysis of diet over the nesting period but remained part

of our general description of Louisiana Waterthrush

nestling diet (Table 1, Figures 2 and 3).

Benthic macroinvertebrates were collected in 2-week

intervals from May 10 to July 7, 2013. Approximately 85%

of subsampled benthic organisms were identified to the

genus-level and represented 13 orders, which included

EPT (Supplemental Material Table S3). The mean relative

abundance of EPT taxa was similar across study streams in

Arkansas (0.60 6 0.19) and Pennsylvania (0.72 6 0.11;

Supplemental Material Table S4).
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TABLE 1. Taxonomic assignment of molecular operational taxonomic units (MOTUs) detected in the diet of Louisiana Waterthrush
nestlings in Arkansas and Pennsylvania. All listed taxa exhibited 100% similarity to a reference sequence in the Barcode of Life
Database (BOLD). Frequency of occurrence¼number of fecal samples (from a study region) in which an order was detected divided
by the total number of fecal samples (from the same study region).

Class Order Family Genus Species

% Frequency of
occurrence
(Arkansas)

% Frequency of
occurrence

(Pennsylvania)

Arachnida Araneae Agelenidae Agelenopsis sp. 2.1
Anyphaenidae Anyphaena pectorosa 10.7
Araneidae Eustala anastera 6.3

Larinioides cornutus 4.2
Clubionidae Clubiona canadensis 4.2 4.0
Linyphiidae Pityohyphantes costatus 5.3
Salticidae Naphrys pulex 5.3

Insecta Archaeognatha Meinertellidae Machiloides banksi 10.4
Coleoptera Carabidae Cyclotrachelus sigillatus 1.3

Chrysomelidae Odontota dorsalis 8.3
Elateridae Athous brightwelli 16.0

neacanthus 2.7
Tenebrionidae Capnochroa fuliginosa 8.0

Diptera Asilidae Laphria janus 16.7 12.0
prosticata 1.3

Calliphoridae Calliphora vomitoria 10.7
Phormia regina 10.7
Pollenia rudis 45.8 14.7

Empididae Rhamphomyia sp. 2.1
Limoniidae Epiphragma fasciapenne 2.7

Eutonia alleni 4.2 2.7
Hexatoma spinosa 9.3

Pediciidae Tricyphona inconstans 4.2 5.3
Scathophagidae Scathophaga stercoraria 1.3
Syrphidae Syrphus rectus 14.6 22.7

torvus 4.2 1.3
Temnostoma alternans 4.0

balyras 4.0
Tabanidae Chrysops carbonarius 2.7

montanus 1.3
Hybomitra lasiophthalma 5.3

Tipulidae Nephrotoma virescens 8.3
Tipula abdominalis 1.3

bicolor 8.3
fuliginosa 10.4
mallochi 17.3
sp. 10.4

Ephemeroptera Ameletidae Ameletus lineatus 13.3
Baetidae Diphetor hageni 2.7
Ephemerellidae Ephemerella dorothea 1.3
Heptageniidae Epeorus pleuralis 41.7 48.0

Heptagenia sp. 43.8 45.3
Maccaffertium meririvulanum 2.7

sp. 8.3
vicarium 9.3

Hemiptera Cicadellidae Gyponana sp. 2.1
Hymenoptera Tenthredinidae Hemichroa militaris 4.2
Lepidoptera Depressariidae Semioscopis megamicrella 4.2

Drepanidae Euthyatira pudens 2.1 1.3
Habrosyne scripta 4.0

Erebidae Allotria elonympha 12.5
Catocala micronympha 6.3

neogama 6.3 17.3
sp. 4.2

Cissusa spadix 10.4
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DNA Extraction, Amplification, and Sequencing

We successfully extracted DNA and amplified the COI

barcode from all 130 Louisiana Waterthrush nestling fecal

samples. Template DNA concentrations ranged between

0.5 and 142.9 ng lL�1 with a mean of ~20 ng lL�1. We

successfully recovered sequence data from 123 fecal

samples (95%). After quality trimming and the exclusion

of infrequent haplotypes, we recovered 91,765 sequences

that clustered into 125 (Arkansas) and 166 (Pennsylvania)

MOTUs. Representative sequences were compared to the

BOLD reference library, which resulted in a 100% match to

a reference sequence for 132 MOTUs (51,175 of recovered

sequences) and 107 unique taxa (Table 1). Among these

unique taxa, 83% were assigned to the species level and the

remaining 17% to genus level (Table 1). We rejected 5

MOTUs because they were identified as Lepidoptera that

TABLE 1. Continued.

