

Chewing Rate Allometry Among Mammals

Authors: Gerstner, Geoffrey E., and Gerstein, Jonathan B.

Source: Journal of Mammalogy, 89(4): 1020-1030

Published By: American Society of Mammalogists

URL: https://doi.org/10.1644/07-MAMM-A-188.1

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

CHEWING RATE ALLOMETRY AMONG MAMMALS

Geoffrey E. Gerstner* and Jonathan B. Gerstein

Department of Biologic and Materials Sciences, School of Dentistry, and Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1078, USA

Mammalian chewing rate scales inversely to body mass (M); however, controversy exists over the value of the scaling exponent. Different mechanisms explain different values of the scaling exponent; hence, a better estimate of the exponent would provide insight into the mechanisms governing chewing rate across mammalian species. We evaluated the relationship between mean chewing cycle duration (CD; i.e., the inverse of mean chewing rate) and M in 132 species and removed phylogenetic effects by using an independent contrast method currently used in evolutionary biology studies. A one-third–power law resulted when independent contrasts were not used; however, a one-third– to one-fourth–power law resulted when independent contrasts were used to remove phylogenetic effects. We hypothesize that variation in the scaling exponent is due to natural selection acting to increase metabolic efficiency; and variation in the complexity of mandibular kinematics, motor control asymmetry, and mandibular biomechanics, which may act to increase CDs above the "ideal" one-fourth–power law. Future studies should consider effects due to jaw-movement kinematics, motor control issues, and biomechanics.

Key words: allometry, chewing rate, independent contrasts, mastication, phylogeny, rhythmic movements

(1)

Studies of allometry indicate that many biological phenomena, including rhythmic motor behaviors such as locomotion and chewing, scale exponentially to body size. Body size is usually operationally defined as body mass (M), appendage length, or cross-sectional area (e.g., Druzinsky 1993; Turvey et al. 1988; West et al. 1997). This relationship takes the following mathematical form:

 $v = aM^b$

or

$$\log_{10}(y) = \log_{10}(a) + b[\log_{10}(M)],$$
(2)

where y is the dependent biological variable under investigation, M is body mass (or appendage length, etc.), a is a constant specific to the system under study, and b is an allometric scaling exponent.

The logarithmic transformation (equation 2) linearizes the relationship between y and M, where $log_{10}(a)$ is the y-intercept and the scaling exponent (b) is the slope.

The slope or scaling exponent is important for various reasons. First, it describes the relationship between body size and the dependent variable over as many as 10 orders of

* Correspondent: geger@umich.edu

© 2008 American Society of Mammalogists www.mammalogy.org

magnitude in M (e.g., Turvey et al. 1988). Secondly, in comparative studies, the exponent provides insight into or suggests the existence of laws governing morphological (Fox and Wilczynski 1986), physiological (West et al. 1997), or behavioral (Druzinsky 1993; Turvey et al. 1988) variation within taxa. Finally, allometric scaling probably represents the manifestation of general organizing principles of biological systems (Kauffman 1983; Turvey et al. 1988; West et al. 1997). Hence, an understanding of allometric scaling may ultimately lead to a theoretical understanding of many biological relationships.

A theoretical explanation for allometric scaling does not currently exist. Investigators have introduced several hypotheses to explain the observed relationships, including hypotheses based on mathematical–physical principles, metabolic or energetic cost issues, biomechanical principles, physiological findings, or a combination of these factors (Fortelius 1985; Gunther 1975; Heglund and Taylor 1988; McMahon 1975; Platt and Silvert 1981; Turvey et al. 1988; West et al. 1997).

West et al. (1997) make an important distinction between processes that scale to $M^{1/3}$ and those that scale to $M^{1/4}$. They argue that systems manifesting chaotic structure scale to $M^{1/4}$, whereas nonfractal or geometric systems scale to $M^{1/3}$ (West et al. 1997). In other words, there are important mechanistic distinctions between processes manifesting $M^{1/3}$ versus $M^{1/4}$ scaling.

In contrast, Turvey et al. (1988) indicate that the $M^{1/4}$ scaling for time-dependent behaviors is related to (and derivable from) the $M^{1/3}$ scaling for anatomical lengths. That is, during

a rhythmic behavior, a body part moving at or near its natural resonance frequency is following an $M^{1/4}$ scaling rule. Obviously motor behaviors that move body parts at or near their resonance frequencies would be metabolically efficient, in that such behaviors would not be working against the intrinsic physical properties of the body part.

In the specific case of mastication, a rhythmical oral behavior specific to mammals, Druzinsky (1993) argues for important distinctions between a one-third–power scaling exponent, which would indicate a geometric scaling regime relating to jaw length, and a one-fourth–power scaling exponent relating to elastic scaling. His results provide support for a one-fourth– power scaling across the class Mammalia. In contrast, Druzinsky (1993) cites previous work by Fortelius (1985) performed mainly on ungulates, which provides support for a one-third–power scaling exponent for mammals. However, neither Druzinsky's (1993) nor Fortelius' (1985) data provide a 95% confidence interval that excludes either M^{1/3} or M^{1/4} scaling. Consequently, it remains unclear what the scaling exponent for chewing rate is across mammals.

The discrepancies in scaling between studies could be due to differences in the body-mass ranges of species included in the studies (Turvey et al. 1988), to the manner in which evolutionary history and ecology directly or indirectly affect the scaling law among different taxa (e.g., Gross et al. 1993), or to the phylogenetic relationships among the species (Felsenstein 1985).

Our study addresses these considerations. First, we compared results obtained with and without independent contrasts, the latter of which are designed to remove the effects of phylogenetic relationship among the species, thus rendering each data point statistically independent. Second, we extended the work of Fortelius (1985) and Druzinsky (1993) by assembling chewing-rate and M data from more than 130 mammalian species. The species were chosen to narrow the 95% confidence interval of the scaling exponent. Finally, we compared simple linear regression and reduced major axis analyses to provide a more thorough evaluation of scaling exponent estimation. The results lead to the formulation of a kinematic-motorbiomechanical hypothesis that chewing rates will be slower than predicted by M^{1/4} scaling models, especially in species with relatively complex jaw movements (e.g., herbivores) compared with species with relatively simple jaw movements (e.g., carnivores).

MATERIALS AND METHODS

We used data on chewing cycle duration (CD) and M obtained from animals representing 132 mammalian species (Table 1). The data were collected in a humane manner under guidelines of the American Society of Mammalogists (Gannon et al. 2007) and guidelines established by the University of Michigan Committee on Use and Care of Animals. Methods used to obtain these data were similar to those used by Druzinsky (1993). Specifically, investigators obtained CD data by focally videotaping animals during masticatory behavior. Rhythmic oral movements associated with incising (food

Downloaded From: https://bioone.org/journals/Journal-of-Mammalogy on 19 Apr 2024 Terms of Use: https://bioone.org/terms-of-use acquisition) were not analyzed. Chewing samples contained 10–30 chews per animal, from which each animal's mean CD was calculated. For about 120 species, a single animal represented a given species. The remaining species were represented by 2–7 animals, from which each species' mean CD was calculated from the mean CD of each animal. In 34 cases, mean CDs were obtained from literature sources as indicated in Table 1.

