Biological Characteristics of Trichospilus diatraeae (Hymenoptera: Eulophidae) are Influenced by the Number of Females Exposed Per Pupa of Tenebrio molitor (Coleoptera: Tenebrionidae)

Authors: Favero, Kellen, Pereira, Fabricio Fagundes, Kassab, Samir Oliveira, Oliveira, Harley Nonato De, Costa, Daniele Perassa, et. al.

Source: Florida Entomologist, 96(2) : 583-589

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.096.0224
BIological characteristics of *Trichospilus diatraeae* (Hymenoptera: Eulophidae) are influenced by the number of females exposed per pupa of *Tenebrio molitor* (Coleoptera: Tenebrionidae)

Kellen Favero1, **Fabricio Fagundes Pereira**1, **Samir Oliveira Kassab**1, **Harley Nonato De Oliveira**2, **Daniele Perassa Costa**3 and **José Cola Zanuncio**4

1Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, 79.804-970, Dourados, Mato Grosso do Sul, Brazil

2Embrapa Agropecuária Oeste, Caixa Postal 449, 79804-970, Dourados, Mato Grosso do Sul, Brazil

3Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, 79.804-970, Dourados Mato Grosso do Sul, Brazil

4Departamento de Biologia Animal, Universidade Federal de Viçosa, 36.570-000, Viçosa, Minas Gerais, Brazil

Corresponding author; E-mail: samirkassab@gmail.com

Abstract

Different numbers of parasitoid females confined with a host can variously affect the number, sex ratio and other characteristics of the parasitoid's progeny. The objective of this study was to elucidate the effects of various ratios of *Trichospilus diatraeae* Cherian & Margabandhu (Hymenoptera: Eulophidae) females to pupae of one of its hosts, *Tenebrio molitor* L. (Coleoptera: Tenebrionidae), primarily on the number of this parasitoid's progeny and their sex ratio. Both the parasitoid and the host used in this study were taken from cultures reared in the laboratory by standard methods. In order to minimize the effects of variations in host weight, 24 h-old *T. molitor* pupae weighing between 0.110 and 0.140 g were held as a single individual in glass tubes (2.5 cm Ø × 14 cm L) with 48 h-old *T. diatraeae* females for 72 h to allow parasitization. After this period, female wasps were removed and the host pupa were transferred, one per glass tube, to a climate-controlled room at 25 ± 2 °C, 70 ± 10% RH and 12:12 h L:D. The experimental design was completely randomized with six treatments (parasitoid-host ratios) and 12 replicates per treatment. The ratios of *T. diatraeae* females per host used were: 1:1, 7:1, 14:1, 21:1, 28:1 and 32:1. The percentage parasitism of *T. diatraeae* on *T. molitor* pupae was 33.33, 82.00 and 83.33% at ratios of 1:1, 7:1 and 14:1, respectively, and 100% at all other ratios. The emergence of *T. diatraeae* adults from parasitized pupae was 75% at a parasitoid-host ratio of 1:1 and 100% at ratios of 21:1, 28:1 and 32:1. The duration of the parasitoid's life cycle ranged from 21.00 ± 2.22 to 24.00 ± 2.00 days at parasitoid-host ratios of 32:1 and 1:1, respectively. The number of *T. diatraeae* progeny per *T. molitor* pupa was highest at a ratio of 21:1 (246.50 ± 50.18). The proportion of *T. diatraeae* females in the offspring decreased as the parasitoid-host ratio increased, varying between 0.82 ± 0.06 and 0.97 ± 0.01. A parasitoid-host ratio of 21:1 *T. diatraeae* females per *T. molitor* pupa is considered the most adequate and appropriate for mass-rearing of this parasitoid. *Tenebrio molitor* appears to be a suitable alternate host for efficient mass-rearing of *T. diatraeae* for biological control of lepidopteran pests. At the parasitoid-host ratio of 21:1, each *T. molitor* pupa supported the production of 246.5 parasitoids of which 88% were females, i.e., 216.9 females and 29.6 males; each *T. diatraeae* female produced 9.55 ± 0.48 female progeny, and the developmental time from egg to adult was 20.4 days.