Class Order Family Genus Species

% Frequency of
occurrence
(Arkansas)

% Frequency of
occurrence

(Pennsylvania)

Insecta Lepidoptera Erebidae Idia lubricalis 1.3
Lymantria dispar 10.4 8.0
Orgyia definita 2.1 10.7
Renia salusalis 2.1
Zale minerea 2.1

Geometridae Campaea perlata 4.2 5.3
Epimecis hortaria 14.6 17.3
Eupithecia annulata 1.3
Heliomata cycladata 2.1
Lomographa glomeraria 26.7
Melanolophia canadaria 40.0
Phigalia sp. 16.7
Prochoerodes lineola 2.7
Tetracis sp. 2.1

Lasiocampidae Malacosoma disstria 4.0
Tolype sp. 2.1

Noctuidae Achatia distincta 12.5 37.3
Acronicta impleta 4.2
Amphipyra pyramidoides 2.1
Cerastis tenebrifera 4.2
Eupsilia morrisoni 9.3

sp. 8.3
Helotropha leucostigma 8.3
Lithophane unimoda 16.0
Metaxaglaea inulta 5.3

sp. 10.4
Morrisonia sp. 12.5
Mythimna unipuncta 1.3
Orthosia garmani 27.1
Orthosia hibisci 10.4 2.7
Sunira bicolorago 8.3 2.7
Xestia sp. 8.3

Notodontidae Ellida caniplaga 4.2 4.0
Heterocampa guttivitta 2.1
Lochmaeus bilineata 8.3

sp. 33.3
Nadata gibbosa 6.7

Tortricidae Acleris nigrolinea 1.3
Phaecasiophora confixana 1.3
Pseudexentera oregonana 2.1

Megaloptera Corydalidae Nigronia fasciatus 16.7 20.0
Sialidae Sialis sp. 6.3 6.7

Orthoptera Rhaphidophoridae Euhadenoecus puteanus 1.3
Plecoptera Perlidae Acroneuria sp. 6.7

Perlodidae Isoperla similis 6.7
Psocoptera Peripsocidae Peripsocus subfasciatus 1.3
Trichoptera Limnephilidae Platycentropus radiatus 1.3
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FIGURE 2. Frequency of occurrence of identified prey in the diet of Louisiana Waterthrush nestlings in Arkansas and Pennsylvania.
The orders Lepidoptera (92%) and Diptera (70%) were the most common across waterthrush nestling fecal samples in both study
regions. The order Ephemeroptera (60%) was detected frequently in both study regions while Plecoptera (7%) and Trichoptera (1%)
were rarely detected. Frequency of occurrence ¼ number of fecal samples (from a study region) in which an order was detected
divided by the total number of fecal samples (from the same study region).

FIGURE 3. Order-level summary of Louisiana Waterthrush nestling diet in Arkansas and Pennsylvania. Tree includes MOTUs that
exhibit 100% similarity to a reference sequence in BOLD for Louisiana Waterthrush fecal samples collected from Arkansas (black) and
Pennsylvania (gray). Node size scaled to represent the number of identified MOTUs within a given order.
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do not occur in eastern North America (Supplemental

Material Table S1; J. Rawlins personal communication).