We used M data from the animals being videotaped when it was available. Where not available, M was estimated from literature sources (Table 1). Data on mean CD and M were logtransformed to meet assumptions for use in linear regression (Gould 1966) as in Fig. 1.

Phylogenetic histories of the species were obtained from literature sources that provided estimates of times of divergence (Table 1, footnotes). The complete phylogenetic tree used in the study appears in Fig. 2, and detailed phylogenies of relatively well-sampled orders appear in Figs. 3–5. Times of divergence were used in independent contrast methods.

Independent contrasts on mean CD and M for each species were obtained using the Contrasts module of Phylip 3.65 (Felsenstein 1985). Figs. 3–5 were constructed by Phylip and served to confirm that the program was correctly reading our phylogenetic data. Least-squares regressions were obtained using Microsoft Excel 2003 (Microsoft Corp., Redmond, Washington). Reduced major axis analyses were obtained using PAST version 1.4 (Hammer et al. 2001).

Sources of animals used in our study included the San Diego Zoo, San Diego Wild Animal Park, the Greater Los Angeles Zoo, the Phoenix Zoo, the Wildlife World Zoo, the Toledo Zoo, the Detroit Zoo, and Belle Isle Zoo. Data on humans and some rodents were obtained from projects in our laboratory and in field studies performed near Ann Arbor, Michigan.

Food sources varied according to each zoo's dietary requirements for the animals. In general, videotaped data contained samples of each species chewing at least 2 different types of food. The food eaten by any given species depended on whether the species was herbivorous, carnivorous, or omnivorous by nature. Examples of different types of food include acacia browse, hay, and fresh vegetables for herbivores; raw meat and commercially available dried pellet feed for carnivores; and vegetables, gruel, or eggs for omnivores.

RESULTS

Table 1 shows M and mean CD for the species used in the study. Paired M and CD values representing 34 species were obtained from Druzinsky (1993—n = 30) and Gross et al. (1993—n = 4). The remaining 98 CD values were obtained as part of our study, of which 86 were paired with M values representing the individuals whose chewing was videotaped and analyzed. Thus, 120 of 132 cases represent paired M and CD values, whereas only 12 represent estimated M values paired with actual CD values. The results described below were not significantly affected by the presence or absence of these 12 estimates; consequently, results are based on all 132 cases.

Relationships between M and CD based on uncorrected data.—Figure 1 plots $\log_{10}(M)$ against $\log_{10}(CD)$ for the 132

TABLE 1.—Body mass (M) and mean chewing cycle duration (CD) of 132 mammalian species. Superscripts with values of M and CD indicate species for which data were obtained from the literature, and associated references.^a Superscripts with mammalian orders indicate sources^a of data on times of phylogenetic divergence. Taxonomy follows Wilson and Reeder (2005), except where indicated by an asterisk (*), and thus may differ slightly from references cited.

Common name	Order ¹⁸	Family	Genus	Species	M (g)	CD (ms)
Giraffe	Artiodactyla ³¹	Giraffidae	Giraffa	camelopardalis	1,240,000	976
Okapi	Artiodactyla ³¹	Giraffidae	Okapia	johnstoni	240,000	798
European bison	Artiodactyla ²¹	Bovidae	Bison	bonasus	$300,000^8$	793 ⁸
Domestic cow	Artiodactyla ²¹	Bovidae	Bos	taurus	$476,272^{8}$	690 ⁸
Yak	Artiodactyla ²¹	Bovidae	Bos	grunniens	250,000 ⁸	872 ⁸
Nilgai	Artiodactyla ¹⁷	Bovidae	Boselaphus	tragocamelus	$180,000^{22}$	550
Sitatunga	Artiodactyla ²	Bovidae	Tragelaphus	spekii	88,000	568
Nyala	Artiodactyla ²	Bovidae	Tragelaphus	angasii	45,400	534
Greater kudu	Artiodactyla ²	Bovidae	Tragelaphus	strepsiceros	252,500	690
Blackbuck	Artiodactyla ¹²	Bovidae	Antilope	cervicapra	36,000	493
Dama gazelle	Artiodactyla ²	Bovidae	Nanger	dama	63,000 ²²	478
Thomson's gazelle	Artiodactyla ²	Bovidae	Eudorcas	thomsonii	24,000	450
Saudi goitered gazelle	Artiodactyla ¹⁷	Bovidae	Gazella	subgutturosa	20,000	880
	Artiodactyla ¹⁷	Bovidae	Antidorcas	0	37,500	562
Springbok	Artiodactyla ²			marsupialis	$62,500^{22}$	420
Impala		Bovidae	Aepyceros	melampus		
Sable antelope	Artiodactyla ²	Bovidae	Hippotragus	niger	230,000	737
Arabian oryx	Artiodactyla ¹⁷	Bovidae	Oryx	leucoryx	70,000 ²²	621
Scimitar-horned oryx	Artiodactyla ¹⁷	Bovidae	Oryx	dammah	204,000	890
Gemsbok	Artiodactyla ²	Bovidae	Oryx	gazella	200,000	735
Addax	Artiodactyla ²	Bovidae	Addax	nasomaculatus	102,000	1,000
Rocky mountain goat	Artiodactyla ¹²	Bovidae	Oreamnos	americanus	$60,000^8$	780^{8}
Dall's sheep	Artiodactyla ¹²	Bovidae	Ovis	dalli	$10,500^{22}$	493
Himalayan tahr	Artiodactyla ¹⁷	Bovidae	Hemitragus	jemlahicus	$50,000^8$	471 ⁸
Alpine ibex	Artiodactyla ²³	Bovidae	Capra	ibex	$40,000^8$	597 ⁸
Markhor	Artiodactyla ²³	Bovidae	Capra	falconeri	$64,000^8$	581 ⁸
Goat	Artiodactyla ²³	Bovidae	Capra	hircus	40,000	600
Barbary sheep	Artiodactyla ¹⁷	Bovidae	Ammotragus	lervia	$66,000^8$	584 ⁸
Musk ox	Artiodactyla ¹⁷	Bovidae	Ovibos	moschatus	$400,000^8$	$1,169^{8}$
Waterbuck	Artiodactyla ²	Bovidae	Kobus	ellipsiprymnus	220,000	519
Lechwe	Artiodactyla ²	Bovidae	Kobus	leche	96,000	599
Blue duiker	Artiodactyla ²	Bovidae	Philantomba	monticola	4,500	358
Elk	Artiodactyla ³¹	Cervidae	Cervus	elaphus	266,000 ¹⁵	536 ¹⁵
Chital	Artiodactyla ³¹	Cervidae	Axis	axis	53,000 ¹⁵	496 ¹⁵
	Artiodactyla ³⁵	Cervidae	Muntiacus		$11,000^{22}$	490
Reeve's muntjac	Artiodactyla ³⁵	Cervidae		reevesi	18,000	413 565
Indian muntjac deer			Muntiacus	muntjak		
Roe deer	Artiodactyla ²⁷	Cervidae	Capreolus	capreolus	20,000	612
Moose	Artiodactyla ²⁷	Cervidae	Alces	alces	450,000 ⁸	1,072 ⁸
White-tailed deer	Artiodactyla ²⁷	Cervidae	Odocoileus	virginianus	78,500	660
Reindeer	Artiodactyla ²⁷	Cervidae	Rangifer	tarandus	$125,000^{8}$	864 ⁸
Dromedary camel	Artiodactyla ²⁹	Camelidae	Camelus	dromedarius	525,000	990
Bactrian camel	Artiodactyla ²⁹	Camelidae	Camelus	bactrianus	$500,000^8$	912 ⁸
Guanaco	Artiodactyla ²⁹	Camelidae	Lama	guanicoe	120,000	610
Llama	Artiodactyla ²⁹	Camelidae	Lama	glama	140,000	780
Alpaca	Artiodactyla ²⁹	Camelidae	Lama	pacos	100,000	460
Hippo	Artiodactyla ²⁵	Hippopotamidae	Hippopotamus	amphibius	2,300,000	1,039
Wild boar	Artiodactyla ³⁰	Suidae	Sus	scrofa	$22,300^{8}$	330 ⁸
Warthog	Artiodactyla ³⁰	Suidae	Phacochoerus	aethiopicus	90,000	518
Collared peccary	Artiodactyla ³⁰	Tayassuidae	Pecari	tajacu	19,000	480
Brazilian tapir	Perissodactyla ³³	Tapiridae	Tapirus	terrestris	230,000	650
White rhinoceros	Perissodactyla ³³	Rhinocerotidae	Ceratotherium	simum	2,300,000	1,440
Grant's zebra	Perissodactyla ¹²	Equidae		burchellii	200,000	720
Przewalski's horse	Perissodactyla ¹⁴	Equidae	Equus		300,000	813
	Perissodactyla ¹⁴	*	Equus	przewalskii* caballus	65,0905 ⁸	815 785 ⁸
Domestic horse		Equidae	Equus	caballus hemionus	$210,000^8$	785 [°] 797 ⁸
Asiatic wild ass	Perissodactyla ¹²	Equidae	Equus		· · · · ·	
Indian flying fox	Chiroptera ²⁴	Pteropodidae	Pteropus	giganteus	480^{8}	581 ⁸
Little brown bat	Chiroptera ²⁴	Vespertilionidae	Myotis	lucifugus	7 ⁸	250 ⁸
Domestic dog	Carnivora ⁷	Canidae	Canis	familiaris*	63,287 ⁸	316 ⁸
Mexican gray wolf	Carnivora ³⁶	Canidae	Canis	lupus	32,000	280
Maned wolf	Carnivora ¹⁶	Canidae	Chrysocyon	brachyurus	$23,000^{22}$	390
Ferret	Carnivora ¹⁰	Mustelidae	Mustela	putorius	737	244
North American otter	Carnivora ¹⁰	Mustelidae	Lontra	canadensis	15,000	280