Key Words: alternate host, biological control, parasitism, pupal parasitoid, mass-rearing

Resumen

La variación en el número de hembras de parasitoides confinados con un hospedero puede afectar el desarrollo, la reproducción y la relación de sexos de la progenie del parasitoido. El objetivo de este trabajo fue estudiar el efecto de la variación del número de hembras del parasitoide *Trichospilus diatraeae* Cherian & Margabandhu (Hymenoptera: Eulophidae) por pupa del hospedero *Tenebrio molitor* L. (Coleoptera: Tenebrionidae), primordialmente en número de la progenie y su relación de sexos. Los parasitoides y hospederos utiliza-
Anticarsia gemmatalis reared in pupa of the following alternate hosts: displays adequate biological characteristics when selecting alternative hosts for mass-rearing. The nutritional quality, size, age, mechanical resistance and the immunological response of the host should be considered when determining their suitability for rearing. Parasitoids are among the most common natural enemies of the class Insecta. The families Aphelinidae, Braconidae, Encyrtidae, Ichneumonidae, Pteromalidae, Trichogrammatidae and Eulophidae in the order Hymenoptera are the most commonly used parasitoids for biological control of insects (Van Driesche & Bellows 1996). *Trichospilus diatraeae* Cherian & Margabandhu (Hymenoptera: Eulophidae) is a pupal parasitoid with potential for use in biological control of numerous lepidopteran pests. It has been reported to parasitize insects in the Arctiidae (Zaché et al. 2012), Crambidae (Paron & Bertí-Filho 2000; Chichera et al. 2012; Rodrigues et al. 2013), Geometridae (Pereira et al. 2008; Zaché et al. 2010), Nymphalidae (Bouček 1976), Noctuidae (Andrade et al. 2010), Pyralidae (Boucěk 1976), Noctuidae (Andrade et al. 2010), Pyralidae (Boucěk 1976), and Lepidoptera (Zanuncio et al. 2008). Preliminary tests have shown that *T. diatraeae* to parasitize *Tenebrio molitor* pupae (Favero 2009). The objective of this study was to optimize the rearing of *T. diatraeae* in the laboratory by using different ratios of *T. diatraeae* females per *T. molitor* pupa host.

The experiments were conducted at the “Laboratório de Entomologia/Controle Biológico (LECOBIOL)” of the “Faculdade de Ciências Agrárias (FCA)” of the “Universidade Federal da Grande Dourados (UFGD)” in Dourados, Mato Grosso do Sul, Brasil.
Rearing of Tenebrio molitor

The pupae used in this study were reared in the LECOBIOL laboratory, where larvae of *T. molitor* were maintained in plastic trays (39.3 cm W × 59.5 cm L × 7.0 cm H), and fed wheat bran (97%), yeast (3%) and pieces of chayote (*Sechium edule*) according to the methodology of Zamperline & Zanuncio (1992).

Rearing of Trichospilus diatraeae

Trichospilus diatraeae adults were reared at the LECOBIOL laboratory in glass tubes (2.5 cm Ø × 8.5 cm L) sealed with cotton swabs. The insects were fed with droplets of honey. Twenty-four to 48 h-old *D. saccharalis* pupa were exposed to *T. diatraeae* females for 72 h. Parasitized pupa were separated and maintained individually at 25 ± 1 °C, 70 ± 10% RH and 14:10 h L:D until adult emergence (Pereira et al. 2008; Chichera et al. 2012).

Experimental Design

In order to minimize the effects of host weight variation, 24 h-old *T. molitor* pupae weighing between 0.110 and 0.140 g were held as single individuals in glass tubes (2.5 cm Ø × 14 cm L) with 48 h-old *T. diatraeae* females for 72 h to allow parasitization. After this period, female wasps were removed and the host pupa transferred to glass tubes in a climate-controlled room at 25 ± 2 °C, 70 ± 10% RH and 12:12 h L:D. The experimental design was completely randomized with 6 treatments (parasitoid-host ratios). The ratios of *T. diatraeae* females per host used were: 1:1, 7:1, 14:1, 21:1, 28:1 and 32:1, with 12 replicates per treatment.

The mean duration of the life cycle (egg to adult), the adult emergence rate (%), percent parasitism, number of offspring, sex ratio (SR = number of females/ number of females + number of males), and numbers of immature *T. diatraeae* that did not complete development were registered. The sex of adult parasitoids was determined by assessing the morphological characteristics of their antennae and abdomen (LaSalle 1994).

