Jatropha gossypiifolia (Euphorbiaceae), a Source of Proteins Toxic to Phenacoccus herreni (Sternorrhyncha: Pseudococcidae)

Authors: Paul-Andre Calatayud, Diego F. Munera, Sabine Calatayud, Arnubio Valencia-Jimenez, and Anthony C. Bellotti

Source: Florida Entomologist, 94(3) : 649-654
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.094.0330
Jatropha gossypiifolia (Euphorbiaceae),
A Source of Proteins Toxic to *Phenacoccus herreni* (Sternorrhyncha: Pseudococcidae)

Paul-André Calatayud1,4*, Diego F. Munera2, Sabine Calatayud1, Arnubio Valencia-Jimenez3 and Anthony C. Bellotti2

1Institut de Recherche pour le Développement (IRD) c/o International Centre of Insect Physiology and Ecology (ICIPE), NSBB Project, PO Box 30772-00100, Nairobi, Kenya

2International Centre for Tropical Agriculture (CIAT), Cassava Entomology, CIAT AA 6713, Cali, Colombia

3School of Exact and Natural Sciences, Department of Chemistry, Universidad de Caldas, AA 275, Manizales, Colombia

4IRD, UR 072, Laboratoire Evolution, Génomes et Spéciation (LEGS), UPR 9034, Centre National de la Recherche Scientifique (CNRS), 91198 Gif-sur-Yvette cedex, France and Université Paris-Sud 11, 91405 Orsay Cedex, France

*Corresponding author; E-mail: paul-andre.calatayud@legs.cnrs-gif.fr

ABSTRACT

The cassava mealybug *Phenacoccus herreni* (Sternorrhyncha: Pseudococcidae) is a pest of cassava, *Manihot esculenta* Crantz (Euphorbiaceae), in South America. Proteins, representing direct gene products, are prime candidates in genetic engineering manipulations for host plant resistance. *Jatropha gossypiifolia* L. (Euphorbiaceae), a plant species known to contain proteins toxic to insects, exhibited insecticidal properties to *P. herreni*. The toxic compounds consisting of proteins around 101.02 kDa appeared to be mostly located in the mature leaves. Further studies are needed to identify the proteins and to ensure that they are not toxic to mammals.

Key Words: Colombia, Euphorbiaceae, cassava, Sternorrhyncha, Pseudococcidae, artificial diet, host-plant resistance, toxic proteins

RESUMEN

El piojo harinoso de la yuca, *Phenacoccus herreni* (Sternorrhyncha: Pseudococcidae) es una plaga de la cassava (yuca), *Manihot esculenta* Crantz (Euphorbiaceae), en América del Sur. Las proteínas, que representan los productos directos de genes, son los principales candidatos en la ingeniería genética para la manipulación de la resistencia en las plantas. *Jatropha gossypiifolia* L. (Euphorbiaceae), una especie de planta conocida de contener proteínas que son tóxicas para los insectos, presenta propiedades insecticidas hacia *P. herreni*. Los compuestos tóxicos consisten de proteínas alrededor de 101,02 kDa que parecen estar ubicadas principalmente en las hojas maduras. Se necesitan más estudios para identificar las proteínas y para asegurarse de que no son tóxicos para los mamíferos.

In South America, and especially in Northeast Brazil, the cassava mealybug, *Phenacoccus herreni* Cox & Williams (Sternorrhyncha: Pseudococcidae), is a pest of cassava, *Manihot esculenta* Crantz (Euphorbiaceae) (Cox & Williams 1981; Bellotti et al. 1983; Noronha 1990).

Host plant resistance is a sustainable management option. However, cassava cultivars from either Africa or Latin America have not shown promise for obtaining good levels of resistance (Bellotti et al. 1999). Wild species of *Manihot* and other closely related genera may offer a potential source of resistance genes for the control of cassava pests (Asiedu et al. 1992). The identification of resistance sources of wild relatives of cassava and other closely related genera as a source of pest resistant genes for genetic engineering in order to obtain transgenic cassavas resistant to pest insects is currently pursued by the International Centre for Tropical Agriculture (CIAT) in Cali, Colombia.

Complex multi-gene characters are not easily engineered. Proteins, representing direct gene products, are in general first considered in genetic engineering manipulations for crop improvement (Meeusen & Warren 1989; Boulter at al. 1990). To date, several genes encoding plant entomotoxic proteins have been introduced into crop genomes, and some of these plants are being tested in the field and are awaiting commercialization (Pefer-
plasm collection at CIAT and propagated by stem cutting.