TABLE 1.—Continued.

Common name	Order ¹⁸	Family	Genus	Species	M (g)	CD (ms)
Coati	Carnivora ¹⁰	Procyonidae	Nasua	nasua	4,800	258
Raccoon	Carnivora ¹⁰	Procyonidae	Procyon	lotor	4,288	292
Red panda	Carnivora ³⁶	Ailuridae	Ailurus	fulgens	4,000	345
Himalayan black bear	Carnivora ³⁴	Ursidae	Ursus	thibetanus	70,000	400
American black bear	Carnivora ³⁴	Ursidae	Ursus	americanus	70,000	390
Polar bear	Carnivora ³⁴	Ursidae	Ursus	maritimus	390,000	490
Grizzly bear	Carnivora ³⁴	Ursidae	Ursus	arctos	143,000 ¹⁵	585 ¹⁵
Spectacled bear	Carnivora ³⁴	Ursidae	Tremarctos	ornatus	90,000	470
California sea lion	Carnivora ¹⁰	Otariidae	Zalophus	californianus	91,000	310
Domestic cat	Carnivora ¹⁶	Felidae	Felis	catus	$2,500^{8}$	308 ⁸
Snow leopard	Carnivora ¹⁶	Felidae	Uncia	uncia	43,200	660
Leopard	Carnivora ¹⁶	Felidae	Panthera	pardus	43,000	580
Lion	Carnivora ¹²	Felidae	Panthera	leo	130,000	690
Tiger	Carnivora ¹²	Felidae	Panthera	tigris	150,000	390
Meerkat	Carnivora ³⁶	Herpestidae	Suricata	suricatta	1,100	180
Two-toed sloth	Pilosa ³	Megalonychidae	Choloepus	hoffmanni	4,000	660
African elephant	Proboscidea ³	Elephantidae	Loxodonta	africana	2,812,273	1,530
Domestic rabbit	Lagomorpha ⁵	Leporidae	Oryctolagus	cuniculus	2,500	180
Thick-tailed bush baby (= brown greater galago)	Primates ²⁶	Galagidae	Otolemur	crassicaudatus	$1,500^{8}$	314 ⁸
Ring-tailed lemur	Primates ²⁶	Lemuridae	Lemur	catta	2,500	270
Spider monkey	Primates ²⁶	Atelidae	Ateles		$6,000^{8}$	326 ⁸
Squirrel monkey	Primates ²⁶	Cebidae	Saimiri	sciureus	550 ⁸	357 ⁸
Common marmoset	Primates ²⁶	Cebidae	Callithrix	jacchus	315 ²²	262
Pygmy marmoset	Primates ²⁶	Cebidae	Callithrix	pygmaea	120	237
Golden lion tamarin	Primates ²⁶	Cebidae	Leontopithecus	rosalia	600	339
Red-handed tamarin	Primates ²⁶	Cebidae	Saguinus	midas	320^{22}	274
Cotton-top tamarin	Primates ²⁶	Cebidae	Saguinus	oedipus	320	293
Japanese macaque	Primates ²⁶	Cercopithecidae	Macaca	fuscata	15,000	420
Rhesus macaque	Primates ²⁶	Cercopithecidae	Macaca	mulatta	$3,500^{8}$	334 ⁸
Mandrill	Primates ²⁶	Cercopithecidae	Mandrillus	sphinx	18,000	556
Sykes monkey	Primates ²⁶	Cercopithecidae	Cercopithecus	mitis	5,650	310
De Brazza's monkey	Primates ²⁶	Cercopithecidae	Cercopithecus	neglectus	$5,850^{22}$	328
Patas monkey	Primates ²⁶	Cercopithecidae	Erythrocebus	patas	$8,500^{22}$	405
Guereza	Primates ²⁶	Cercopithecidae	Colobus	guereza	9,900	560
Hanuman langur	Primates ²⁶	Cercopithecidae	Semnopithecus	entellus	16,000	415
White-handed gibbon	Primates ²⁶	Hylobatidae	Hylobates	lar	6,000	374
Siamang	Primates ²⁶	Hylobatidae	Symphalangus	syndactylus	10,400	353
Human	Primates ²⁶	Hominidae	Ното	sapiens	67,900	1,102
Chimpanzee	Primates ²⁶	Hominidae	Pan	troglodytes	40,000	540
Gorilla	Primates ²⁶	Hominidae	Gorilla	gorilla	92,500	690
Orangutan	Primates ²⁶	Hominidae	Pongo	pygmaeus	37,000	660
Tree shrew	Scandentia ³	Tupaiidae	Tupaia	glis	150 ⁸	238 ⁸
Naked mole rat	Rodentia ²⁰	Bathyergidae	Heterocephalus	glaber	45	300
Agouti	Rodentia ²⁰	Dasyproctidae	Dasyprocta	Sidder	2,700 ⁹	212
Capybara	Rodentia ²⁰	Caviidae	Hydrochoerus	hydrochaeris	45,000	1,249
Guinea pig	Rodentia ³¹	Caviidae	Cavia	porcellus	900	1,249
Patagonian cavy	Rodentia ²⁰	Caviidae	Dolichotis	patagonum	7,800	309
Chinchilla	Rodentia ⁵	Chinchillidae	Chinchilla	lanigera	500	260
Springhare	Rodentia ⁵	Pedetidae	Pedetes	capensis	$2,300^{8}$	317 ⁸
Spiny mouse	Rodentia ¹¹	Muridae	Acomys	dimidiatus	50	282
Norway rat	Rodentia ¹¹	Muridae	Rattus	norvegicus	200^{8}	192 ⁸
Collared lemming	Rodentia ¹	Cricetidae	Dicrostonyx	groenlandicus	50^{15}	192 127^{15}
Valley pocket gopher	Rodentia ²⁸	Geomyidae	2	0	473	309
	Rodentia ²⁸	•	Thomomys	bottae	583 ⁸	207^{8}
Mountain beaver	Rodentia ²¹	Aplodontiidae Sciuridae	Aplodontia Callosoiumus	rufa		
Prevost's squirrel Pleak tailed prairie dog	Rodentia ²¹	Sciuridae	Callosciurus	prevostii ludovicianus	325	177
Black-tailed prairie dog			Cynomys Saiumus		750	217
Fox squirrel	Rodentia ²¹ Rodentia ³²	Sciuridae	Sciurus Mannata	niger	900 2 700 ⁸	220 583 ⁸
Woodchuck		Sciuridae	Marmota	monax	$3,790^{8}$	
Oriental musk shrew	Soricomorpha ²⁵	Soricidae	Suncus	murinus	41 ⁸	183 ⁸
Lesser hedgehog tenrec	Afrosoricida ⁶	Tenrecidae	Echinops	telfairi	180	400
Common tenrec	Afrosoricida ⁶	Tenrecidae	Tenrec	ecaudatus	210	489
Wallaroo	Diprotodontia ⁴	Macropodidae	Macropus	robustus	24,900	455
Red kangaroo	Diprotodontia ⁴	Macropodidae	Macropus	rufus	35,000	538
Agile wallaby	Diprotodontia ⁴	Macropodidae	Macropus	agilis	11,300	355

