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ABSTRACT
Monitoring animal populations can be difficult. Limited resources often force monitoring programs to rely on
unadjusted or smoothed counts as an index of abundance. Smoothing counts is commonly done using a moving-
average estimator to dampen sampling variation. These indices are commonly used to inform management decisions,
although their reliability is often unknown. We outline a process to evaluate the biological plausibility of annual
changes in population counts and indices from a typical monitoring scenario and compare results with a hierarchical
Bayesian time series (HBTS) model. We evaluated spring and fall counts, fall indices, and model-based predictions for
the Rocky Mountain population (RMP) of Sandhill Cranes (Antigone canadensis) by integrating juvenile recruitment,
harvest, and survival into a stochastic stage-based population model. We used simulation to evaluate population
indices from the HBTS model and the commonly used 3-yr moving average estimator. We found counts of the RMP to
exhibit biologically unrealistic annual change, while the fall population index was largely biologically realistic. HBTS
model predictions suggested that the RMP changed little over 31 yr of monitoring, but the pattern depended on
assumptions about the observational process. The HBTS model fall population predictions were biologically plausible if
observed crane harvest mortality was compensatory up to natural mortality, as empirical evidence suggests.
Simulations indicated that the predicted mean of the HBTS model was generally a more reliable estimate of the true
population than population indices derived using a moving 3-yr average estimator. Practitioners could gain
considerable advantages from modeling population counts using a hierarchical Bayesian autoregressive approach.
Advantages would include: (1) obtaining measures of uncertainty; (2) incorporating direct knowledge of the
observational and population processes; (3) accommodating missing years of data; and (4) forecasting population size.

Keywords: hierarchical Bayesian, management decision, migratory bird, observational uncertainty, population
index, population monitoring, population recovery, time series

Evaluando y mejorando la inferencia poblacional basada en conteos: Un estudio de caso de 31 años de
monitoreo de Antigone canadensis

RESUMEN
El monitoreo de las poblaciones animales puede ser difı́cil. La limitación de recursos suele forzar a los programas de
monitoreo a confiar en conteos no ajustados o suavizados como un indicador de la abundancia. Usualmente se
obtienen conteos suavizados usando un estimador de media móvil para amortiguar la variación de muestreo. Estos
ı́ndices son usados comúnmente para respaldar decisiones de manejo, aunque usualmente se desconoce su fiabilidad.
Diseñamos un proceso para evaluar la plausibilidad biológica del cambio anual en los conteos e ı́ndices poblacionales
a partir de un tı́pico escenario de monitoreo y para comparar los resultados con un modelo jerárquico bayesiano de
series de tiempo (JBST). Evaluamos los conteos de primavera y otoño, los ı́ndices de otoño y las predicciones basadas
en el modelo en la población de las Montañas Rocosas (PMR) de Antigone canadensis, mediante la integración del
reclutamiento juvenil, la cosecha y la supervivencia en un modelo poblacional estocástico basado en etapas. Usamos
simulaciones para evaluar los ı́ndices poblacionales a partir del modelo JBST y el estimador comúnmente usado de
media móvil de tres años. Encontramos que los conteos de la PMR exhiben cambios anuales poco realistas, mientras
que el ı́ndice de la población de otoño fue mayormente reaĺıstico en términos biológicos. Las predicciones del modelo
JBST sugieren que la PMR ha cambiado poco a lo largo de los 31 años de monitoreo, pero que el patrón depende de
las suposiciones sobre el proceso de observación. Las predicciones de la población de otoño del modelo JBST fueron
biológicamente plausibles si la mortalidad observada por cosecha de A. canadensis era compensada con la mortalidad
natural, como sugiere la evidencia empı́rica. Las simulaciones indicaron que la media predicha del modelo JBST es
generalmente un estimador más confiable de la verdadera población que los ı́ndices poblacionales derivados usando
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un estimador de media móvil de tres años. Los profesionales podrı́an obtener ventajas considerables para modelar los
conteos poblacionales usando un enfoque jerárquico bayesiano auto regresivo. Las ventajas incluyen: (1) obtener
medidas de incertidumbre; (2) incorporar conocimiento directo de los procesos poblacionales y de observación; (3)
acomodar datos de años faltantes; y (4) pronosticar el tamaño de la población.

Palabras clave: ave migratoria, decisión de manejo, jerárquico bayesiano, incertidumbre observacional, ı́ndice
poblacional, monitoreo poblacional, recuperación poblacional, series de tiempo

INTRODUCTION

A central topic in applied ecology is an understanding of

population abundance to inform the conservation and

management of species (Mills 2013, Nichols 2014).

Foundational laws for the conservation of species (e.g.,

Australia: Environment Protection and Biodiversity Con-

servation Act 1999; European Union: Habitats and Birds

Directive of 1992 and 2009; United States: Endangered

Species Act 1973), as well as criteria used by international

conservation agencies (e.g., International Union for

Conservation of Nature), often reference the population

status of species, leading to the common use of abundance

and distribution as performance measures in recovery

plans and delisting rules (Mace et al. 2008, Neel et al.

2012). Monitoring programs often focus on population

status or population dynamics and the estimated effect of

management decisions (Nichols 2014).

Knowledge of population size is especially important

for evaluating decisions about anthropogenic take, either

intentional (e.g., sport harvest, control of overabundant

species) or incidental (e.g., fishery bycatch, wind turbine

strikes). However, population monitoring is fraught with

challenges (McComb et al. 2010). Gaining reliable

estimates of population size requires accounting for 2

aspects of sampling: the spatial extent of a population

(either through exhaustive coverage or through an

appropriate sampling design, e.g., probabilistic design;

Thompson 2002), and imperfect detection and/or avail-

ability (Pollock et al. 2002, Nichols and Williams 2006,

Gorresen et al. 2016, Rivera-Milán et al. 2016). However,

most surveys result in only an index of population size,

which is typically biased low due to a lack of appropriate

spatial coverage or adjustment for detection and/or

availability. In addition, many of these surveys involve

unadjusted counts that lack a means of assessing

precision.

Due to the logistical and financial challenges of

surveying most species, it is perhaps rare for long-term

monitoring programs to obtain estimates of true popula-

tion size (Pollock et al. 2002, Johnson 2008). Instead,

monitoring programs often rely on counts or some

function of those counts as an index of the population.

Typically, indices are standardized periodic counts (e.g.,

roadside bird point counts), which often cannot be

converted to an estimate of population size (e.g., because

the survey area is not representative of the full range of the

population), or are derived from surveys that attempt to

count or account for the entire population, but are

suspected to be incomplete. Potential influencing factors

include: availability bias (see Martin et al. 2015), wherein a

proportion of the target population could be unavailable

for counting (e.g., due to variable migration timing);

visibility bias (see Smith 1995), in which a subset of

individuals present during a survey are not detected by

observers; and counting bias (see Benning et al. 1997),

wherein an observer miscounts or approximates the

number of individuals in large aggregations. The first 2

sources of bias are inherently negative, whereas counting

bias can be negative or positive.