The order-level taxonomic richness of Louisiana Water-

thrush nestling diet was similar in both Arkansas (9) and

Pennsylvania (10; Figure 4A). By contrast, Arkansas

waterthrush nestling diet exhibited substantially fewer

MOTUs (58) compared to the diet of waterthrush

nestlings in Pennsylvania (65; Figure 4B). Asymptotic

species richness estimates at the MOTU-level suggest that

the analysis of additional fecal samples may result in the

identification of further prey taxa in both Arkansas (7

MOTUs) and Pennsylvania (14 MOTUs).

Waterthrush Nestling Diet

The terrestrial order Lepidoptera was detected in 92% of

Louisiana Waterthrush nestling fecal samples and was

significantly more common than all other orders except

Diptera in Arkansas (v2¼ 14.64, df¼ 1, p , 0.001) and all

other orders in Pennsylvania (v2 ¼ 13.73, df ¼ 1, p ,

0.001; Figure 2). Orders Diptera (70%) and Ephemer-

optera (61%) were also frequently detected in both study

regions (Figure 2). Among EPT taxa, Ephemeroptera was

by far the most abundant, contributing to 93% of EPT

MOTUs in samples collected from both study regions

combined (Table 1, Figure 3). The mayfly family

Heptageniidae was particularly well represented across

fecal samples from both Arkansas (58%) and Pennsylvania

(61%) and was the only family of Ephemeroptera detected

in the diet of waterthrush nestlings in Arkansas (Table 1).

By contrast, 4 families of Ephemeroptera were found in

waterthrush nestling diet in Pennsylvania: Ameletidae

(13%), Baetidae (3%), Ephemerellidae (1%), and Heptage-

niidae (61%; Table 1). Orders Plecoptera (7%) and

Trichoptera (1%) were detected in only 9 waterthrush

fecal samples from Pennsylvania and were not detected in

any fecal samples collected from Arkansas. Relaxing our

conservative 100% similarity requirement to a less

stringent �98% (Appendix B) did not result in additional

detections of Plecoptera or Trichoptera (Supplemental

Material Table S1). In addition to the aquatic order

Megaloptera (20%), several terrestrial orders were detect-

ed infrequently and analyzed as a group: Araneae,

Archaeognatha, Coleoptera, Hemiptera, Hymenoptera,

Orthoptera, and Psocoptera (Table 1, Figure 2).

Based on our general description of waterthrush

nestling diet (Figures 2 and 3), we investigated potential

changes in frequency of occurrence over the nesting period

for the 3 most commonly detected dietary orders:

Lepidoptera, Diptera, and Ephemeroptera. In fecal samples

collected from Arkansas, the frequency of occurrence of

Lepidoptera (v2 , 0.01, df ¼ 1, p . 0.05) and

Ephemeroptera (v2 ¼ 0.45, df ¼ 1, p . 0.05) did not

change over the course of the nesting period (Figure 5A).

By contrast, among fecal samples collected from Pennsyl-

vania, frequency of occurrence of Lepidoptera and

Ephemeroptera differed significantly within the time

intervals of late-May (v2 ¼ 13.29, df ¼ 1, p , 0.001) and

early-June (v2 ¼ 9.67, df ¼ 1, p , 0.01). Furthermore, the

frequency of occurrence for Ephemeroptera differed

significantly (v2 ¼ 6.82, df ¼ 1, p , 0.01) over the course

FIGURE 4. Species accumulation curves for the diversity of identified prey consumed by Louisiana Waterthrush nestlings at the (A)
order-level and (B) MOTU-level. Lines represent mean estimates of taxon richness and shading represents standard deviation.
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of the nesting period in Pennsylvania (Figure 5B). The

order Diptera was also analyzed over these time intervals

but did not differ significantly over the nesting period in

Arkansas (v2¼1.55, df¼1, p . 0.05) or Pennsylvania (v2¼
0.22, df ¼ 1, p . 0.05; Figure 5).