TABLE	1.—	-Continued.
LADLL	1.	Commucu.

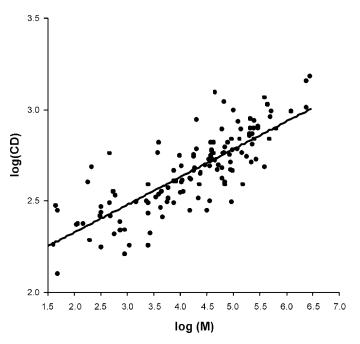
Common name	Order ¹⁸	Family	Genus	Species	M (g)	CD (ms)
Gray kangaroo	Diprotodontia ⁴	Macropodidae	Macropus	giganteus	30,000	499
Bennett's wallaby	Diprotodontia ⁴	Macropodidae	Macropus	rufogriseus	18,000	460
Tammar wallaby	Diprotodontia ⁴	Macropodidae	Macropus	eugenii	7,700	467
Matschie's tree kangaroo	Diprotodontia ⁴	Macropodidae	Dendrolagus	matschiei	10,700	402
Sugar glider	Diprotodontia ¹³	Petauridae	Petaurus	breviceps	110	236
Koala	Diprotodontia ¹⁹	Phascolarctidae	Phascolarctos	cinereus	7,800	410
Opossum	Didelphimorphia ³	Didelphidae	Didelphis	marsupialis	$2,500^{8}$	390 ⁸

^a 1, Adkins et al. 2001; 2, Brashares et al. 2000; 3, Browham et al. 1999; 4, Burk and Springer 2000; 5, De Jong 1985; 6, Douady et al. 2002; 7, Douzery and Randi 1997; 8, Druzinsky 1993; 9, Eisenberg 1981; 10, Ferguson et al. 1996; 11, Fraguedakis-Tsolis et al. 1993; 12, Garland et al. 1993; 13, Geiser 1994; 14, George and Ryder 1986; 15, Gross et al. 1993; 16, Harris and Steudel 1997; 17, Hassanin and Douzery 1999; 18, Hedges et al. 1996; 19, Houlden et al. 1996; 20, Huchon and Douzery 2001; 21, Janecek et al. 1996; 22, Macdonald 1987; 23, Manceau et al. 1999; 24, Nikaido et al. 2000; 25, Nikaido et al. 2001; 26, Purvis 1995; 27, Randi et al. 1998; 28, Sarich 1985; 29, Stanley et al. 1994; 30, Theimer and Keim 1998; 31, Thenius and Hofer 1960; 32, Thomas and Martin 1993; 33, Tougard et al. 2001; 34, Waits et al. 1999; 35, Wang and Hong 2000; 36, Wayne 1993.

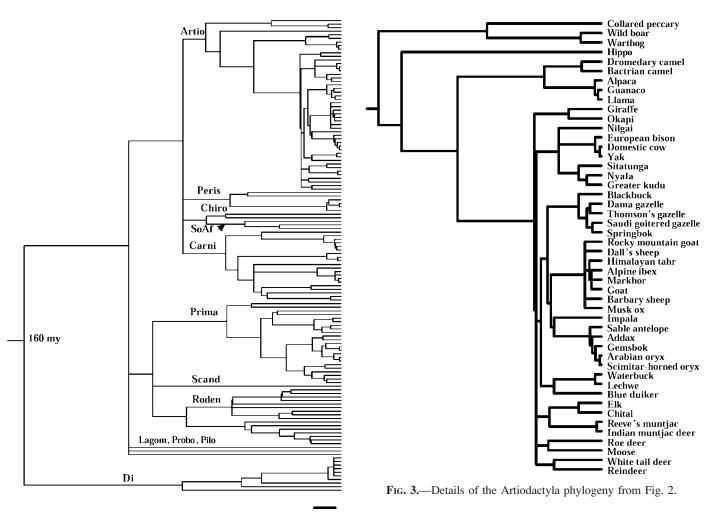
mammalian species. $\text{Log}_{10}(M)$ was significantly correlated with $\log_{10}(\text{CD})$ (r = 0.80, P < 0.001), with $\log_{10}(M)$ accounting for about 65% of the variance in $\log_{10}(\text{CD})$. Regression analysis found the following relationship: $\log_{10}(\text{CD}) = 2.024 + 0.1521[\log_{10}(M)]$. The 95% confidence interval for the scaling exponent ranged from 0.133 to 0.171. In other words, CD was proportional to $M^{1/6}$, and the 95% confidence interval did not include either $M^{1/8}$ or $M^{1/4}$.