A primary consideration when using an index as a

surrogate for abundance is its relationship with true

abundance; an index will be most useful when there is a

constant and proportional (i.e. linear) relationship (John-

son 2008). If the relationship is nearly constant, the index

could be suitable to investigate population dynamics.

However, this assumption may often be inappropriate due

to availability, detectability, or countability, or their

variance, across space or time (Link and Sauer 1997,

Anderson 2001, Pollock et al. 2002). Survey protocol

standardization minimizes sampling variability, which is

always a good idea, but is unlikely to eliminate the

variation beyond the control of the researcher; thus,

sampling variation will still be of concern (Thompson

2002).

Avian studies overwhelming rely on indices to make

inferences about populations (Rosenstock et al. 2002). For

harvested migratory bird populations in the United States,

there is often an operational taxon-focused monitoring

program that directly informs annual harvest decisions

using population indices, such as for American Woodcock

(Scolopax minor; Cooper and Rau 2014), Mourning Dove

(Zenaida macroura; Seamans and Sanders 2014), and

Band-tailed Pigeon (Patagioenas fasciata; Sanders 2014).

Some monitoring programs attempt to estimate abun-

dance, but recognize that, because the spatial extent of

sampling is not truly exhaustive or because observations

are not perfect, counts will reflect an index to the

population; a few examples include monitoring of Tundra

Swans (Cygnus columbianus; Pacific Flyway Council 2001),

ducks (U.S. Fish and Wildlife Service 2014b), and Sandhill

Cranes (Antigone canadensis; Kruse et al. 2014).
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A common population index smooths sequential counts

via a moving 3-yr average (MTYA) estimator:

Index ¼ CT�2 þ CT�1 þ CT�T
3

;

where CT is the raw count (with no basis for estimating

sampling variance) in the most current year. This estimator

is often applied to monitoring migratory birds (e.g., several

species of geese: U.S. Fish and Wildlife Service 2014b;

Tundra Swans: Pacific Flyway Council 2001; Wood Storks

[Mycteria americana]: U.S. Fish and Wildlife Service

2014a; and Sandhill Cranes: Kruse et al. 2014), but is also

more generally used in wildlife monitoring when relating

the status of a population to an objective, such as with sea

otter (Enhydra lutris) recovery (U.S. Fish and Wildlife

Service 2003), Utah prairie dog (Cynomys parvidens)

recovery (Utah Division of Wildlife Resources 2015), and

furbearer harvest management (Lovallo and Hardisky

2010). Despite the frequent use of the MTYA population

index across taxa, to our knowledge there has yet to be a

critical evaluation of its utility or a comparison with

alternative model-based approaches.

Migratory populations of Sandhill Cranes are challeng-

ing to monitor and are annually harvested. The manage-

ment strategy for the Rocky Mountain population (RMP)

of Greater Sandhill Cranes (A. c. tabida) includes an

annual population survey, which has been ongoing since

1984. The survey represents an attempt to find all cranes

and count them; it includes an aerial portion over a set

collection of known crane staging areas, combined with

ground counts in other parts of the migration corridor to

account for cranes that have migrated early. Counts are

not corrected for visibility or counting biases. The survey

produces a population count, in which the MTYA

population index (referred to below as the ‘population

index’) is used to inform the allocation of allowable harvest

in each year (Subcommittee on Rocky Mountain Greater

Sandhill Cranes 2007). As with many monitoring pro-

grams, the reliability of these counts and resultant index is

unknown. Since no additional data are collected to allow

for adjustments for availability, visibility, or countability,

there is no basis to adjust for biases or to estimate

sampling variability from the data collected in a given year.

We used the 31 yr of counts of the RMP as an example to

outline a thorough process to critically evaluate such

population counts and indices. We explored the general

reliability of using the MTYA estimator for deriving a

population index and compared this estimator with a

formal statistical modeling approach that explicitly parti-

tioned the observational and population processes; we did

so empirically and via simulation.

Our specific objectives were to evaluate to what extent

annual changes in the spring migratory (1984–1996) and

fall staging area (1997–2014) RMP Sandhill Crane counts

(referred to below as ‘counts’) and fall staging area

population index were biologically realistic. We did so by

integrating the counts with available data on RMP juvenile

recruitment, harvest, and survival into stochastic stage-

based population models. We used these models in a

Bayesian framework to estimate values of annual sampling

variation due to latent observational processes involving

availability, visibility, or countability. Finally, we used a

hierarchical Bayesian time series (HBTS) modeling ap-

proach to estimate RMP population abundance under

different types of observational processes and prior

information. We considered the biological plausibility of

the predicted fall population from the HBTS model and

compared the HBTS model with the MTYA estimator

using simulations. Our goal was to attain a better

understanding of the realized (i.e. biological and sampling)

components of population counts that directly inform

important management decisions, such as harvest levels

and population recovery. We hope that our methodology

will encourage more monitoring programs to critically

evaluate their population indices.

METHODS

Rocky Mountain Population
The RMP of Greater Sandhill Cranes breeds in palustrine

and riparian wetlands throughout the central Rocky

Mountains, including in Colorado, Wyoming, Utah,

Montana, and Idaho, USA (Drewien and Bizeau 1974,

Gerber et al. 2014). During spring and fall migration,

cranes stop over in the San Luis Valley in central-southern

Colorado and winter throughout New Mexico and

Arizona, USA, and Mexico, but are primarily located in

the middle Rio Grande Valley of New Mexico. Legal

hunting of the RMP began in 1981. To help inform

managers about harvest decisions, a population survey was

started in 1984, in which an aerial spring count (via

transects) was conducted in the San Luis Valley. The count

was adjusted for counting bias (via photographic correc-

tion) and the proportion of Lesser Sandhill Cranes (A. c.

canadensis) of the Mid-Continent population, which also

stops over in the San Luis Valley (Benning et al. 1997,

Kruse et al. 2014). However, because of sampling biases

due to imperfect availability, the presence of an increasing

number of Mid-Continent cranes over the years, and

questions about the reliability of assigning cranes to

subspecies and thus population via track measurements,

the spring survey was discontinued in 1996. Its replace-

ment was a premigratory fall staging area survey, which

became fully operational in 1997 and has continued since

(Kruse et al. 2014).

The fall survey is coordinated across federal and state

agencies and includes aerial and ground counts at 81
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known staging sites throughout the breeding area states.

There is no additional information collected to allow

adjustment of the fall counts due to sampling variation.