The plants were grown individually in a growth chamber in 15 L plastic pots containing a 75:25 peat-sand mixture. The plants were watered 3 times weekly and received a complete nutrient solution (NPK, 15-15-15) each mo. The environmental conditions were 30/21°C (day/night), relative humidity of 70-80%, and L12:D12 photoperiod. Five-month old plants were used in the experiments.

Artificial Infestation

For each plant, the second and the third mature leaf below the apex were each infested with 100 neonates. Each treatment was replicated 6 times. The middle part of each petiole was covered with pure petroleum jelly to prevent larval migration between leaves, plants and pots. For each plant, the percentage of larvae remaining was assessed at 15 days after infestation. The percentage of larvae remaining on a plant will be referred to as survival though it was not determined how many larvae emigrated or immigrated.

Plant-Organ Collection and Extraction Method

The seeds, the second mature and the first immature leaf below the apex were collected. Mature leaves and seeds of the cassava variety ‘CMC 40’ were also used as a non-toxic control sample. Prior to extraction, seeds or leaves were collected and frozen in a portable ice chest, and extraction was initiated within 30 min after harvesting, based on the method described by Valencia-Jiménez et al. (2000). The seeds or leaves were flash frozen in liquid nitrogen and then ground. The ground plant materials were extracted at 4°C with 4 volumes of 0.1 M sodium chloride solution (1 g of crushed material in 4 mL of sodium chloride solution) for 6 h. The slurry was filtered and centrifuged at 10,000 × g at 4°C during 20 min. The supernatant was retained and centrifuged again until no suspended material was observed. Then the supernatant was dialyzed against water for 3 days at low temperature (2-4°C) with a 3.5 kDa molecular weight dialysis cellulose membrane, and freeze-dried.

The resulting powder was stored at -20°C and used for toxicity experiments. Long-term dialysis was appropriate as it is assumed that most of the metabolites (primary and secondary metabolites) were removed and only molecules with molecular weights >3.5 kDa, such as proteins, were retained.

Phago-Deterrence and Toxicity Tests

Except for sucrose, which was adjusted to 200 g/L, the control diet (herewith referred to as Ap3)
developed by Calatayud et al. (1998) as a derivative of A0 of Febvay et al. (1988) was used as standard medium. The deficiency in tyrosine, caused by its low solubility, was compensated for by adding extra phenylalanine at 17.86 μmol/mL. Based on Ap3, 10 mg of leaf or seed powder was incorporated into 1 mL of the artificial diet. KCN at the same concentration was also tested as a toxic control. For all diets the pH was adjusted to 7.5 with potassium hydroxide, and the medium was then filter-sterilized (0.22 μm Millipore units). The diet was enclosed in sterile Parafilm® sachets and stretched on the top of a standard film box (black; height, 5 cm; diam., 3.2 cm), which constituted the rearing unit.

Phago-Deterrence Test

Because non-preference is often linked to toxicity, phago-deterrence tests were first done. For each aforementioned diet, ten groups of 30-40 neonate larvae each were deposited in each rearing unit with a single Whatman N°1 paper disc, which covered the entire bottom of the box to collect honeydew, according to the method of Calatayud et al. (2002). A droplet of liquid diet was placed at the middle of the top of each rearing unit. The plane of the Parafilm® surface through which the mealybugs feed was oriented horizontally. Larvae were left overnight under dark conditions (12 h) after which the number of mealybugs feeding on the diet was counted; the honeydew droplets on the Whatman paper discs were stained using ninhydrin reagent (0.2% in N-butanol). The number of honeydew droplets was counted and their diameter (in μm) measured with a micrometer. The volumes of droplets (in nL) were estimated using a calibration curve [volume = 0.076 × diameter] according to Calatayud et al. (2002). The volume of diet ingested per mealybug estimated by the volume of honeydew excreted was calculated and expressed as nL/mealybug.

Toxicity Test

For each aforementioned diet, another eight groups of 50-60 neonate larvae each were placed in each experimental rearing units. After 4 d (the minimum time necessary to show plant extract toxicity in an artificial diet), the percentage of larvae surviving on each diet was calculated.

In addition, to assess thermolability of the compounds, the plant extracts were boiled before addition to the artificial diet; toxicity was tested at the same concentration and experimental conditions as above.

All tests were conducted at 24°C, 80% R.H. and L12:D12 photoperiod.