DISCUSSION

We applied a next-generation sequencing approach to

successfully identify Louisiana Waterthrush prey taxa to

the genus or species level and elucidated the nestling diet

FIGURE 5. Frequency of occurrence of Lepidoptera, Diptera, and Ephemeroptera in the diet of Louisiana Waterthrush nestlings over the
course of the nesting period in Arkansas and Pennsylvania. (A) In Arkansas, the frequency of occurrence of Lepidoptera and Ephemeroptera
did not differ significantly over the course of the breeding season (p . 0.05). (B) In Pennsylvania, the frequency of occurrence of
Lepidoptera and Ephemeroptera differed significantly within the late-May (p , 0.001) and early-June (p , 0.01) time intervals and over the
course of the nesting period (p , 0.01). The order Diptera did not differ significantly over the nesting period in Arkansas or Pennsylvania (p
. 0.05). Same letters above bars indicate no significant difference (p . 0.05). Frequency of occurrence¼number of fecal samples (from a
time interval) in which an order was detected divided by the total number of fecal samples (from the same time interval).
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of this Neotropical migrant. We found that waterthrush

nestlings frequently consumed terrestrial Lepidoptera and

Diptera in both study regions, contrary to the long-

standing assertion that this species relies heavily on

pollution-sensitive aquatic insects throughout its breeding

range (Mattsson et al. 2009). The frequent detection of

Lepidoptera and Diptera suggests that adult Louisiana

Waterthrush target terrestrial taxa regularly, and that soft-

bodied prey may have been overlooked in previous diet

studies. Contrary to our hypothesis that EPT taxa would

dominate waterthrush nestling diet, only the order

Ephemeroptera was detected frequently. Plecoptera and

Trichoptera were poorly represented despite their avail-

ability throughout waterthrush foraging territories in both

Arkansas and Pennsylvania (Supplemental Material Table

S3 and S4), suggesting these taxa may not be important

prey during the post-incubation period. These results were

remarkably similar between study regions, which are

~1,300 km apart and on opposite extremes of the

Louisiana Waterthrush breeding range (Figure 1).

The description of Louisiana Waterthrush diet presented

here represents an account of prey taxa targeted by adults

during the post-incubation period. Given previous research

on waterthrush foraging behavior (Eaton 1958, Craig 1984,
Mattsson et al. 2009), the large proportion of nestlings that

consumed Lepidoptera (92%) and Diptera (70%) was

unexpected. However, Louisiana Waterthrush have been

observed to feed larval and adult Lepidoptera to nestlings at

several of our study sites in Pennsylvania (R. Mulvihill

personal communication). Although differentiating between

larval and adult life stages based solely on insect DNA is

impossible, previous observational studies have reported

that~11% of LouisianaWaterthrush foraging was directed at

riparian foliage during the post-incubation period (Mattsson

et al. 2009). Foliage serves as a host for larval Lepidoptera,

which have been suggested as an important food item for the

nestlings of other Neotropical migrants (Holmes et al. 1979).

Clearly, the high frequency of detection for orders Lepidop-

tera and Diptera suggests that non-EPT taxa may be more

important to Louisiana Waterthrush than previously

thought. This finding emphasizes the need for improved

understanding of Louisiana Waterthrush foraging ecology

and how changes in the availability of non-EPT taxa

influence both nestlings and adults.

In Pennsylvania, we found that Louisiana Waterthrush

nestling diet changed over the course of the nesting period.

This shift in diet resulted from a significant reduction in the

detection of dietary Ephemeroptera and an increased

detection of Lepidoptera in the later stages of the nesting

period, suggesting that a reduction in the availability of

Ephemeroptera or an increased availability of Lepidoptera

may be driving the change in diet. Louisiana Waterthrush

may therefore target Ephemeroptera in the early season but

switch to Lepidoptera as they become available later in the

breeding season. This shift was not observed in the diet of

waterthrush nestlings in Arkansas, which may be partly

explained by the phenology of waterthrush. Neotropical

migrants are believed to rely on photoperiod cues to

determine date of departure from the wintering grounds

(Hagan et al. 1991) to maximize phenological synchrony

and the availability of insects during chick rearing (Perrins

1970, Lany et al. 2015). Yet latitudinal and climatic

differences across the Louisiana Waterthrush breeding

range affect the timing of leaf expansion and Lepidoptera

prey abundance (e.g., Parry et al. 1998, Butler and Strazanac

2000). Therefore, we might expect Lepidoptera to be

available prey earlier in the breeding season for waterthrush

in Arkansas than for conspecifics nesting in Pennsylvania.