However, it is recognized that a ‘poor’ count can occur

(Subcommittee on Rocky Mountain Greater Sandhill

Cranes 2007), for example, due to survey conditions that

impede conducting the survey; in these cases, the annual

count may not be subsequently used to determine harvest

allocation. The second cause of a ‘poor’ count is sampling

variation caused by annual changes in the availability of

cranes to be counted, detection probability, and counting

biases, such as overcounting a flock or counting the same

flock multiple times because of movement. These varia-

tions could ultimately lead to under- or over-counting the

population. The MTYA estimator of the most recent and

reliable counts (i.e. not ‘poor’ due to survey conditions) is

used to reduce this variation and derive the population

index, which is then used for allocating allowable RMP

crane harvest in the following year (Subcommittee on

Rocky Mountain Greater Sandhill Cranes 2007). The

current population objective of the RMP is to maintain a

population index between 17,000 and 21,000 (Subcom-

mittee on Rocky Mountain Greater Sandhill Cranes 2007).

Modeling Overview
We present our modeling in 4 main sections. The first

section describes a process to evaluate the biological

plausibility of the annual changes between RMP counts

and the population index. We do this by comparing

observed counts and the index with predictions of counts
or the index using a population dynamics model. We

include predictions from 2 extremes, one in which no

cranes die between years and one in which an unrealis-

tically high proportion of the population dies. These

extreme predictions can be considered boundaries of what

is plausible, but not necessarily realistic. We also include

realistic predictions using empirical survival estimates;

when observed counts correspond to realistic predictions,

we can have some confidence that the annual change

between sequential counts or the index represents real

population dynamics. The second modeling section

assumes that all demographic processes are known exactly,

allowing us to model RMP counts and estimate annual

sampling variation. Assuming that we identify an appro-

priate population model, estimates represent the observa-

tional process that gave rise to our data. The third section

outlines an entirely different population modeling frame-

work; we use a hierarchical Bayesian time series model

(HBTS) to fit the RMP count data, to simultaneously

account for both observational and population process

variation. We consider models in which the observed RMP

counts are assumed to vary symmetrically around the true

population mean and in which counts are always less than

the true population (e.g., due to counting, visibility, and

availability biases being strictly negative). We evaluate

these models by comparing them with projections from

the realistic population model of section one. The fourth

section outlines a simulation study to evaluate the

conditions (e.g., population decline or increase) under

which the HBTS model estimates or the MTYA estimator

better captures the true population mean and overall trend

of the population trajectory.

Unrealistic Annual Variation in Population Counts and
the Fall Index?
We evaluated whether the annual change in the RMP

counts and fall population index were biologically

plausible by developing stochastic stage-based population

models using the spring and fall time series of counts,

separately. Our aim was to develop models that were

constructed using available data and did not require

assumptions about age classes for which we did not have

empirical estimates (see Gerber and Kendall 2016). We

used the observed count data in year t� 1 (Ct�1) to predict

3 empirical distributions of the count in year t (‘‘low,’’

‘‘realistic,’’ and ‘‘high’’). Each model incorporated data on

annual juvenile recruitment (,1 yr old), juvenile and adult

survival, and harvest. Juvenile recruitment (i.e. the

proportion of juveniles in the population) has been

estimated since 1972 from an annual survey in the fall at

the San Luis Valley (Gerber et al. 2015); the survey covers

all areas of the San Luis Valley that cranes are known to

use, and entails substantial survey effort, with .4,000
annual observations of cranes made using a systematic

design. Harvest is estimated each year from hunter surveys

(Kruse et al. 2014). We considered different survival

parameters for each scenario: (1) unrealistically low

survival, with harvest mortality being completely additive

(low); (2) empirical survival from a 23-yr mark–resight

study and harvest that was compensatory up to natural

mortality (R. C. Drewien personal communication; realis-

tic); and (3) an upper maximum survival wherein no death

occurred (high).

We investigated the biological plausibility of annual

change in the counts by estimating the absolute difference

between the realistic expected count and the observed Ct

and whether Ct fell within the realistic empirical distribu-

tion or between the low and high distributions. When an

observed count was either less than the low empirical

distribution or greater than the high empirical distribution,

we suggest that the change in the count was unlikely to

represent true population change. If the observed count

fell between these distributions it was plausible, but not

realistic unless it also fell within the realistic empirical

distribution. Realistic changes indicate a constant propor-

tional relationship to abundance, whereas unrealistic

changes suggest temporal variability in the observational

process. We constructed models in R (R Core Team 2015)
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and simulated predicted counts from each model 50,000

times for each sequential comparison to obtain empirical

distributions (low, realistic, high).

Spring Population Model
For each sequential comparison, we observed a spring (SP),

adult (A) population count in year t� 1 (CSP,A,t�1) that we

considered had been observed perfectly. These adults

survived with some probability (/SP;F
A ) to the fall (F,

NF,A,t�1). During the fall, we observed the proportion of

juveniles in the population [Pt�1 ¼ NF,J,t�1 / (NF,J,t�1 þ
NF,A,t�1)] that we used to derive the juvenile population

(NF,J,t�1). The spring population in year t was a combina-

tion of adults and juveniles (J) in the fall (NF,A,t�1 and

NF,J,t�1, respectively) that survived to spring with some

probability (/F;SP
A and /F;SP

J , respectively, and a portion of

which was removed by harvest [f(Ht�1)], where f() is a

function to indicate additive or compensatory mortality,

depending on the scenario). We considered that juveniles

became adults after the fall because they are no longer

distinguishable in the following year. Lastly, we assumed

no counting error to then predict the spring population

count in year t (CSP,A,t). The only parameters that varied

stochastically were survival probabilities, which we defined

as beta distributed and time invariant (/SP;F
A , /F ;SP

A ~
Beta(a1,b1), /F ;SP

J ~ Beta(a2,b2)). The complete spring

stochastic population model was structured as follows

(Supplemental Material Figure S1):

NSP;A;t�1 ¼ CSP;A;t�1;

NF;At�1~BinomialðNSP;A;t�;1;w
SP;F
A Þ;

NF ;J ;t�1~Poisson
NF;A;t�1
1� Pt�1

� NF;A;t�1

� �
;

which satisfies the definition of Pt ;

NSP;A1;t~BinomialðNF ;J ;t�1;/
F ;SP
J Þ;

NSP;A2;t~BinomialðNF;A;t�1;/
F;SP
A Þ;

NSP;A;t ¼NSP;A1;t þ NSP;A2;t � f ðHt�1Þ;

CSP;A;t ¼NSP;A;t

For the high scenario, we assumed that all survival

parameters were exactly 1 and no harvest occurred. For the

realistic scenario, we used an annual adult survival

probability of 0.956 with a process variance of 0.025 and

a 6-mo juvenile survival probability of 0.848 with a process

variance of 0.073. We rescaled the adult survival to two 6-

mo periods and estimated the new variance using the delta

method. We then used moment matching to obtain

appropriate parameters for the beta distribution (e.g.,

/F ;SP
A ~ Beta(a2,b2))). Harvest was considered to be

compensatory up to natural mortality, for which there is

empirical evidence for most age classes (R. C. Drewien

personal communication). For the low scenario, we used a

mean adult and juvenile survival for spring and fall of 0.90

and 0.70, respectively, and harvest was additive to natural

mortality; the process variances from the realistic scenario

were used.