Evidence of Protein(s) Involved in the Toxicity

To evidence the involvement of protein(s) in plant toxicity to *P. herreni* the following procedure was used. From the plant organs that caused the highest mortality in toxicity tests using artificial diets (see results of Table 3), an extraction procedure similar to the above procedure was used, except that the supernatant obtained before dialysis was directly used. The subsequent purification steps were carried out at 4°C. Sufficient solid ammonium sulfate was added slowly to the supernatant by continuous stirring to achieve 20% saturation. The suspension was kept at 4°C for 6 h, followed by centrifugation at 10,000 g at 4°C for 30 min, and the pellet was discarded. Using the same procedure, solid ammonium sulfate was added to the supernatant to obtain, sequentially, 20% increments of ammonium sulfate fractionation. The precipitated proteins obtained at 20-40, 40-60, 60-80 and 80-100% ammonium sulfate saturation were resuspended in 50 mL of 0.1 M sodium chloride solution and dialyzed for 3 days at low temperature (2-4°C) with molecular weight cut-off (MWCO) 3.5 kDa cellulose membrane against water and freeze-dried. Each fraction was tested for toxicity to *P. herreni* over 4 successive days using a similar toxicity test procedure.

Thereafter, from the most toxic fraction, the proteins were separated using native gel electrophoresis. Ten (10) mg of protein was separated on a slab gel (16 × 14 cm, 1 mm thick) containing 4-14% polyacrylamide. Electrophoresis was run for 12 h at 4°C, 7 mA, with molecular weight standards (20.42-194.24 kDa, BioRad). The gel was then stained in 0.01% (w/v) Coomassie blue stain R250 (BioRad), 0.5% (v/v) methanol, 0.1% (v/v) acetic acid solution for 2 h.

Statistical Analysis

Statistical tests were performed with Statview software (Abacus Concepts, USA). The volume of diet ingested and percent insect survival were log transformed, respectively. Untransformed results are presented in the tables and in Fig. 1. All means were separated by Tukey’s HSD test following one-way analysis of variance (ANOVA).

RESULTS

Jatropha gossypifolia leaves yielded 5% and 0% of survival only after 24 and 48 hours, respectively.

The extracts tested in Table 1 influenced significantly the volume of diet ingested by *P. herreni* neonates within the first 12 h of feeding (ANOVA: $F_{5,34} = 18.9$, $P < 0.0001$). However, only mature leaf extracts reduced feeding of *P. herreni*, and the reduction was similar to that by KCN, which served as a
positive control for toxicity. The volume of diet ingested by \textit{P. herreni} was significantly higher with Ap3 alone as compared to the diets containing plant extracts. No significant difference was observed between extracts of young leaves, seeds of \textit{J. gossypiifolia}, and CMC40 leaf extracts.

The extracts significantly influenced the survival of \textit{P. herreni} larvae after 4 days of feeding (Table 2) (ANOVA: $F_{7,56} = 59.7$, $P < 0.0001$). Diets including either extracts of mature leaves or seeds in the Ap3 diet caused toxicity to \textit{P. herreni}, which, however, was not as high as with KCN. By contrast, survival was significantly higher with Ap3 alone and with leaves of ‘CMC 40’ as well as young leaves of \textit{J. gossypiifolia}. Boiling the extracts of mature leaves and seeds of \textit{J. gossypiifolia} increased \textit{P. herreni} survival significantly (Table 2), and survival was greater with boiled extracts of mature leaves than seeds.

Both phago-deterrence and toxicity tests showed that the active compound(s) involved in toxicity of \textit{J. gossypiifolia} was mostly associated with mature leaves. Therefore subsequent preliminary purification was done with mature leaves.

Ammonium sulfate fractionation of the extract indicated the presence of toxicity toward \textit{P. herreni}, mostly in the 80% fraction after 4 d of bioassay (Fig. 1) (ANOVA: $F_{5,54} = 40.2$, $P < 0.0001$). The toxicity of this fraction was similar to the control (0% fraction = extract without precipitation treatment). The precipitated proteins of this fraction were separated using native gel electrophoresis (Fig. 2). The electrophoresis profile showed the presence of proteins from 21.36 to 188.05 kDa. Among them, the proteins around 101.02 kDa appeared to be the most abundant.