Our findings suggest that the availability of terrestrial prey

such as Lepidoptera and Diptera may be important to

Louisiana Waterthrush during the post-incubation period

and should be a priority for future research. These results

also emphasize the plasticity of waterthrush diet, but

whether changes in the orders of prey insects consumed
affect waterthrush nest success or other vital rates remains

unknown.

Despite the frequent detection of Lepidoptera in nestling

diet, previous studies have convincingly demonstrated that
Louisiana Waterthrush respond negatively to reductions in

EPT availability (Mattsson and Cooper 2006, Mulvihill et al.

2008, 2009, Wood et al. 2016). EPT taxa are also reliable

indicators of overall riparian quality (Hilsenhoff 1977,

Barbour et al. 1999) and reflect several factors that impact

the suitability of waterthrush breeding territories (e.g., bank

erosion, anthropogenic land use, and stream order; Brooks

et al. 1998, Prosser and Brooks 1998, Mattsson and Cooper

2006). Therefore, EPT taxa may be a reliable indicator of

waterthrush site occupancy but may not completely reflect

their foraging ecology. As predicted by a previous study

(Mulvihill et al. 2008), we found that Ephemeroptera (61%)

were particularly well-represented across Louisiana Water-

thrush diets. Whether those prey individuals were larval

(aquatic) or adult (terrestrial) Ephemeroptera remains

unknown and represents an important limitation of

molecular diet analyses. Regardless, the frequency of

occurrence of a single family of Ephemeroptera (Heptage-

niidae) in waterthrush nestling fecal samples (60%) is

particularly interesting because it contains several of the

most pollution-sensitive aquatic insects in eastern North

America (Barbour et al. 1999). Reliance on Heptageniidae

raises considerable conservation concern as anthropogenic

impacts to water quality continue throughout the Louisiana

Waterthrush breeding range (Drohan et al. 2012, Wood et

al. 2016).

Our results were derived using a single primer set

designed to amplify a small fragment (157 bp) of a single

barcode marker (COI) and should not be considered a

comprehensive description of Louisiana Waterthrush nest-
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ling diet. To confidently identify all dietary insects, our

methodology should be expanded to include multiple

primer sets or additional barcoding genes, which may

capture a greater variety of prey taxa (e.g., Hajibabaei et al.

2012, Bowser et al. 2013). Unfortunately, the potential

advantages of alternative barcoding markers for insectivores

are hindered by a relatively limited barcode library

compared to that currently available for COI. Furthermore,

the arthropod COI barcode library managed by BOLD is

ideal because of strict vouchering requirements that reduce

the risk of misidentification (Ratnasingham and Hebert

2007). The application of a single primer set is not expected

to have biased our results however, as demonstrated by

several studies that also identified EPT taxa using the primer

set developed by Zeale et al. (2011; e.g., Clare et al. 2009,

2011, Razgour et al. 2011, Vesterinen et al. 2013); therefore,

the use of a single primer set and genetic marker should not

diminish the conclusions of this study.

Until now, our understanding of Louisiana Waterthrush

nestling diet was limited to studies that used morphological

identification (Eaton 1958) and foraging observations of

adults (Craig 1984). We now understand that waterthrush

nestling diet is broader than previously thought and

includes non-EPT taxa such as terrestrial Diptera and

Lepidoptera. Although most of our analyses were collapsed

to the order-level, we identified soft-bodied prey taxa

(orders Diptera and Lepidoptera) that may have escaped

detection using morphological identification techniques.

These findings demonstrate the advantages of DNA-based

techniques for studying the diet of Neotropical migrants

and emphasize the need for its widespread application. Our

results may be particularly interesting to ecologists studying

species with similar foraging specialties or limited dietary

information. The incomplete understanding of Neotropical

migrant diet is a pervasive problem, but with the advent of

DNA-based approaches, ornithologists are now able to

investigate some of the most elusive questions regarding the

importance of diet throughout the annual cycle.
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APPENDIX A

DNA extraction from avian fecal material using

Qiagen QIAamp DNA Stool Kit (Cat. #: 51504).