Fall Population Model
The fall count included both the adults and juveniles

(CF,AJ,t�1) on the premigratory staging grounds. To make an

age-structured model by incorporating juvenile recruitment,

we had to assume that the recruitment (juvenile) and fall

count surveys occurred simultaneously. In actuality, there

was, on average, a 1-mo difference in the timing of these

surveys. This may have caused bias if the differential survival

between age classes from the fall staging grounds to the San

Luis Valley was largely different than for other months. We

again assumed that the population was counted perfectly.

Here, we derived the adult and juvenile population in the

fall using Pt�1. These fall adult and juvenile populations

survived to the next year with some probability (/F;F
A and

/F ;F
J , respectively), with some being harvested. To add the

new juveniles of year t, we used the recruitment survey

again (Pt) and, lastly, assumed perfect detection to predict

the observed count in the year t (CF,AJ,t). The complete fall

stochastic population model was structured as follows

(Supplemental Material Figure S2):

NF ;AJ;t�1 ¼ CF;AJ ;t�1;

NF ;J ;t�1~PoissonðNF ;AJ;t�1 3Pt�1Þ;

NF;A;t�1 ¼ NF ;AJ ;t�1 � NF;J ;t�1;

NF;A1;t~BinomialðNF;J ;t�1;/
F ;F
J Þ;

NF ;A2;t~BinomialðNF ;A;t�1;/
F ;F
A Þ;

NF ;A;t ¼ NF ;A1;t þ NF ;A2;t � f ðHt�1Þ;

NF;J ;t~PoissonðNF ;A;t 3PtÞ;

NF ;AJ;t ¼ NF ;A;t þ NF;J ;t ;

CF ;AJ;t ¼ NF ;AJ ;t :
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Because we added juveniles into the predicted fall count

based on NF,A,t, rather than NF,AJ,t, this will have slightly

underestimated the population of juveniles in the fall. We

could have used CF,AJ,t as a substitute for NF,AJ,t, but this

could have increased bias with uncertain direction. To

investigate the biological reliability of annual changes in

the fall population index (i.e. MTYA), we substituted

counts with the fall population index.

Deriving Annual Observational Variation
To estimate the sampling variation in annual counts, we

used the spring- and fall-based population models,

assuming the same survival as the realistic scenario and

uncertainty in the observation process (ht) such that

population size did not equal the counts. For the spring

model, NSP,A,t–1 ~ Poisson
CSP;A;t�1

ht�1

� �
and CSP,A,t ~ Pois-

son(NSP,A,t 3 ht), while for the fall model, NF,AJ,t–1 ~
Poisson

CF ;AJ ;t�1
ht�1

� �
and CF,AJ,t ~ Poisson(NF,AJ,t 3 ht). The

only unknown parameters related to the annual observa-

tion process, for which we used relatively informative prior

distributions of ht ~ Unifom(0.5, 1.5). The joint posterior

distribution of the population model was defined as

(square brackets indicate a probability distribution):

hj C;P;H ; a1; b1; a2; b2½ �� C;P;H ; a1; b1; a2; b2j h½ � h½ �:

However, the model was unidentifiable without more

information as to the certainty of the data or stronger prior

information. To remedy this, we fully defined the

observation process for the first count of each time series,

assuming a distribution with a standard deviation of 0.1

and a mean of either 0.8, 1.0, or 1.2. We fit the model using

Markov chain Monte Carlo (MCMC) by sampling from

full-conditional distributions using R (R Core Team 2015);

100,000 MCMC samples were used with a burn-in of

10,000 samples. Posterior convergence was assessed

visually.

Hierarchical Bayesian Time Series Population Model
Fitting a population model without direct empirical

information on components of the observational process

(i.e. availability, visibility, and counting bias) is challenging.

We considered a hierarchical population model that

included first-order autoregressive Gompertz population

growth, which separated population process and observa-

tional variability into distinct components, but pooled

components of the observational process. Hierarchical

models that partition processes explicitly into separate

state-spaces are growing in their development and

application in applied ecology (e.g., Dennis et al. 2006,

Newman et al. 2006). Our model parameters included an

intrinsic population growth rate (b0), a first-order autor-

egressive term that can be interpreted as a measure of

density dependence on population growth (b1), process

variance (r2
N ), and observational uncertainty (r2

C). This

type of observational process allows for symmetrical

under- and over-counting around the true population

(‘‘symmetrical’’). Negative density dependence would be

indicated if b1 , �1; thus, the previous year’s abundance

would negatively affect current abundance. We fit this

model to spring and fall counts, separately. Parameters

defined using subscripted periods (e.g., b.) indicate the

same distributional structure for all such parameters:

Observation Process : logðCtÞ~NormalðNt;r
2
CÞ;

Population Process :Nt ¼ b0 þ ð1þ b1Þ3Nt�1 þ et ;

Process Uncertainty : et~Normalð0;r2
N Þ;

Prior Information : b�~Normalð0; 10; 000Þ;

Prior Information : logðr2
� Þ~Normalð0; 10Þ:

We also considered a similar model by including

relatively strong prior information on the observational

and population process variances (fitting spring counts: rC

~ Uniform(0.0, 0.4), rN ~ Uniform(0.00, 0.05); fitting fall

counts: rC ~ Uniform(0.0, 0.2), rN ~ Uniform(0.00, 0.05)).

Prior distributions for the population process were fairly

small, to indicate limited variability in crane dynamics, and

prior observational processes were fairly large, to suggest

the likelihood of high variation (Supplemental Material

Figure S3); the uniform distribution was preferred for

informative priors because we could place constant

probability support over a range of likely values.

Given that availability and visibility biases are negative,

and counting bias tends to be negative, it is also reasonable

to assume that counts occurred only at or below the true

population. We considered this type of model by defining

the observational process such that counts were below the

lower bound of the true population process (‘‘under’’; via a

truncated normal distribution).We fit this model to the fall

counts with relatively uninformative prior distributions (as

shown above), as well as using informative prior distribu-

tions on the variance parameters (rC ~ Uniform(0.0, 0.2)

and rN ~ Uniform(0.00, 0.05)).

