Fecundity and Mating Propensity of Toxotrypana curvicauda (Diptera: Tephritidae) on an Alternative Host, Jacaratia mexicana (Caricaceae)

Authors: Alfredo Jiménez-Pérez, and Patricia Villa-Ayala

Source: Florida Entomologist, 92(2) : 350-354

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.092.0221

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-o-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
FECUNDITY AND MATING PROPENSITY OF
TOXOTRYPANA CURVICAUDA (DIPTERA: TEPHRITIDAE) ON AN
ALTERNATIVE HOST, **JACARATIA MEXICANA** (CARICACEAE)

ALFREDO JIMÉNEZ-PÉREZ AND PATRICIA VILLA-AYALA
Laboratorio de Ecología Química, Centro de Desarrollo de Productos Bíóticos, Apartado Postal 24, Yauhtepex, Morelos, México Instituto Politécnico Nacional, México

ABSTRACT

Adult reproductive biology, including fecundity and mating propensity, may be affected by larval host for insects such as the papaya fruit fly, *Toxotrypana curvicauda* that do not require protein to produce eggs. Although the reproductive biology of papaya fruit flies that were reared on papaya fruit *Carica papaya* L. is known, little is known of flies that develop on alternate host fruit such as *Jacaratia mexicana* (Caricaceae). Therefore, uninfested *J. mexicana* fruit were collected from the field and infested by exposing them to oviposition in the laboratory by papaya fruit flies that were obtained from field-infested papaya. Puparia of females were longer than puparia of males, but there was no difference in either puparial width or weight. Females 6 d old produced 26 eggs/ovary. There was a positive linear relationship between puparial weight and number of chorionated eggs in mature females (6-8 d old), but puparial weight was not correlated with adult longevity. Females produced 2.99 eggs per mg of weight of puparium. Adult females were larger and heavier than adult males. Papaya fruit flies reared on *J. mexicana* are smaller, lighter, and have fewer eggs than reported for flies reared on *C. papaya*.

Key Words: chorionated eggs, *bonete*, *cuaguayote*, puparia weight, mating propensity

RESUMEN

La biología reproductiva, incluyendo fecundidad y propensión al apareamiento puede ser afectada por el alimento de la larva como en la Mosca de la Fruta de la Papaya (MFP), *Toxotrypana curvicauda*, que no requiere alimentarse de proteínas para producir huevos. A pesar de que se conoce la biología reproductiva de esta mosca criada en papaya, poco se sabe de ella en hospederos alternantes como *Jacaratia mexicana* (Caricaceae). Por lo tanto, frutos no infestados de *J. mexicana* fueron colectados en el campo, y fueron infestados (ovipositados) exponiéndolos en el laboratorio a MFP que se obtuvieron de frutos de papaya. Las pupas que dieron origen a machos fueron mas largas que las dieron origen a hembras, pero tuvieron similar ancho y peso. Hay una relación directa y positiva entre el peso de la pupa y el número de huevecillos corionados presentes en hembras sexualmente maduras (6-8 días de edad), sin embargo, el peso de la pupa no correlaciona con la longevidad del adulto. Hembras de 6 días de edad presentan 24 huevos por ovario, y producen 2.99 huevos por cada mg de peso de la pupa. Las moscas obtenidas de *J. mexicana* son mas pequeñas, ligeras y producen menos huevos que las obtenidas de *C. papaya*.

Translation provided by the authors.
Information about the biology of *Toxotrypana curvicauda* on alternative hosts may provide insight into the phylogenetic relationship between the fly and its host plants. Additionally, information on reproductive behavior and reproductive potential of *T. curvicauda* from alternative hosts is needed to design IPM programs for this pest species. This paper is the first report on the reproductive biology of *T. curvicauda* reared on *J. mexicana*.

MATERIALS AND METHODS

Insects

Insects were field-collected by methods described previously (Jiménez-Pérez & Villa-Ayala 2006). Larval-infested papayas were obtained from a pesticide-free plantation located on the Centro de Desarrollo de Productos Bióticos (CEPROBI) grounds at Yautepec, Morelos, Mexico. Aluja et al. (1997a) provides detailed information on native vegetation and climate of CEPROBI. Mature larvae were placed in pupation chambers (plastic cylindrical containers, 11 cm high × 8.5 cm diameter) covered with a fine mesh and containing a layer (6 cm) of sterile soil. Chambers were watered as necessary to keep soil moist. Newly emerged adults were separated by sex and placed in single-sex adult chambers (transparent acrylic box, 25 cm³) covered with a fine mesh. Sugar and water were provided *ad libitum* (Sharp & Landolt 1984).