A reduced major axis analysis also found a significant relationship between $\log_{10}(M)$ and $\log_{10}(CD)$ (r = 0.80, P < 0.001; results based on 132 bootstraps). The relationship between $\log_{10}(CD)$ and $\log_{10}(M)$ was: $\log_{10}(CD) = 1.862 + 0.1893[\log_{10}(M)]$. The 95% confidence interval for the scaling exponent was 0.168–0.212, which did not include $M^{1/8}$, $M^{1/6}$, $M^{1/4}$, or $M^{1/3}$; however, the scaling exponent and confidence interval were closer to $M^{1/6}$ than to $M^{1/8}$, $M^{1/4}$, or $M^{1/3}$.

Relationships between M and CD using independent contrasts.-Phylogenetic relationships can influence the results of linear regressions (Felsenstein 1985). To remove these effects, independent contrasts were generated on the log₁₀(M) and log₁₀(CD) data using divergence times taken from the literature (Table 1). Divergence times are depicted diagrammatically in the phylogenetic trees shown in Figs. 2–5. The relationship between log₁₀(M) and log₁₀(CD) using independent contrasts was significant (r = 0.493, P < 0.001, n = 66), and accounted for 24% of the variation in CD. Regression analysis found the following relationship: $\log_{10}(CR) =$ $0.138[\log_{10}(M)]$. (The contrast method standardized the data so that the regression passed through the origin.) The 95% confidence interval for the scaling exponent was 0.0784-0.198, which included both $M^{1/8}$ and $M^{1/6}$ in the confidence interval estimate.


A reduced major axis analysis found a significant correlation between the independent contrast data for $\log_{10}(M)$ and $\log_{10}(CD)$ (r = 0.493, P < 0.001, based on 66 bootstraps). The relationship was $\log_{10}(CR) = -0.008 + 0.280[\log_{10}(M)]$. The 95% confidence interval for the scaling exponent was 0.219–0.346, which included both M^{1/4} and M^{1/3} in the confidence interval.

Regressions of selected mammalian orders.—Allometric relationships and comparisons may vary among mammalian species subgroups based on shared functional and evolutionary


historical characters. Therefore, simple linear regressions were run on log-transformed data representing 4 mammalian orders for which we had sufficient samples: Rodentia, Artiodactyla, Primates, and Carnivora (Table 2). For all 4 orders, $M^{1/6}$ is included in the 95% confidence interval of the scaling exponent. $M^{1/4}$ and $M^{1/8}$ also are included in the 95% confidence interval of the scaling exponent for rodents, and $M^{1/8}$ is included in the 95% confidence interval of the scaling exponent for carnivores, artiodactyls, and primates.

DISCUSSION

Allometric scaling between chewing rate and M suggests the existence of underlying principles governing the evolution and perhaps the development of chewing rate. It is possible that general biological principles or "unifying theories" may ultimately emerge from allometric studies (see Calder 1996: chapter 1). No widely accepted theoretical framework yet exists

FIG. 1.—Scatterplot and regression of \log_{10} mass (M) against \log_{10} chewing cycle duration (CD) for the 132 species listed in Table 1.

10 my

FIG. 2.—Phylogeny of 132 mammalian species used in this study. Branch lengths correspond to divergence times (bar, lower right = 10 million years). Abbreviations: Artio = Artiodactyla; Peris = Perissodactyla; Chiro = Chiroptera; SoAf = Soricomorpha and Afrosoricida; Carni = Carnivora; Prima = Primates; Scand = Scandentia; Roden = Rodentia; Lagom = Lagomorpha; Probo = Proboscidea; Pilo = Pilosa; Di = Didelphimorphia and Diprotodontia.

for understanding allometric relationships, especially for biologically ensconced dynamical regimes like chewing rate (cf. Iberall 1995; Rapp 1987). Several models have been proposed; however, most, including those proposed for chewing timing (Druzinsky 1993), rely critically on the value of the scaling exponent.

In our study, the simple linear regression analysis of the raw data representing all 132 mammalian species showed that CD (which is the reciprocal of chewing rate) scaled to $M^{1/6}$. Importantly, the 95% confidence interval for the scaling exponent in this analysis excluded both $M^{1/4}$ and $M^{1/8}$. Likewise, the scaling exponent was closer to $M^{1/6}$ than to $M^{1/8}$ for all 4 of the within-order analyses (Table 2), and for the reduced major axis analysis of the raw data representing all 132 species. These results suggest that an $M^{1/6}$ -power law governs mammalian chewing rate allometry.

According to Turvey et al. (1988), the $M^{1/6}$ scaling is likely a one-third–power law operating in a unique geometric setting. West et al. (1997) have argued that one-third–power scaling represents the operation of a nonfractal or geometric system. If this is the case, then a geometric dynamical regime, as opposed to a fractal dynamical regime, appears to govern CD among mammals. It has been argued that motor activity dynamics in individual organisms are fractal (Cole 1995); however, results of our study appear to refute this argument.

On the other hand, our estimates of the scaling exponent that were relatively close to $M^{1/6}$ stemmed from results performed on raw data. By contrast, estimates of the scaling exponent were relatively close to $M^{1/8}$ or $M^{1/4}$ when independent contrasts were used. This variation in scaling exponent estimates may be due to statistical error, to biological effects, or both. In terms of potential biological effects, we hypothesize that the leading candidates include jaw kinematics, motor control issues, and biomechanics, or more general processes such as canalization, grade shifts, phylogenetic inertia, or a combination of factors.

Jaw kinematics, motor control, and biomechanics.—When phylogenetic effects were removed with independent contrasts, the $M^{1/6}$ scaling exponent appeared to move toward a one-fourth–power law. The $M^{1/4}$ scaling proposed by Turvey et al.

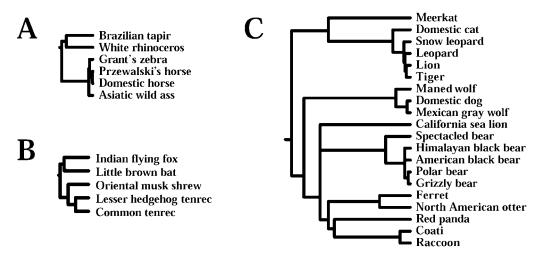


FIG. 4.—Details of the phylogenies of A) Perissodactyla; B) Chiroptera, Soricomorpha, and Afrosoricida; and C) Carnivora from Fig. 2.

(1988) assumes a relatively simple, 1 degree-of-freedom movement, which would be a reasonable approximation if mammalian species were characterized by simple, vertically directed jaw opening and closing movements. However, the rodents, primates, ungulates, and some of the marsupials sampled in our study have been shown to possess relatively complex jaw movements with considerable lateral movements of the jaw during a chewing cycle (Byrd 1981; Gerstner and Goldberg 1994; Luschei and Goodwin 1974). About threefourths of the species involved in our study probably have significant lateral jaw movements associated with chewing.