We evaluated the predicted population from the HBTS

model using the fall population model. We initialized the

fall population model using the posterior distribution of

the predicted counts from the first year and projected the

model with the survival parameters from the realistic

scenario. We considered harvest within the fall population

model to be either completely additive to natural mortality

or compensatory up to natural mortality.
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We fit all models using the R package rjags (Plummer

2013), which interfaces with software JAGS (Just Another

Gibbs Sampler; http://mcmc-jags.sourceforge.net/), in

which MCMC is used to simulate samples from the full

conditional distributions of unknown parameters of the

statistical model. We initialized each model and obtained

1,000,000 MCMC samples, discarding the first 100,000 and

thinning to every 10th iteration. Each model was checked

as to its adequacy for fitting the data using a posterior

predictive check by calculating a Bayesian P-value (Gelman

et al. 2004); values that are not extremely low (near 0) or

large (near 1) suggest that the model is able to give rise to

new observations that resemble the original data. Residual

temporal dependence was also checked by examining

partial and full autocorrelations of model residuals (Box et

al. 1994).

Evaluating the HBTS model vs. the MTYA estimator
We investigated the reliability of estimating population size

using the HBTS model compared with the MTYA

estimator. We simulated a discrete-time exponential

growth model that incorporated the estimated fall

population process variance (via posterior distribution)

and either considered the observational process to be

symmetrical, thus using the estimated fall observational

process variance (via posterior distribution) or under-

counted, where we assumed a random uniform process

between a low undercount of 0.70 and a high undercount

of 0.95. We initialized each population at 19,000 and

projected the population for 20 yr (similar time span as the

current fall counts) for 1,000 projections under an average

annual population change of 5.0% decline, 2.5% decline, no

change (stable population), 2.5% growth, 5.0% growth, and

5.0% growth for 10 yr followed by 10 yr of 5.0% decline.

For each simulation, we calculated the MTYA and fit the

HBTS model where the observational process was

correctly and incorrectly assumed (observations were

undercounts and we used the model with a symmetrical

observational process, or observations were symmetrical

and we used the model with an undercounted observa-

tional process). We compared the mean population

predictions of the HBTS model with the MTYA estimator

by deriving empirical distributions of annual bias and

correlation.

RESULTS

Rocky Mountain Population Surveys
The spring population count (SD(C) ¼ 3,200) was more

variable than the fall population count (SD(C) ¼ 1,939;

Figure 1). The fall population counts and index generally

stayed within the population objective of 17,000–21,000. Fall

counts in 2007, 2008, and 2010 exceeded the upper

population objective, which pushed the index out of the

objective in 2008–2009, primarily due to the largest fall

count of 22,822 in 2007. The largest annual difference

between sequential years in the full time series (spring and

fall counts) occurred between 1985 and 1986, with a drop in

the counts of 7,227. The second-largest difference in the full

time series and the largest in the fall count occurred between

2012 and 2013, with an increase of 4,077. For the spring
survey, 92% of counts indicated at least 610% change, while

for the fall counts only 44% demonstrated that much change.

The fall population index had no changes greater than

610%, with 77% of changes less than 65%.

Annual Spring and Fall Observational Variation
The annual changes in the spring counts were extreme in

most years (Figure 1, Table 1, Supplemental Material

Figure S4). The absolute difference between the expected

count from the realistic scenario and the observed count

ranged from 839 to 8,014. Out of 12 comparisons, no

observed counts were within the bounds of the realistic

expected distribution and only 3 were between the most

extreme low and high quantiles of the low and high

empirical distributions, respectively.

We found annual changes in the fall counts to be less

extreme than those in the spring counts, but largely still

not biologically realistic (Table 2, Supplemental Material

Figure S5). The absolute difference between the expected

count from the realistic expected distribution and the

observed count ranged from 98 to 3,807. Out of 14

comparisons, 3 were within the bounds of the realistic

expected distribution, and 7 were between the most

extreme low and high quantiles of the low and high

empirical distributions, respectively. We did find the

annual changes in the fall population index to be generally

biologically reasonable (Table 3, Supplemental Material

Figure S6). The absolute difference between the expected

population index from the realistic scenario and the

FIGURE 1. Annual population counts and population index (3-yr
average) for the Rocky Mountain population of Sandhill Cranes.
The gray area indicates the range of the population objective for
the 3-yr average. The 3-yr average is calculated separately for
the spring and fall.

The Condor: Ornithological Applications 119:191–206, Q 2017 American Ornithological Society

B. D. Gerber and W. L. Kendall Monitoring animal populations 197

Downloaded From: https://bioone.org/journals/The-Condor on 07 May 2024
Terms of Use: https://bioone.org/terms-of-use



observed index ranged from 20 to 1,655. Out of 16

comparisons, 12 fell within the bounds of the realistic

expected distribution and all were between the most

extreme low and high quantiles of the low and high

empirical distributions, respectively.

Estimates of Annual Observation Variation

The assumption of the bias associated with the initial

count (i.e. underdetecting, no mean detection error, and

overdetecting) had a significant influence on the posterior

distribution of the subsequent detection for both the

spring and fall models. If we assumed that the 1984 spring

count was unbiased, the subsequent posterior counting

variation mostly indicated that the counts overestimated

population size in most years (Figure 2). Also, if we

assumed that the 1997 fall count was unbiased, the

subsequent posterior counting variation included mostly

underestimates of population size, with 3 large under-

detections occurring in 2001, 2011, and 2012 (Figure 2).

Hierarchical Bayesian Time Series Population Model

We found no evidence that the HBTS models did not fit

our data (0.4 , all Bayesian P-values , 0.8) or indicated

additional temporal dependency (Supplemental Material

Figure S7). When we considered the symmetrical obser-

vation process with relatively uninformative priors, we

found no evidence of mean population change over the

duration of the spring or fall surveys, although there was

considerable uncertainty (Figure 3). We also found no

evidence of negative density dependence (Spring: b1 mode

¼�1.16, 95% highest point density interval (HPDI)¼�1.96
to �0.11; Fall: b1 mode ¼ �0.73, 95% HPDI ¼ �1.56 to

�0.10). The observational variance was greater in the

spring counts than in the fall counts, with 80% of the

probability density of the spring observational process

variance greater than that of the fall observational process

variance (Spring: mode¼0.16, 95% HPDI¼0.00–0.25; Fall:

mode ¼ 0.09, 95% HPDI ¼ 0.00–0.12). We did not find a

difference in the process variance, with 57% of the

probability density of the spring process variance greater

than that of the fall process variance (Spring: mode ¼
0.001, 95% HPDI ¼ 0.000–0.240; Fall: mode ¼ 0.001, 95%

HPDI ¼ 0.000–0.140). There was minor evidence for the

spring observational variance being greater than the

process variance (66% of the probability density of the

observational variance was greater than that of the process

TABLE 1. Evaluation of the biological plausibility of the spring counts of the Sandhill Crane Rocky Mountain population. We
considered different survival parameters for 3 scenarios to calculate expected counts: (1) unrealistically low survival, with harvest
mortality being completely additive (low); (2) empirical survival from a 23-yr mark–resight study and harvest that was compensatory
up to natural mortality (realistic); and (3) an upper maximum survival wherein no death occurred (high). We investigated the
biological plausibility of annual change in the counts by estimating the absolute difference between the realistic expected count
and the observed count and whether the observed count fell within the realistic empirical distribution or between the low and high
distributions. No expected counts were generated for the first year of the survey because there was no prior data available with
which to make predictions. Survey conditions were assessed as Poor or Good depending upon whether surveys were impeded by
logistical constraints, such as those caused by poor weather.

