Reduction of Feeding by Schistocerca piceifrons piceifrons (Orthoptera: Acrididae), Following Infection by Metarhizium anisopliae Var. acridum

Authors: Víctor Manuel Hernández-Velázquez, Angélica Berlanga-Padilla, and Conchita Toriello

Source: Florida Entomologist, 90(4) : 786-789

Published By: Florida Entomological Society

REDUCTION OF FEEDING BY SCHISTOCERCA PICEIFRONS (ORTHOPTERA: ACRIDIDAE), FOLLOWING INFECTION BY METARHIZIUM ANISOPLIAE VAR. ACRIDUM

VICTOR MANUEL HERNÁNDEZ-VELÁZQUEZ, ANGÉLICA BERLANGA-PADILLA AND CONCHITA TORIELLO

1Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, México
2Centro Nacional de Referencia en Control Biológico (CNRCB), Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA), Tecomán, Colima, México
3Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, México

The Central American locust, Schistocerca piceifrons ssp. piceifrons (Walker), often becomes a major pest of staple and cash crops in Mexico and Central America (Barrientos-Lozano et al. 2002). In 1993, laboratory and field studies were initiated to develop a biological control strategy for S. piceifrons. The National Centre for Biological Control (Centro Nacional de Referencia de Control Biológico-CNRCB) has in its entomopathogen collection 35 isolates of Metarhizium anisopliae var. acridum (M. a. acridum) from S. piceifrons in Mexico. Our laboratory studies have shown that the isolates MaPL32 and MaPL40 are 2 of the most virulent against S. piceifrons (Barrientos-Lozano et al. 2002).

Field trials with M. a. acridum oil-formulated spores have demonstrated effective control of S. gregaria Forskal in Africa (Langewald et al. 1997), Locusta migratoria (L.) and Chortoicetes terminifera (Walker) in Australia (Hunter et al. 1999, 2001), Rammatocerus schistocercoides (Rehn) in Brazil (Magalhaes et al. 2001) and S. piceifrons in Mexico (Hernández-Velázquez et al. 2003). One of the perceived disadvantages, evident in these trials, is the length of time (13 to 14 d) that the target insect takes to die after the application. However, in practical terms, successful control of locust is reflected by a reduction in food consumption; a locust takes to die after the application. In the first phase, the fungus was cultured in a liquid medium of 2% sucrose and 2% yeast extract (Jenkins & Prior 1993). Fungal biomass was transferred to rice in a plastic bag (250 g/bag) with a cotton filter for further growth and sporulation. After 14 d the bags were opened in the CE room which allowed the fungus to dry to a moisture content of approximately 9%. Conidia were separated from the rice by sieving through a 300-µm mesh. The resulting conidia powder was then re-sieved through a 90-µm mesh to remove any remaining rice-dust particles.

Conidial suspensions were formulated in citroline (a mineral oil derived from petroleum for agricultural use in Mexico) by mixing 1 g of conidial powder in 100 mL with a magnetic stirrer. It was then adjusted to 3 × 10^7 conidia/mL with use of a Neubauer haemocytometer. Germination rates were determined by randomly examining 100 conidia per plate with a compound microscope (400×). A conidium was considered to have germinated if the germ tube was at least as long as the width of the conidium. Germination of conidia was 95-100% immediately after formulation and just before locust infection.

Each treatment consisted of 20 adult locusts, 7 d post-fledging, each receiving 2 µL of the formulation applied on the pronotum via a Hamilton SGE syringe. Control groups received 2 µL of either citroline or sterile distilled water with Tween 80 (0.1%, v/v, Difco™) without conidia. Following treatment, locusts were placed in subgroups of 4 insects in 13 × 10.5 cm plastic containers, covered with muslin. Containers were maintained at 28°C and 70 ± 5% RH. The experiment was replicated 4 times. Mortality was recorded daily for 12 d; dead insects were placed individually in Petri dishes on moist filter paper at 27°C for 4 d to allow growth.
of mycelia on the insect surface. Each day, between 1.945 to 2.557 g of fresh C. dactylon seedling leaf was given to each subgroup of 4 locusts. At the beginning of the experiment, 4 samples of fresh C. dactylon seedling were dried for 24 h at 90°C to determine the seedling dry weight percentage so food supply could be calculated. Every 24 h the uneaten seedlings were removed from each container, and dried at 90°C for 24 h until reaching a constant weight. In addition, feeding was assessed indirectly by monitoring feces production. Feces were collected every 24 h. Individual samples were dried at 90°C for 48 h until reaching a constant weight.