DISCUSSION

\textit{Jatropha gossypiifolia} was shown to be highly toxic to \textit{P. herreni}. The findings indicate that the active compound(s) of \textit{J. gossypiifolia} involved in the toxicity to \textit{P. herreni} were mostly located in mature leaves. As generally observed with plant toxins (Schoonhoven et al. 1998), the toxic compound(s) were also phago-deterrent to \textit{P. herreni}. The presence of several secondary compounds in \textit{J. gossypiifolia} leaves, including flavonoids (e.g. apigenin, isovitexin, vitexin) and diterpenoids (e.g. jatrophone), and their implication in animal toxicity, were determined by Kupchan et al. (1970) and Subramanian et al. (1971). However, these compounds are generally not water soluble and are thus not identical to the compounds extracted from the leaves in our study. In addition, these molecules possess molecular weights lower than 3.5 kDa and would have been removed during the dialysis. Only molecules with molecular weight greater than 3.5 kDa could therefore be involved in the toxicity observed in the present study. Also, Euphorbiaceae plants are known to possess polyisoprenes in the form of latex with high molecular weights (Archer 1980). Such compounds are mostly soluble in organic solvents such as benzene and chloroform. Their presence in the leaf extract can also be ruled out. There-

![Fig. 1. Ammonium sulfate fractionation. The extract obtained from \textit{Jatropha gossypiifolia} mature leaves was subjected to ammonium sulfate fractionation. Data represent percent survival (mean ± SE, $n = 10$) of \textit{Phenacoccus herreni} obtained with each precipitated fraction after 4 days. Bars with different letters are significantly different at 5% level (Tukey’s HSD test following ANOVA).](https://bioone.org/journals/Florida-Entomologist/652)

TABLE 1. VOLUMES OF DIET INGESTED PER NEONATE LARVA OF \textit{PHENACOCUS HERRENI} (IN NL/MEALYBUG, MEAN* ± SE, $N = 10$) AFTER 12 HOURS ON DIFFERENT ARTIFICIAL DIETS.

<table>
<thead>
<tr>
<th>Diet</th>
<th>Volume ingested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap3 alone (control)</td>
<td>109.0 ± 12.5 b</td>
</tr>
<tr>
<td>Ap3 with ‘CMC 40’ leaves extract</td>
<td>40.5 ± 7.4 b</td>
</tr>
<tr>
<td>Ap3 with KCN (toxic control)</td>
<td>6.4 ± 1.5 a</td>
</tr>
<tr>
<td>Ap3 with \textit{J. gossypiifolia} young leaves extract</td>
<td>32.6 ± 5.6 b</td>
</tr>
<tr>
<td>Ap3 with \textit{J. gossypiifolia} mature leaves extract</td>
<td>4.7 ± 1.6 a</td>
</tr>
<tr>
<td>Ap3 with \textit{J. gossypiifolia} seeds extract</td>
<td>21.8 ± 11.9 b</td>
</tr>
</tbody>
</table>

*Means followed by different letters are significantly different at 5% level (Tukey’s HSD test following ANOVA).
fore, the compounds involved in the toxicity to *P. herreni* are most likely proteins or peptides since they were thermo-labile and were precipitated by ammonium sulfate fractionation, and had molecular weights greater than 3.5.

A toxic protein designated as “curcin” with hemagglutinating activity (Lin et al. 2010), was isolated from the seeds of *Jatropha curcas* L. (Euphorbiaceae) for the first time by Felke (1914). Curcin is known to be toxic and may be present in our leaf extract of *J. gossypiifolia*. However, this protein was reported by Barbieri et al. (1993) as a type I Ribosome-Inactivating Protein (RIP), consisting of a single polypeptide chain with molecular weight of 28-35 kDa. In this study, no bands were observed between 28 to 35 kDa in the precipitated proteins obtained from the 80% ammonium sulfate saturation and the most abundant proteins were approximately 101 kDa.

Although additional purification steps are necessary to identify the toxic protein(s), this study indicated that proteins in mature leaves of *J. gossypiifolia*, most probably around 101 kDa, are involved in the toxicity to *P. herreni*. Moreover, they are also toxic to another cassava mealybug species, *P. manihoti* Matile-Ferrero (Stenorrhyncha, Pseudococcidae), where the same precipitated proteins obtained from the 80% ammonium sulfate saturation and the most abundant proteins were approximately 101 kDa.

Acknowledgments

Thanks are given to Daniel Amin for his valuable technical help and Fritz Schulthess for his useful comments on earlier drafts of the article.

References Cited

Czapla, T. H., AND LANG, B. A. 1990. Effect of plant lectins on the larval development of European corn borer (Lepidoptera, Pyralidae) and Southern corn rootworm (Coleoptera, Chrysomelidae). J. Econ. Entomol. 83: 2480-2485.

NORONHA, A. C. 1990. Insectos e acaros que atacam a cultura da mandioca. Empresa Brasileira de Pesquisa de Mandioca e Fruticultura - CNPMF, Cruz das Almas-BA, Brazil.