Year Pt
a

Spring
count

Low expected
count

Realistic expected
count

High expected
count Diff b

Survey
condition Cov1 c Cov2 d

1984 0.08 14,112 Poor
1985 0.09 20,382 12,215 14,531 15,356 5,851 Good 0 0
1986 0.06 13,155 17,781 21,168 22,398 8,014 Poor 0 0
1987 0.05 14,660 11,167 13,252 13,965 1,408 Poor 0 0
1988 0.03 16,403 12,401 14,713 15,497 1,690 Poor 0 0
1989 0.04 17,004 13,649 16,165 16,980 839 Good 0 1
1990 0.06 21,496 14,227 16,861 17,731 4,635 Good 0 0
1991 0.05 16,220 18,354 21,795 22,990 5,575 Good 0 0
1992 0.05 20,008 13,709 16,262 17,128 3,746 Ground e 0 0
1993 0.06 17,738 16,898 20,043 21,106 2,305 Poor 0 1
1994 0.04 15,266 15,096 17,918 18,890 2,652 Fair 0 1
1995 0.06 20,229 12,756 15,110 15,885 5,119 Good 0 0
1996 0.09 23,747 17,259 20,496 21,612 3,251 Good 0 0

a Recruitment survey estimate of the proportion of juvenile cranes during stopover at the San Luis Valley in southern Colorado, USA.
b The absolute difference between the realistic expected count and the observed spring count.
c Indicates whether the observed count is within (1) or not within (0) the 95% quantiles of the realistic prediction, which uses

empirical survival probabilities from a 23-yr mark–resight study.
d Indicates whether the observed count is within (1) or not within (0) the lower 95% quantile of the low prediction and the upper

95% quantile of the high prediction.
e In 1992, aerial counts could not be done and thus only ground counts were used; there is no measure of survey condition for this

year.
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variance), and no evidence that this was true for the fall

(49% of the probability density of the observational

variance was greater than that of the process variance).

Spring and fall population indices were inconsistent

with the HBTS predicted population mean, with the

indices being much more variable (Figure 3). There was a

high probability that the RMP had stayed within the

population objective since the start of the fall population

survey (assuming a symmetrical observation process), with

the probability density of the annual fall population

prediction between 17,000 and 21,000 ranging from 87%

to 100%. There was less certainty for the population over

the duration of the spring survey, with probability densities

between 17,000 and 21,000 ranging from 52% to 78%.

Fitting the population model with informed prior knowl-

edge of the variance parameters produced moderate

dampening of the predicted population mean and

associated uncertainty (Supplemental Material Figure S8).

When we assumed that the population could only be

underdetected (the ‘‘under’’ scenario), we found that the

population mean exceeded the RMP objective to a small

degree, but with a large amount of uncertainty that

exceeded the population objective (Figure 4).

The predicted population from the HBTS model using

the fall counts was biologically reasonable using the fall

population model, but only when harvest mortality was

compensatory up to natural mortality (Figure 5). Results

were more consistent with the fall population predictions

when observations were considered to be symmetrical

around the population. Harvest that was completely

additive to mortality caused a declining population, which

was not the case for the predicted population using the fall

counts.

Evaluating the HBTS Model vs. the MTYA Estimator
In our simulation comparison, using the symmetrical

observation process we found that the range of expected

bias for the predicted mean population across scenarios

was �37 to 471 from the HBTS model and �2,140 to 599

for the MTYA estimator (Supplemental Material Figure

S9); the HBTS predicted mean was less biased on average

and had a higher expected correlation with the true

TABLE 2. Evaluation of the biological plausibility of the premigratory fall count of the Sandhill Crane Rocky Mountain population.
See Table 1 for explanations of low, realistic, and high expected counts.

Year Pt
a Fall count

Low expected
count

Realistic expected
count

High expected
count Diff b Cov1 c Cov2 d

1997 e 0.10 18,036
1998 0.11 18,102 15,231 18,270 19,551 168 1 1
1999 0.08 19,501 14,952 17,982 19,315 1,519 0 0
2000 0.07 19,990 16,162 19,338 20,632 652 1 1
2001 0.06 16,559 16,583 19,786 21,029 3,227 0 1
2002 0.05 18,803 14,041 16,722 17,735 2,081 0 0
2003 0.07 19,523 16,319 19,425 20,570 98 0 0
2004 0.09 18,510 17,031 20,336 21,632 1,826 0 1
2005 0.11 20,865 15,870 19,017 20,343 1,848 0 0
2006 e 0.10 17,523 21,056 22,597
2007 e 0.08 22,822
2008 0.09 21,156 19,933 23,854 25,446 2,698 0 1
2009 0.12 20,321 17,897 21,449 22,923 1,128 1 0
2010 0.08 21,064 16,656 20,038 21,540 1,026 0 1
2011 0.06 17,494 17,803 21,301 22,728 3,807 0 1
2012 0.08 15,417 14,744 17,573 18,645 2,156 0 0
2013 0.07 19,668 13,349 15,959 17,006 3,709 0 0
2014 e 0.10 20,360

a Recruitment survey estimate of the proportion of juvenile cranes during stopover at the San Luis Valley in southern Colorado, USA.
b The absolute difference between the realistic expected count and observed fall count.
c Indicates whether the observed count is within (1) or not within (0) the 95% quantiles of the realistic prediction, which uses

empirical survival probabilities from a 23-yr mark–resight study.
d Indicates whether the observed count is within (1) or not within (0) the lower 95% quantile of the low prediction and the upper

95% quantile of the high prediction.
e No expected counts were generated for the first year of the survey because there was no prior data available with which to make

predictions. Due to the lack of a fall count in 2006, there are no comparisons with predicted values in this year and no predictions
for 2007; additionally, there are no predictions for 2014 because recruitment data (Pt) were unavailable during the time of analysis
for 2015 and were needed for the model predictions. Surveys were done in 1995 and 1996, but were considered to be experimental
and thus are not included here.
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population for all scenarios of population growth, decline,

and mixed combinations. The expected bias of the MTYA

was positive when the true population was increasing and

negative when the population was decreasing. When the

true population was stable, there was a small expected bias

for the HBTS model and the MTYA estimator, but the

variation was slightly less extreme for the HBTS model.