Cumulative mortality until d 12 of the experiment, among the treated and negative control groups was analyzed by analysis of variance (ANOVA, $\alpha = 0.05$). Multiple comparisons were used to determine significant differences between means of infected and citroline negative control locusts at $P < 0.05$ (Tukey test). All data from food consumption and feces production between infected and citroline negative control locusts were analysed by a t-test ($\alpha = 0.05$) for each day until d 7. Since there was no difference in food consumption and feces production between both negative controls (citroline and Tween 80), Tween 80 was excluded from the statistical analysis.

The cumulative percent mortality of S. piceifrons inoculated with fungal conidia reached 97.5 ± 2.5% at d 12. Significant differences ($P < 0.01$) in mortality were observed between the treated and control groups since d 6 and thereafter until d 12 of the experiment (data not shown). Mortality did not exceed 10% in either control group throughout the 12 d of the experiment.

The result of food consumption in milligrams of dry weight/insect between the treated and citroline control groups is shown in Table 1. A significant ($P < 0.05$) reduction in food consumption was observed between treated and citroline control groups from d 4 to 7, although a reduction was evident by d 3 ($P = 0.07$). During the first 24 h of the experiment, food intake was low in both groups; 67.9% lower than the second day. After 7 d, on a per insect basis food consumption was reduced by 82.24%.

Table 2 presents the result of feces production in milligrams of dry weight/insect between the treated and citroline control groups. A significant ($P < 0.05$) reduction of feces production was observed between the treated and citroline control groups at d 3. The mean feces production from the control group was 64.01 mg, and during the first 24 h of the experiment, the mean of both groups was 51.62 mg. After 7 d, on a per insect basis, feces production was reduced by 76.45%.

This study provides further evidence that infection by M. a. acridum causes a significant reduction in S. piceifrons feeding by both direct (food consumption) and indirect (feces production) evaluation. Feces production showed a significant reduction (d 3), 24 h before food consumption (d 4). During the first 24 h before insect treatment, food consumption was very low, probably due to stress induced in locusts during manipulation, as already noted by Moore et al. (1992) in S. gregaria.

The observed effect on food consumption and feces production at d 3 and 4 after infection agrees with findings by Moore et al. (1992). They noted a reduction in the desert locust feeding 24 h after application of 8×10^7 conidia/insect of M. a. acridum, and at d 3 with 8×10^7 conidia/insect. The effect on feeding, movement, and flying abilities of the locust is related to the development and colonization of the fungus, rather than toxin production (Freimoser et al. 2003). Seyoum et al. (1994)

Table 1. MEAN FOOD CONSUMPTION IN MILLIGRAMS OF DRY WEIGHT BY SCHISTOCERCA PICEIFRONS TREATED WITH 6 $\times 10^7$ CONIDIA OF M. ANISOPLIAE VAR. ACRIDUM AND CITROLINE NEGATIVE CONTROL LOCUSTS OVER A 7-D PERIOD.