To determine whether a lateral movement component could influence chewing rate, we performed a simple experiment with a mass-spring system, a system upon which some one-fourth-power law models are based (Turvey et al. 1988). We determined that the oscillatory rate was up to 30% slower when the mass was forced to have a lateral movement component than when it had a simple vertical trajectory. This

provided support for the hypothesis that lateral movements may be associated with relatively slow chewing rates.

Additionally, mastication with a lateral jaw movement component would require asymmetrical muscle activity patterns as well as complex (rotational and translational) movements of the mandibular condyles. Hence, lateral movements of the jaw increase the complexity of motor coordination and of condylar biomechanics. Therefore, we hypothesize that chewing strokes with complex (lateral movement) kinematics, motor control, and biomechanics will occur in conjunction with chewing rates that are slower than the one-fourth-scaling law would predict. This would translate to CD moving away from the "ideal" scaling exponent of $M^{1/4}$ and toward the $M^{1/3}$ scaling exponent in studies involving species with relatively complex jaw movements. Complexities in the anteroposterior dimension of jaw movements also could play a role in moving the scaling exponent away from the "ideal." Given that chewing is a complex 3-dimensional movement, further studies will be required to

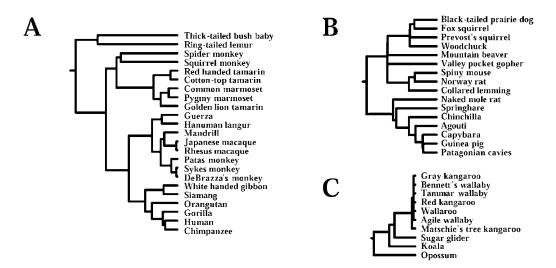


FIG. 5.—Details of the phylogenies of A) Primates, B) Rodentia, and C) Diprotodontia and Didelphimorphia from Fig. 2.

Group	n	Scaling exponent	95% CI for exponent	Intercept	r	Р
Rodents	16	0.188	0.0752-0.301	1.891	0.658	< 0.010
Artiodactyls	48	0.170	0.122-0.217	1.958	0.719	< 0.001
Primates	23	0.164	0.116-0.212	1.997	0.826	< 0.001
Carnivores	20	0.147	0.0832-0.210	1.924	0.730	< 0.001

TABLE 2.—Correlations between chewing cycle duration and body mass for 4 mammalian orders.

evaluate fully our proposed kinematic-motor-biomechanical hypothesis.

The independent contrasts removed phylogenetic effects, which essentially reduced the contribution from closely related, that is, within-order species. Because large numbers of species of ungulates, rodents, and primates were sampled, the independent contrast methods would have reduced the weighting due to repeated measures of the many related species with significant lateral jaw movement components. Consequently, scaling estimates would move toward the "ideal" M^{1/4} scaling exponent. Indeed, this was the case, suggesting that the kinematic–motor–biomechanical hypothesis may explain the discrepancies in results obtained with raw data compared to data processed with independent contrasts.

There are several other possible explanations for why onethird–power estimates were observed with data where phylogenetic effects were preserved, versus why one-fourth–power estimates were observed with data where phylogenetic effects were removed. Martin et al. (2005) and Nunn and Barton (2000) discuss effects due to grade shifts and phylogenetic inertia. Table 1 shows that our sample of rodents and artiodactyls represented different ranges of M; hence, body-size inertia is certainly an important consideration. What specific roles any grade or inertial effects may be playing will be an issue for future studies. Studies involving larger, carefully selected samples will allow for rigorous testing and evaluation of the biological factors.

Sensitivity of scaling exponent estimates to study design.— The fact that the one-fourth-power scaling was excluded in the 95% confidence interval of the analyses involving all 132 species, but that it was included in all other analyses, could be due to the widening of the confidence interval as a result of reduced sample sizes for these comparisons (e.g., n = 16-48, Table 2; and n = 66 in the analyses involving independent contrasts). Future investigations should include carefully selected additional species of rodents, artiodactyls, carnivores, and primates in order to fine-tune the 95% confidence intervals for within-order comparisons. We anticipate that the scaling exponent will continue to lie between $M^{1/4}$ and $M^{1/6}$ in accordance with predictions of the kinematic-motor-biomechanical hypothesis; however, it should be possible to ascertain the precise roles that specific factors such as grade, inertia, jaw kinematics, and biomechanics play in modifying the scaling exponent.

As the results of our study demonstrated, selection of analytic methods, such as simple linear regression, reduced major axis, or independent contrasts, as well as selection of taxa, can have a significant impact on the estimate of the scaling exponent. Because estimation of the scaling exponent is sensitive to statistical design issues (Nunn and Barton 2000; Symonds and Elgar 2002), results that support specific models should be interpreted in light of the analytic methods used.

It would be useful if a set of standardized methods and approaches existed for allometric studies. The advantages, problems, and challenges inherent in existing approaches have been discussed at length in various papers (Fortelius 1985; Garland et al. 1992; LaBarbera 1989; Martin et al. 2005; Riska 1991), and a discussion of this topic goes beyond the scope of this paper. Because these issues remain unresolved, our study used several presently accepted methods to study the relationship between M and chewing timing. Similar multimethod approaches are common in allometric studies (Nunn and Barton 2000; Symonds and Elgar 2002).

Two common criticisms of allometric studies are their reliance on small samples representing each data point, that is, each species is often represented by 1 or a few individual animals; and not accounting for confounding factors such as sexual dimorphism, age, or social status. Calder (1996) argues that what is most important in allometric study designs is the range of body sizes studied. In our study, size ranged from 7 g (little brown bat) to 2,812,273 g (African elephant), that is, over 5 orders of magnitude. Calder (1996:41) argues that "a 25% 'error' displacement from true M will have only negligible effect on the overall relationship" in studies that cover such a size range. Likewise, factors that would introduce an error in size equal to 25%, for example, selecting a female animal to represent a species that manifests sexual dimorphism, would have negligible effect on the overall relationship. Of course, this assumes that these biologically based "errors" will be randomly distributed across the data set, and hence only the degree of scatter will be slightly affected and not the estimate of the scaling exponent. In practice, such an assumption is difficult if not impossible to demonstrate definitively.

Moreover, although such sources of error may not affect the estimate of the scaling exponent, they may influence the 95% confidence interval. This could be another important reason why it was not possible to isolate the one-third-power versus one-fourth-power scaling exponent in several of our tests. Future study designs should take this issue into consideration.

Neurobiological considerations in CD production.—Models of rhythmic chewing need to consider important neurobiological aspects of chewing rate generation. Chewing rate is controlled by central timing networks, also called central rhythm generators, located in the brain stem (for review, see Goldberg and Chandler [1990] and Nakamura and Katakura [1995]). For models to be biologically meaningful, they would

have to account for how peripheral feedback containing information about jaw mass would act to entrain the central timing network to produce a rhythm that matches the mass properties of the jaw. In this way, CD and M would come to be allometrically related.

Turvey et al. (1988) showed that rhythmic movements of human subjects adapted to the experimental paradigm. In other words, under the given experimental conditions, rhythmicity responded to peripheral feedback that contained information about mass. In contrast, our unpublished studies of chewing rate and M among breeds of dogs indicates that chewing rate and M do not scale as predicted. Likewise, other studies indicate that the rhythmicity of jaw movements is not modified by experimentally increasing jaw mass in individual animals (Carvalho and Gerstner 2004; Chandler et al. 1985). This suggests that for chewing rate and M to scale among wild mammals, as it clearly does in our study, there is a key role for natural selection in the scaling.