Adapted from Zeale et al. (2011) and Qiagen

Handbook August 2001: Protocol for Isolation of DNA

from stool for Pathogen Detection

This protocol is designed to maximize extraction of insect

prey DNA from bird feces stored in ethanol. It does not

prevent or exclude the extraction of bird, bacterial, fungal,

or other non-prey DNA from fecal samples.

DAY 1

1. Transfer fecal sample (including preservative ethanol)

into a sterile weigh boat.

2. Homogenize fecal sample using a sterile, DNA-free

instrument (e.g., pipette tip) to permit complete

ethanol evaporation.

3. Incubate fecal sample in weigh boat using a slide

warmer set to medium heat. Incubate until sample is
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completely dry and all ethanol has evaporated (~1 hr).

Residual ethanol will interfere with DNA extraction.

4. Carefully transfer as much of the dried fecal material
as possible to a sterile 2 mL microcentrifuge tube. Add

1.4 mL ASL buffer to the weigh boat to transfer any

remaining fecal material. Continuously vortex the

sample for 10 min.

5. Incubate the suspension overnight at 708C, vortexing

occasionally.

DAY 2

6. Vortex continuously for 10 min and centrifuge at full

speed (~20,0003 g) for 1 min at room temperature to

pellet fecal particulate.

7. Pipet 1.2 mL of the supernatant into a new 2 mL

centrifuge tube.

8. Add 1 InhibitEX tablet to the sample and vortex

immediately and continuously for 3 min or until

completely suspended. Incubate suspension for 5 min
at room temperature to allow inhibitors to absorb to

the InhibitEX matrix.

9. Centrifuge sample at full speed for 3 min to pellet

InhibitEX matrix.

10. Transfer 600 lL of supernatant into a new 1.5 mL

centrifuge tube and discard the pellet.

11. Add 40 lL Proteinase K to the supernatant and mix

thoroughly by vortexing.
12. Add 600 lL Buffer AL and vortex for 15 s. Incubate

overnight at 708C.

DAY 3

13. Remove sample from incubation and vortex continu-

ously for 1 min.

14. Add 600 lL of 100% ethanol to the lysate and mix by

vortexing.
15. Add 600 lL of the lysate to a QIAmp spin column.

Centrifuge at full speed for 1 min. Place spin column

in a new collection tube and discard the tube

containing the filtrate.

16. Repeat step 13 to load the remaining aliquots of the

lysate to the spin column.

17. Add 500 lL Buffer AW1. Centrifuge at full speed for 1

min. Place spin column in a new collection tube and

discard the tube containing the filtrate.

18. Add 500 lL Buffer AW2. Centrifuge at full speed for 3

min. Place spin column in into a new 1.5 mL

centrifuge tube and discard the tube containing the

filtrate

19. Pipette 50 lL of pre-warmed (708C) Buffer AE directly

onto the spin column membrane. Incubate for 5 min

at room temperature then centrifuge at full speed for 1

min to elute DNA.

20. Transfer the eluted DNA from step 19 onto the spin

column membrane to concentrate the DNA sample.

Incubate for 2 min and centrifuge at full speed for 1

min.

APPENDIX B

MOTU identification criteria using the BOLD search

tool (species-level barcode records), adapted from

Razgour et al. (2011)

1. 100% match to one species–species-level assignment;

100% match to more than one species in the same

genus–genus-level assignment

2. �98% match to one species–species-level assignment;

� 98% match to more than one species in the same

genus–genus-level assignment

3. �98% match to one or more taxa (genus or species) in

the same family–family-level assignment

4. �98% match to one or more taxa (genus, species, or

family) to in the same order–order-level assignment.

5. ,98% match to one or more taxa–top match.

6. No match in BOLD.
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