When we assumed that counts were underdetected, the

expected bias from the HBTS model was considerably less

than that from the MTYA estimator for all scenarios

(range ¼�554 to 816 and �6,164 to �1,050, respectively),
while the correlation was similar between the 2 methods

(Supplemental Material Figure S10). When the counts

were only underdetecting the population (the ‘‘under’’

observational process), but the observational process of the

HBTS model was symmetrical, we found that both the

HBTS model and the MTYA estimator were strongly

biased low (range¼�4,557 to 1,788 and�5,494 to�1,036,
respectively), with the HBTS model having a higher

correlation with the true population (Supplemental

Material Figure S11). The expected bias was slightly lower

for the MTYA estimator when the population was

decreasing and slightly higher when the population was

increasing. When the counts were symmetrical but the

observational process of the HBTS model underdetected

the population, we found the MTYA estimator to have less

expected bias (range ¼ 1,889 to 3,199 and �1,242 to 717,

respectively) while the correlation was mostly similar but

varied by population change (Supplemental Material

Figure S12).

DISCUSSION

Monitoring animal populations is challenging for a

number of reasons. Spatial and temporal variability in

animal movement, coupled with complex life histories,

produce logistical challenges that are not easily overcome

with limited budgets; these issues often impede the

adoption of appropriate statistical designs for making

inferences about true population size. Even with consid-

erable effort devoted to monitoring a population, including

attempts to adjust for availability, visibility, or countability,

at least one of these sources of variability will likely remain

latent and thus results will still be an index of the

TABLE 3. Evaluation of the biological plausibility of the premigratory fall 3-yr moving average population index of the Rocky
Mountain population of Sandhill Cranes. See Table 1 for explanations of low, realistic, and high expected counts used to generate
the corresponding indices.

Year Pt
a Fall index

Low expected
index

Realistic expected
index

High expected
index Diff b Cov1 c Cov2 d

1997 e 0.10 20,671
1998 0.11 19,962 16,971 20,498 22,408 536 1 1
1999 0.08 18,546 15,910 19,556 21,299 1,010 1 1
2000 0.07 19,198 14,666 18,079 19,622 1,119 0 1
2001 0.06 18,683 15,069 18,728 20,196 45 1 1
2002 0.05 18,451 14,873 18,029 20,010 422 1 1
2003 0.07 18,295 15,312 18,505 20,186 210 1 1
2004 0.09 18,945 15,374 18,611 20,271 334 1 1
2005 0.11 19,633 15,582 19,107 20,821 526 1 1
2006 0.10 19,633 15,725 19,106 21,262 527 1 1
2007 0.08 20,732 15,683 19,077 21,419 1,655 0 1
2008 0.09 21,614 17,197 21,383 23,117 231 1 1
2009 0.12 21,433 17,277 21,324 23,419 109 1 1
2010 0.08 20,847 16,089 19,690 22,719 1,157 0 1
2011 0.06 19,626 16,177 19,646 22,494 20 1 1
2012 0.08 17,992 15,201 19,486 20,917 1,493 0 1
2013 0.07 17,757 14,326 17,557 19,847 200 1 1
2014 e 0.10 18,482

a Recruitment survey estimate of the proportion of juvenile cranes during stopover at the San Luis Valley in southern Colorado, USA.
b The absolute difference between the realistic expected fall index and the fall population index.
c Indicates whether the observed index is within (1) or not within (0) the 95% quantiles of the realistic prediction, which uses

empirical survival probabilities from a 23-yr mark–resight study.
d Indicates whether the observed index is within (1) or not within (0) the lower 95% quantile of the low prediction and the upper

95% quantile of the high prediction.
e No expected counts were generated for the first year of the survey because there was no prior data available with which to make

predictions. Additionally, there are no predictions for 2014 because recruitment data (Pt) were unavailable during the time of
analysis for 2015 and were needed for the model predictions. Surveys were done in 1995 and 1996, but were considered to be
experimental and thus are not included here.
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population (e.g., availability for Mallards [Anas platyrhyn-

chos]; U.S. Fish and Wildlife Service 2014b, Johnson et al.

2015). Monitoring programs that use unadjusted counts of

animals or counts smoothed over recent years as a

population index may find a more formal time series

modeling approach much to their benefit.

In comparing the MTYA estimator with the HBTS

model, we found that the HBTS model demonstrated

overall better performance, as long as the correct

observational process was used. Understanding this

process is clearly important, as RMP predictions under

symmetrical and underdetection observational processes

were noticeably different, which has implications for the

annual probability of meeting the management objective.

Many monitoring programs are unlikely to equally

overcount as undercount in each year, making the use of

FIGURE 2. Posterior distributions of detection and/or availability parameters from the fall and spring population models for the
Rocky Mountain population of Sandhill Cranes. The first count in the time series is defined by a known probability distribution with a
mean detection and/or availability variation of 0.8, 1.0, and 1.2 for rows 1, 2, and 3, respectively (displayed as the shaded
distribution). The vertical line at 1.0 indicates no detection bias.

FIGURE 3. Predicted population mean with 95% credible interval from a hierarchical Bayesian time series model, observed fall and
spring counts, and population index (3-yr average) for the Rocky Mountain population (RMP) of Sandhill Cranes. The observational
process is assumed to be symmetrical around the true population size. Prior probability distributions are relatively diffuse. The gray
area indicates the RMP population objective.
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the MTYA estimator illogical. If monitoring were to

constantly undercount the population, we would expect

the MTYA to be lower than the current count during

increasing counts and higher than the current count

during decreasing counts. For threatened species, overes-

timation may be much worse than cautious underestima-

tion. Underestimation of a harvested species could be of

concern, depending on the relative risks of losing harvest

potential and maintaining a population objective. Practi-

tioners should seek to identify the most influential factors

affecting their observational process (see Strobel and

Butler 2014).

A significant advantage of the HBTS model is that it

allows knowledge of population dynamics and how the

counts vary to directly inform the model, and thus the

model helps to specify more realistic population predic-

tions. While we provided a limited exploration of using

prior knowledge to inform both the observational and

population processes, more rigorous deliberation about

prior specifications among crane researchers and manag-

ers could lead to significant improvements when applied,

which could, in turn, reduce the large uncertainties in

population predictions seen in our results. Another benefit

of the HBTS model is that it provides measures of

uncertainty. In contrast, there is often no measure of

precision associated with the MTYA when applied (U.S.

Fish and Wildlife Service 2003, Utah Division of Wildlife

Resources 2015), thus ignoring an important source of

uncertainty when making management decisions. Recog-

nizing the many sources of uncertainty in ecological

modeling and decision-making is paramount for accurately

conveying the state of knowledge of a system and

providing robust predictions useful for making manage-

ment decisions (Regan et al. 2002). Uncertainty can be

directly tied to management decision-making through the

definition of a management objective; for example,

through recasting the population objective for a species

recovery plan as meeting a lower confidence bound of a

population estimate. This type of objective would faithfully

apply the cautionary principle, by not changing manage-

ment practices until there was a high degree of certainty

that the population had recovered to the desired level.