Jacaratia mexicana Fruits

Fruits of *J. mexicana* were collected early in the morning. Infested fruits are soft at touch and present coagulated latex and exudations. Only uninfested fruits were used for laboratory infestation. They were weighted with an Ohaus electronic scale (Explorer, 0.0001 g accuracy, Nikon Switzerland). Fruit length was measured with a plastic ruler; fruit width was measured with an electronic digital caliper (Truper, 0-150 mm, 0.01 mm precision).

Laboratory Infestation Test

Virgin adults were reared from papaya and were allowed to mate when sexually mature (6 d old) (Landolt, 1984). After mating, 2 females and 2 males were introduced into adult chambers provisioned with a *J. mexicana* fruit as an oviposition substrate, and they were allowed to oviposit over a 3-d time period. Infested fruit was incubated at 50-60 R.H. and 27 ± 2°C. Mature larvae were collected after they exited from the fruit and were placed in pupation chambers. After 1 week, puparial weight, length, and width were recorded (Jiménez-Pérez & Villa-Ayala 2006). Adults were sexed and weighed on the day of emergence (0 d), and longevity was recorded. After measurements were taken, puparia and adults were maintained individually in plastic containers (9 cm x 3.5 cm diameter) covered by fine mesh secured by a rubber band. Adults were fed water and sugar *ad libitum* (Sharp & Landolt 1984). Laboratory infestation tests were conducted in Apr to May 2004, Feb to Apr 2005, and Mar to May 2006.

Female Fecundity and Mating Propensity

The number of chorionated eggs per adult female was determined by dissection with methods reported previously (Jiménez-Pérez & Villa-Ayala 2006). Briefly, maturation of the ovary was assessed, eggs were stained, and number of chorionated (mature) eggs was recorded. The relationship between puparial weight and the number of chorionated eggs was determined from dissections of 40 mature females (6-8 d old). To determine the relationship between egg load and chronological age, the number of mature eggs per ovary was determined for females that were 0, 2, 4, 6, and 8 d old. To test whether mating propensity was associated with female chronological age, females that were 0, 2, 4, 6 and 8 d old were placed with sexually mature males (6 to 13 d old) individually in plastic containers (9 cm × 3.5 cm diameter) and observed for 1 h. If mating occurred, it was recorded and mated individuals were discarded. If mating did not occur, then individuals were separated and retested every 2 d until mating was observed. Sample sizes were 26 to 38 pairs, depending upon insect availability. Mating tests were conducted between 2:00 pm to 4:00 pm, the time of peak mating activity (Aluja et al. 1997a).

Statistical Analysis

Mating propensity was analyzed by a *G* test (Sokal & Rohlf 1994) in Excel (McDonald 2008). Differences in male and female puparial weight, length, and width, as well as adult weight and longevity were determined with *t* tests (Proc TTEST, SAS Institute 1999). The relationship between number of chorionated eggs and female chronological age was analyzed by a one-way analysis of covariance (Proc GLM, ANCOVA) with puparial weight as a covariate. Significant ANCOVA was followed by a least squares means test (*P* = 0.05) for mean separation. Regression analysis (Proc Reg) was used to test the relationship between number of chorionated eggs per female and puparial weight; and between puparial weight and longevity, with separate analyses for females and males. Summary statistics are presented as mean ± standard error.
RESULTS

Laboratory Infestation Test

Jacarata mexicana fruits weighed 479 ± 29 g and were 23 ± 0.53 cm long and 7.1 ± 0.24 cm wide. A total of 745 puparia were obtained from 22 *J. mexicana* fruits (10.5 kg). Thus, there were 0.07 ± 0.008 papaya fruit fly puparia per gram of *J. mexicana*. There were no differences between female and male puparium weight, length, and adult longevity (Table 1). However, puparial and adult weights were greater for females than for males.

Female Fecundity and Mating Propensity

Chronological age of females affected mating propensity (*G* = 40.33, *df* = 4, *P* < 0.001). No newly emerged females (0 d) and few 2-d-old females mated, and mating propensity increased with increasing age (Fig. 1). Mating was observed for over 68% of the sexually mature (≥26 d old females). No choriinated eggs were present in females that were 0 or 2 d old, and these data were removed from subsequent analysis. Non-chorionated eggs were observed in females of all ages, and chronological age affected number of choriinated eggs (*F* = 81.06; *df* = 1, 56; *P* < 0.0001).