In summary, results of our study showed that CD scaled according to a one-fourth-power law when phylogenetic effects were removed and to a one-third-power law when phylogenetic effects were not removed. Moreover, the onethird-power law appeared to hold for comparisons across the class Mammalia as well as for comparisons within 4 mammalian orders. Consequently, there appear to be many evolutionary (ultimate causality) and neurobiological (proximate causality) issues for future studies to address regarding the sources of variation in mammalian chewing rates. Work will need to focus on ecological and morphological issues, to evaluate the scaling exponent at the family and genus levels, and to understand the influences of jaw movement kinematics, motor control, and biomechanics on chewing rate. The sensitivity of results to statistical and study design features also will need to be evaluated. Mastication, as a behavior in which most mammalian species engage, and which is a vital interface between mammals and their environments, provides a subject to develop new ways of thinking that are simultaneously compatible with neurophysiologic, motor control, biomechanical, ontogenetic, evolutionary, and ecological traditions (Gerstner and Goldberg 1999).

ACKNOWLEDGMENTS

We thank K. Copeland, J. Terres, and M. Mattesi for assistance with data collection and reduction. We also thank the staffs of the San Diego Zoo, San Diego Wild Animal Park, the Greater Los Angeles Zoo, the Phoenix Zoo, the Wildlife World Zoo, the Toledo Zoo, the Detroit Zoo, and Belle Isle Zoo for assistance with this project. We also thank S. Ferreira for constructive comments and an anonymous reviewer whose comments served to improve the science and focus of the paper. This work was supported in part by Public Health Service grant DE10625 from the National Institutes of Health to GEG.

LITERATURE CITED

ADKINS, R. M., E. L. GELKE, D. ROWE, AND R. L. HONEYCUTT. 2001. Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes. Molecular Biology and Evolution 18:777–791.

- BRASHARES, J. S., T. GARLAND, JR., AND P. ARCESE. 2000. Phylogenetic analysis of coadaptation in behavior, diet, and body size in the African antelope. Behavioral Ecology 11:452–463.
- BROWHAM, L., M. J. PHILLIPS, AND D. PENNY. 1999. Growing up with dinosaurs: molecular dates and the mammalian radiation. Trends in Ecology and Evolution 14:113–188.
- BURK, A., AND M. S. SPRINGER. 2000. Intergeneric relationships among Macropodoidea (Metatheria: Diprotodontia) and the chronicle of kangaroo evolution. Journal of Mammalian Evolution 7: 213–237.
- BYRD, K. E. 1981. Mandibular movement and muscle activity during mastication in the guinea pig (*Cavia porcellus*). Journal of Morphology 170:147–169.
- CALDER, W. A. 1996. Size, function, and life history. Dover, Mineola, New York.
- CARVALHO, T. C., AND G. E. GERSTNER. 2004. Licking rate adaptations to increased mandibular weight in the adult rat. Physiology and Behavior 82:331–337.
- CHANDLER, S. H., L. J. GOLDBERG, AND R. W. LAMBERT. 1985. The effects of orofacial sensory input on spontaneously occurring and apomorphine-induced rhythmical jaw movements in the anesthetized guinea pig. Neuroscience Letters 53:45–49.
- Cole, B. J. 1995. Fractal time in animal behaviour: the movement activity of *Drosophila*. Animal Behaviour 50:1317–1324.
- DE JONG, W. W. 1985. Superordinal affinities of rodentia studied by sequence analysis of eye lens protein. Pp. 211–226 in Evolutionary relationships among rodents a multidisciplinary analysis (W. P. Luckett and J.-L. Hartenberger, eds.). Plenum, New York.
- DOUADY, C. J., F. CATZEFLIS, D. J. KAO, M. S. SPRINGER, AND M. J. STANHOPE. 2002. Molecular evidence for the monophyly of Tenrecidae (Mammalia) and the timing of the colonization of Madagascar by Malagasy tenrecs. Molecular Phylogenetics and Evolution 22:357–363.
- DOUZERY, E., AND E. RANDI. 1997. The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Molecular Biology and Evolution 14:1154–1166.
- DRUZINSKY, R. E. 1993. The time allometry of mammalian chewing movements: chewing frequency scales with body mass in mammals. Journal of Theoretical Biology 160:427–440.
- EISENBERG, J. E. 1981. The mammalian radiations. University of Chicago Press, Chicago, Illinois.
- FELSENSTEIN, J. 1985. Phylogenies and the comparative method. American Naturalist 125:1–15.
- FERGUSON, S. H., J. A. VIRGL, AND S. LARIVIÈRE. 1996. Evolution of delayed implantation and associated grade shifts in life history traits of North American carnivores. Ecoscience 3:7–17.
- FORTELIUS, M. 1985. Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zoologica Fennica 180:1–76.
- Fox, J. H., AND W. WILCZYNSKI. 1986. Allometry of major CNS divisions: towards a reevaluation of somatic brain–body scaling. Brain Behavior and Evolution 28:157–169.
- FRAGUEDAKIS-TSOLIS, S. E., B. P. CHONDROPOULOS, AND N. P. NIKOLETOPOULOS. 1993. On the phylogeny of the genus Acomys (Mammalia: Rodentia). Zeitschrift für Säugetierkunde 58:240–243.
- GANNON, W. L., R. S. SIKES, AND THE ANIMAL CARE AND USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2007. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 88:809–823.
- GARLAND, T., JR., A. W. DICKERMAN, C. M. JANIS, AND J. A. JONES. 1993. Phylogenetic analysis of covariance by computer simulation. Systematic Biology 42:265–292.