Additional strengths of the HBTS model are that it

makes use of information about the entire time series to

make inference about parameters, it can easily handle

missing years of data, and it can be used to forecast the

population. Being able to forecast the population is
especially useful, depending on the timing of data

availability relative to decision making (e.g., U.S. Fish and

Wildlife Service 2013.). We should recognize, however, that

time-series modeling approaches (e.g., MTYA, HBTS) are

simplistic, nonmechanistic approaches that do not contain

real population parameters (e.g., age-specific survival and

reproduction). As such, they are less desirable than

monitoring vital rate dynamics, but are usually much

more financially and logistically feasible and can still

produce biologically reasonable population predictions, as

we have demonstrated.

There are many alternative approaches to estimating

population trends (Humbert et al. 2009, Hosack et al. 2012).

The usefulness of each will to some degree depend on what

is known about sampling variability and how this is

translated into modeling the observational process. One

approach that has recently shown promise is using the

flexible normal inverse Gaussian distribution to describe

observations, which, combined with prior knowledge, could

help to specify a useful population model (Hosack et al.

2012); preliminary investigations fitting the RMP crane

counts did not produce largely different population

predictions from those of the HBTS model (data not

shown). Another approach is to exploit spatial replication of

some surveys within years, such that detection probability

can be estimated via an N-mixture model that is then linked

to a population model (e.g., Hostetler and Chandler 2015);

preliminary investigations fitting the RMP crane counts

using this approach indicated high sensitivity to specifica-

tion of priors and necessitated unrealistic assumptions

FIGURE 4. Predicted population mean with 95% credible
interval from a hierarchical Bayesian time series model, observed
fall counts, and population index (3-yr average) for the Rocky
Mountain population (RMP) of Sandhill Cranes. The observa-
tional process is assumed to only be able to under-detect the
population; (A) uses relatively uninformative prior information,
while (B) uses informative uniform priors, rC ~ Uniform(0.0, 0.2)
and rN ~ Uniform(0.00, 0.05). The gray area indicates the
population objective.
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about the detection process across space and time in order

to produce realistic predictions (data not shown).

When monitoring is directly linked to an explicit

objective, such as in a structured decision or adaptive

resource management framework, whether an index is an

appropriate measure will depend on the objective(s). Here,

we have implicitly taken the view that an accurate and

precise estimate of population size is best when monitoring

a population. For investigating population dynamics, this

will almost universally be true. But for decision-making, one

does not necessarily require perfect information in order to

achieve a good decision. Simply, the decision needs to be

robust to uncertainties, one of which may be the state of the

population. A test could be to question whether a decision

made using an index would be the same, similar, or

completely different if the population state were known

with certainty (Kendall and Moore 2012).

Sandhill Crane Populations
The objective for the RMP is to maintain a MTYA fall

premigratory staging area index between 17,000 and

21,000 (Subcommittee on Rocky Mountain Greater Sand-

hill Cranes 2007). This objective is intended to allow

recreational opportunities and population growth while

minimizing major agricultural crop depredation; the

balance between these factors is thought to be achieved

when the population is within 10% of 19,000 cranes. As

such, the implicit population objective is to maintain

19,000 cranes 6 10%. However, because of monitoring

uncertainties, the population is understood to be imper-

fectly observed and the fall counts are thought to be

‘‘minimum’’ estimates of population size (Subcommittee on

Rocky Mountain Greater Sandhill Cranes 2007). The

reason for this is not explicit in the management plan

and, while our results demonstrate biologically unfeasible

changes in spring and fall counts, the main sources of

variability are unknown.

There are many reasons why the RMP counts might not

reflect realistic population change. First, the counts rely on

surveys of traditional staging areas, the use of which may

vary annually due to migration phenology from breeding

area to staging area and staging area to migration stopover

FIGURE 5. Predicted population mean (solid black line) with 95% credible interval (gray area) from a Bayesian hierarchical time series
model, and projected fall population model initialized with population predictions from the time series model (mean as solid red line
and 95% quantiles as dashed red lines) for the Rocky Mountain population of Sandhill Cranes. Scenarios included observational
processes that were either symmetrical around the true population (under- and over-counting) or only under-counted, and in which
harvest was either compensatory up to natural mortality or completely additive.
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in the San Luis Valley. Also, distributional shifts in staging

areas are likely to occur because of shifting agricultural

practices, increasing development pressure near staging

areas, and timing of hunting seasons (Drewien et al. 1996).

The use of coordinated ground counts along the flyway

attempts to mitigate the potential mismatch in timing of

the staging area counts and migration phenology, but birds

that don’t use the nontraditional staging grounds are still

likely to be missed. Fall counts may always be an

underestimate of population size if some proportion of

the population does not use the fall staging areas and thus

is never available to be counted. Moreover, if this counting

availability changes annually due to environmental condi-

tions, it might cause significant variation that could

obscure small to moderate changes in population dynam-

ics; it could also reduce the reliability of the trend of the

population index. Lastly, counting large flocks accurately

can be difficult, and many small flocks can be easily

obscured by topography or vegetation. Little empirical

evidence is currently available on the movements of RMP
cranes leaving the breeding and staging areas; this

knowledge could improve our understanding of the

above-mentioned sources of sampling variation. One study

has been undertaken that followed RMP cranes fitted with

radio-transmitters, and this research did identify variation

among individuals and years in the timing of movements

from the breeding to the staging areas (Drewien et al.

1999). A telemetry study that is currently underway

(Collins et al. 2016) could help our understanding of

movement patterns in association with the fall survey,

similar to what has been done for the Mid-Continent

Population of Sandhill Cranes (Pearse et al. 2015).

We found that the spring and fall counts varied beyond

what was biologically realistic, such that their use in

exploring spatial or temporal dynamics should not be

considered without some form of adjustment for annual

sampling variation. Interestingly, we found that annual

variation in the fall population index was largely biolog-

ically realistic, as well as predictions of the HBTS model

when harvest was compensatory, suggesting that simple

time series approaches may be useful for characterizing

population dynamics. As expected, we found that the

variance of the spring observational process exceeded that

of the fall, suggesting that transitioning from the spring to

the fall survey did produce some improvement in

population estimates. Despite uncertainties about the

relationship between the fall population index and true

abundance, there is good reason to believe that the current

RMP objective is being met.

Ultimately, the costs of estimating true abundance may

exceed the decrease in the risks of not meeting the

population objective for the RMP. Whether these costs are

worthwhile depends on the risks of not knowing true

abundance or its relationship with the population index.

Understanding the risks depends largely on the magnitude

and variability of the sources of variation in the counts and

thus what the population index actually represents, as well

as the tolerance of managers to the probability of failing to

meet the population objective in a given year. Future

research is needed to clarify the risks of not meeting

annual population objectives using the current decision

framework and possibly alternative frameworks, such as

adaptive resource management.
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