There was a linear and positive relationship between number of choriinated eggs per female and puparial weight. Females reared on *J. mexicana* produced 2.99 choriinated eggs per mg (Fig. 2). There is no relationship between puparium weight and adult longevity of either females (*F* = 0.95; *df* = 1,114; *P* > 0.05) or males (*F* = 0.73; *df* = 1.97; *P* > 0.05).

DISCUSSION

Food is considered a key determinant of fecundity in herbivorous insects. Those insects that do not acquire protein or do not feed as adults must obtain all their reserves during their larval stage. Adult female *T. curvicauda* do not require protein as adults to produce eggs (Landolt 1984). Aluja et al. (1997a) observed only 1 and 13 flies out of 1931 indicating that *C. capitata* populations will increase faster in plum than in the other two hosts.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Females</th>
<th>Males</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Puparium weight (mg)</td>
<td>47.4 ± 1.1</td>
<td>45.9 ± 1.1</td>
<td>0.96</td>
<td>>0.05</td>
</tr>
<tr>
<td>Puparium length (mm)</td>
<td>9.2 ± 0.1</td>
<td>8.9 ± 0.1</td>
<td>4.24</td>
<td><0.001</td>
</tr>
<tr>
<td>Puparium width (mm)</td>
<td>2.3 ± 0.1</td>
<td>2.4 ± 0.1</td>
<td>0.94</td>
<td>>0.05</td>
</tr>
<tr>
<td>Adult weight (mg)</td>
<td>31.3 ± 0.7</td>
<td>28.7 ± 0.9</td>
<td>2.29</td>
<td>0.02</td>
</tr>
<tr>
<td>Longevity (d)</td>
<td>18.8 ± 0.9</td>
<td>18.5 ± 0.8</td>
<td>0.19</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Table 1. Average (± Standard Error) puparium weight, length, width, and adult weight and longevity of female (*N* = 179) and male (*N* = 167) *Toxotrypana curvicauda* on *Jacaratia mexicana*. ©2009 Florida Entomological Society.
Landolt (1984) reported 71% mating for 6-d-old *T. curvicauda* females, which is similar to the percentage we found in this study. Landolt (1984) considered d 1 when females were from 6 to 30 h old, which we defined in our study as d 0. However, while Landolt (1984) reports 15, 60, and 71% mating for 4-, 5- and 6-d-old females, whereas our results show 22, 72, and 82% for 4-, 6- and 8-d-old females, suggesting that females from *J. mexicana* tend to mate earlier than females from papaya. Adult females were heavier than males; however, longevity was similar for both sexes, indicating that being heavier or larger does not confer greater longevity. A similar situation was reported for insects reared on papaya (Jiménez-Pérez & Villa-Ayala 2006).

Our results were obtained from laboratory-infested fruits and may not accurately reflect insect attributes of flies obtained from field-infested *Jacaratia mexicana*. Additional studies on reproductive biology of adults obtained from natural infestations are needed. However, this study is the first report of the biology of this species on this host. Information on reproductive potential of this species in an alternative host is relevant when planning control strategies.

ACKNOWLEDGMENTS

We thank R. Arzzufi-Barrera, F. Castrejón-Ayala and G. Trejo-Tapia for help during lab work, and 2 reviewers for useful comments and references. This study was funded by grant SIP-20060403 from Instituto Politécnico Nacional, México to A. Jiménez-Pérez. The authors are COFAA fellows.

REFERENCES CITED

Fig. 1. Number (mean ± standard error) of chorionated eggs per ovary (open bars) and mating propensity (% solid dots) of *Toxotrypana curvicauda* females. Bars with the same letter are not significantly different ($P = 0.05$). The sample size for female mating propensity is given above the solid dot for each female age.

Fig. 2. Relationship between female puparial weight (mg) and the number of chorionated eggs found in ovaries of mature *Toxotrypana curvicauda* females (6-8 d) reared on *Jacaratia mexicana*.

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 31 Oct 2019
Terms of Use: https://bioone.org/terms-of-use

O’Doherty, R., AND Link, J. E. 1993. Fruit flies in Belize, Central America In M. Aluja and P. Liedo (eds.), Fruit Flies: Biology and Management. Springer-Verlag, New York, USA.