- GARLAND, T., JR., P. H. HARVEY, AND A. R. IVES. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41:18–32.
- GEISER, F. 1994. Hibernation and daily torpor in marsupials: a review. Australian Journal of Zoology 42:1–16.
- GEORGE, M., AND O. A. RYDER. 1986. Mitochondrial DNA evolution in the genus *Equus*. Molecular Biology and Evolution 3:535–546.
- GERSTNER, G. E., AND L. J. GOLDBERG. 1994. Species-specific morphology of masticatory jaw movements. Behaviour 128:229– 253.
- GERSTNER, G. E., AND L. J. GOLDBERG. 1999. The process of mastication. Pp. 3–21 in Neurobiology of mastication: from molecular to systems approach (Y. Nakamura, ed.). Elsevier, Amsterdam, The Netherlands.
- GOLDBERG, L. J., AND S. H. CHANDLER. 1990. Central mechanisms of rhythmic trigeminal activity. Pp. 268–293 in Neurophysiology of the jaws and teeth (A. Taylor, ed.). Macmillan, London, United Kingdom.
- GOULD, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41:61–86.
- GROSS, J. E., L. A. SHIPLEY, N. T. HOBBS, D. E. SPALINGER, AND B. A. WUNDER. 1993. Functional response of herbivores in foodconcentrated patches: tests of a mechanistic model. Ecology 74: 778–791.
- GUNTHER, B. 1975. Dimensional analysis and theory of biological similarity. Physiological Reviews 55:659–699.
- HAMMER, Ø., D. A. T. HARPER, AND P. D. RYAN. 2001. PAST: palaentological statistics software package for education and data analysis. Palaeontologia Electronica 4:1–9.
- HARRIS, M. A., AND K. STEUDEL. 1997. Ecological correlates of hindlimb length in the Carnivora. Journal of Zoology (London) 241:381–408.
- HASSANIN, A., AND E. J. P. DOUZERY. 1999. The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome *b* gene. Molecular Phylogenetics and Evolution 13:227–243.
- HEDGES, S. B., P. H. PARKER, C. G. SIBLEY, AND S. KUMAR. 1996. Continental breakup and the ordinal diversification of birds and mammals. Nature 31:226–229.
- HEGLUND, N. C., AND C. R. TAYLOR. 1988. Speed, stride frequency and energy cost per stride: how do they change with body size and gait? Journal of Experimental Biology 138:301–318.
- HOULDEN, B. A., P. R. ENGLAND, A. C. TAYLOR, W. D. GREVILLE, AND W. B. SHERWIN. 1996. Low genetic variability of the koala *Phascolarctos cinereus* in south-eastern Australia following a severe population bottleneck. Molecular Ecology 5:269–281.
- HUCHON, D., AND E. J. P. DOUZERY. 2001. From the Old World to the New World: a molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Molecular Phylogenetics and Evolution 20:238–251.
- IBERALL, A. 1995. A physical (homeokinetic) foundation for the Gibsonian theory of perception and action. Ecological Psychology 7:37–68.
- JANECEK, L. L., R. L. HONEYCUTT, R. M. ADKINS, AND S. K. DAVIS. 1996. Mitochondrial gene sequences and the molecular systematics of the artiodactyl subfamily Bovinae. Molecular Phylogenetics and Evolution 6:107–119.
- KAUFFMAN, S. A. 1983. Developmental constraints: internal factors in evolution. Pp. 195–225 in Development and evolution (B. C. Goodwin, N. Holder, and C. G. Wylie, eds.). Cambridge University Press, Cambridge, United Kingdom.

- LABARBERA, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20: 97–117.
- LUSCHEI, E. S., AND G. M. GOODWIN. 1974. Patterns of mandibular movement and jaw muscle activity during mastication in the monkey. Journal of Neurophysiology 37:954–966.
- MACDONALD, D. (ED.). 1987. The encyclopedia of mammals. Facts on File Publications, New York.
- MANCEAU, V., L. DESPRES, J. BOUVET, AND P. TABERLET. 1999. Systematics of the genus *Capra* inferred from mitochondrial DNA sequence data. Molecular Phylogenetics Evolution 13:504– 510.
- MARTIN, R. D., M. GENOUD, AND C. K. HEMELRIK. 2005. Problems of allometric scaling analysis: examples from mammalian reproductive biology. Journal of Experimental Biology 208:1731– 1747.
- MCMAHON, T. A. 1975. Using body size to understand the structural design of animals: quadrupedal locomotion. Journal of Applied Physiology 39:619–627.
- NAKAMURA, Y., AND N. KATAKURA. 1995. Generation of masticatory rhythm in the brainstem. Neuroscience Research 23:1–19.
- NIKAIDO, M., M. HARADA, Y. CAO, M. HASEGAWA, AND N. OKADA. 2000. Monophyletic origin of the order Chiroptera and its phylogenetic position among Mammalia, as inferred from the complete sequence of mitochondrial DNA of a Japanese megabat, the Ryukyu flying fox (*Pteropus dasymallus*). Journal of Molecular Evolution 51:318–328.
- NIKAIDO, M., ET AL. 2001. Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. Journal of Molecular Biology 53:508–516.
- NUNN, C. L., AND R. A. BARTON. 2000. Allometric slopes and independent contrasts: a comparative test of Kleiber's law in primate ranging patterns. American Naturalist 156:519–533.
- PLATT, T., AND W. SILVERT. 1981. Ecology, physiology, allometry and dimensionality. Journal of Theoretical Biology 93:855–860.
- PURVIS, A. 1995. A composite estimate of the primate phylogeny. Philosophical Transactions: Biological Science 348:405–421.
- RANDI, E., N. MUCCI, M. PIERPAOLI, AND E. DOUZER. 1998. New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome *b* gene. Proceedings of the Royal Society of London, B. Biological Sciences 265:793–801.
- RAPP, P. E. 1987. Why are so many biological systems periodic? Progress in Neurobiology 29:261–273.
- RISKA, B. 1991. Regression models in evolutionary allometry. American Naturalist 138:283–299.
- SARICH, V. M. 1985. Rodent molecular systematics. Pp. 423–452 in Evolutionary relationships among rodents, a multidisciplinary analysis (W. P. Luckett and J.-L. Hartenberger, eds.). Plenum, New York.
- STANLEY, H. F., M. KADWELL, AND J. C. WHEELER. 1994. Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proceedings of the Royal Society of London, B. Biological Sciences 256:1–6.
- SYMONDS, M. R. E., AND M. A. ELGAR. 2002. Phylogeny affects estimation of metabolic scaling in mammals. Evolution 56:2330– 2333.
- THEIMER, T. C., AND P. KEIM. 1998. Phylogenetic relationships of peccaries on mitochondrial cytochrome *b* DNA sequences. Journal of Mammalogy 79:566–572.
- THENIUS, E., AND H. HOFER. 1960. Stammesgeschichte der Säugetiere. Springer-Verlag, Berlin, Germany.

- THOMAS, W. K., AND S. L. MARTIN. 1993. A recent origin of marmots. Molecular Phylogenetics and Evolution 2:330–336.
- Tougard, C., T. Delefosse, C. HANNI, AND C. MONTGELARD. 2001. Phylogenetic relationships of the five extant rhinoceros species (Rhinocerotidae, Perissodactyla) based on mitochondrial cytochrome *b* and 12S rRNA genes. Molecular Phylogenetics and Evolution 19:34–44.
- TURVEY, M. T., R. C. SCHMIDT, L. D. ROSENBLUM, AND P. N. KUGLER. 1988. On the time allometry of co-ordinated rhythmic movements. Journal of Theoretical Biology 130:285–325.
- WAITS, L. P., J. SULLIVAN, S. J. O'BRIEN, AND R. H. WARD. 1999. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA. Molecular Phylogenetics and Evolution 13:82–92.
- WANG, W., AND L. HONG. 2000. Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial

DNA phylogeny. Molecular Biology and Evolution 17:1326–1333.

- WAYNE, R. K. 1993. Molecular evolution of the dog family. Trends in Genetics 9:218–224.
- WEST, G. B., J. H. BROWN, AND B. J. ENQUIST. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:122–126.
- WILSON, D. E., AND D. M. REEDER (EDS.). 2005. Mammal species of the world: a taxonomic and geographic reference. 3rd ed. Johns Hopkins University Press, Baltimore, Maryland.

Submitted 27 June 2007. Accepted 16 March 2008.

Associate Editors were Christian T. Chimimba and Edward J. Heske.