<table>
<thead>
<tr>
<th>Days</th>
<th>Ni (mg dry weight)</th>
<th>Nf (mg dry weight)</th>
<th>Food/insect* (mg dry weight)</th>
<th>Ni (mg dry weight)</th>
<th>Nf (mg dry weight)</th>
<th>Food/insect* (mg dry weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>80</td>
<td>34.48 ± 3.63 a**</td>
<td>80</td>
<td>80</td>
<td>33.22 ± 3.33 a</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>78</td>
<td>74.84 ± 6.67 a</td>
<td>80</td>
<td>80</td>
<td>68.30 ± 6.41 a</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>75</td>
<td>78.91 ± 2.67 a</td>
<td>80</td>
<td>80</td>
<td>61.83 ± 7.88 a</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>74</td>
<td>82.56 ± 4.93 a</td>
<td>80</td>
<td>78</td>
<td>55.28 ± 2.99 b</td>
</tr>
<tr>
<td>5</td>
<td>74</td>
<td>73</td>
<td>75.35 ± 2.39 a</td>
<td>78</td>
<td>74</td>
<td>32.13 ± 5.89 b</td>
</tr>
<tr>
<td>6</td>
<td>73</td>
<td>72</td>
<td>78.25 ± 1.16 a</td>
<td>74</td>
<td>44</td>
<td>9.61 ± 4.73 b</td>
</tr>
<tr>
<td>7</td>
<td>72</td>
<td>72</td>
<td>64.22 ± 2.52 a</td>
<td>62</td>
<td>44</td>
<td>11.40 ± 5.67 b</td>
</tr>
</tbody>
</table>

$N_i =$ number of surviving insects that initiates the corresponding day.

$N_f =$ number of surviving insects at the end of that day (24 h).

*Means ± SE; **Mean followed by the same letter are not significantly different.

Significant differences ($\alpha = 0.05$) in food consumption were observed at d 4 ($t = 3.471; df = 6; P = 0.0033$), 5 ($t = 6.49; df = 6; P = 0.0005$), 6 ($t = 15.435; df = 6; P < 0.0001$), and 7 ($t = 9.534; df = 6; P = 0.0001$) between citroline negative control and infected locusts.
observed flight impairment in the desert locust, *S. gregaria*, after 3-4 d of *M. a. acridum* infection, and attributed it to a reduced availability of metabolizable fuel and physical damage to muscles and nerves caused by fungal colonization. In practical terms, the observed feeding reduction in our study would reflect a non-significant pest very early after *Metarhizium* infection.

This study was financed by grant G-31451-B of Consejo Nacional de Ciencia y Tecnología (CONACYT) of Mexico. We also thank Dr. Julio Bernal (Texas A&M University) for the review of the manuscript, and Mrs. Ingrid Masher for editorial assistance.

SUMMARY

This study examined the effects of Mexican strain (MaPL40) *Metarhizium anisopliae* var. *acridum* on feeding and fecal production of adult Central American locusts, *Schistocerca piceifrons* ssp. *piceifrons*. Locusts infected with 6×10^4 *M. anisopliae* conidia per insect showed 97.5% mortality in contrast to 13% in negative control locusts after 12 d of the infection. A significant ($P < 0.01$) reduction in feeding was observed, as indicated by *Cynodon dactylon* leaf consumption and feces production at 4 and 3 d, respectively. The data reflect a non-significant pest very early after *Metarhizium* infection.

REFERENCES CITED

TABLE 2. MEAN FECES PRODUCTION IN MILLIGRAMS OF DRY WEIGHT BY *SCHISTOCERCA PICEIFRONS* TREATED WITH 6 $\times 10^4$ CONIDIA OF *M. ANISOPLIAE* VAR. *ACRIDUM* AND CIRITOLINE NEGATIVE CONTROL LOCUSTS DURING 7 D.

<table>
<thead>
<tr>
<th>Days</th>
<th>Citrine negative control locusts</th>
<th>Infected locusts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni</td>
<td>Nf</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>74</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>73</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>

Ni = number of surviving insects that initiates the corresponding day.
Nf = number of surviving insects at the end of that day (24 h).

*Means ± SE; **Mean followed by the same letter are not significantly different.

Significant differences ($a = 0.05$) in feces production were observed at d 3 ($t = 2.943; df = 6; P = 0.0259$), 4 ($t = 5.991; df = 6; P = 0.0001$), 5 ($t = 8.416; df = 6; P = 0.0002$), 6 ($t = 12.903; df = 6; P < 0.0001$), and 7 ($t = 8.597; df = 6; P = 0.0001$) between ciritoline negative control and infected locusts.