The natural mortality of the host was calculated (Abbott 1925) in the same environmental conditions as the experiment. *T. diatraeae* emergence and parasitism were analyzed using a generalized linear model with a binomial distribution (*P* ≤ 0.05) with the R Statistical System (Ihaka & Gentleman 1996). This analysis was carried out using the original non-parametric data; however, the data are presented in percentage values to facilitate visualization.

The other parameters were subject to analysis of variance and if significant at 5% probability, regression analysis was conducted. Equations were selected using the linear, quadratic and cubic models, based on the coefficient of determination (*R²*), significance of the regression coefficients (βi) and regression by the *F*-test (up to 5% probability).

Results

Percent parasitism and adult emergence of *T. diatraeae* from *T. molitor* pupa were influenced by the number of parasitoid females per host. Percent of parasitism was 33.33% and 83.33% at ratios of 1:1 and 14:1, respectively, and 100% for all other ratios (*χ²* = 38.651; *P* = 0.001) (Fig. 1 and Table 1). Adult emergence was 75% at a parasitoid-host ratio of 1:1, 83.33% at 14:1, and 100% for the ratios 21:1, 28:1 and 32:1, respectively (*χ²* = 42.548; *P* = 0.001) (Fig. 1).

The mean duration of the life cycle (egg to adult) was 21.00 ± 2.22 days at a parasitoid-host ratio of 32:1, and 24.00 ± 2.00 days at ratio 1:1 (*F* = 3.72; *P* = 0.03; *R²* = 0.53). The number of progeny per parasitoid of *T. molitor* pupa was 10.39; *P* = 0.0001; *R²* = 0.67 increased with parasitoid-host ratio up to 21:1 (246.50 ± 50.18) (Fig. 3 and Table 1). The number of females produced per *T. diatraeae* female (*F* = 56.01; *P* = 0.0001; *R²* = 0.73) was inversely proportional to the parasitoid-host ratio, and ranged between 4.53 ± 1.64 and 66.66 ± 9.22 females at ratios of 28:1 and 1:1, respectively (Fig. 4).

The number of dead immature *T. diatraeae* found inside *T. molitor* pupa was not influenced by parasitoid-host ratio (*P* ≤ 0.05), with average values of 4.56 ± 2.87, 3.78 ± 3.38, 3.33 ± 2.73, 4.00 ± 1.64.
± 3.38, 3.67 ± 1.0, and 4.64 ± 4.08 for parasitoid-host ratios 1:1, 7:1, 14:1, 21:1, 28:1 and 32:1, respectively. The sex ratio of the offspring, estimated as the proportion of females produced in *T. molitor* pupae (*F* = 8.47; *P* = 0.0006; *R*²_Treat = 0.95) was highest (0.97 ± 0.01) at a 1:1 parasitoid-host ratio.

DISCUSSION

The biological characteristics (parasitism, adult emergence and progeny) of *T. diatraeae* per *T. molitor* pupa indicated that, for mass-rearing of this natural enemy, the optimal number of females parasitoids per host should be 21. Paron & Berti Filho (2000) demonstrated that exposure to one or many *T. diatraeae* females per pupa of *D. saccharalis*, *A. gemmatalis*, *H. virescens* and *S. frugiperda* did not affect emergence and parasitism rates. However, the biological characteristics of the descendants may be affected by competition among the parasitoids after oviposition (Chong & Oetting 2007).

The progeny of *T. diatraeae* were affected by the number of females per pupa of *T. molitor*. Low ratios of female parasitoids per host resulted in less oviposition per host. The ratio of parasitoid females per host pupa can affect fecundity and reduce the efficiency of mass-rearing systems, mainly due to an increase of competition by the immature stages within the same host pupa (Sagarra et al. 2000a). A similar effect was reported for *P. elaeisis* reared in *Bombyx mori* Linnaeus (Lepidoptera: Bombycidae) pupae (Pereira et al. 2010).

Fig. 2. Duration of the period egg to adult for *Trichospilus diatraeae* (Hymenoptera: Eulophidae) at 6 parasitoid-host ratios per *Tenebrio molitor* (Coleoptera: Tenebrionidae) pupa (12:12 h L:D at 25 ± 2 °C and 70 ± 10% RH) (*F* = 3.7206; *P* = 0.0304; *R*²_Treat = 0.5344).

Fig. 3. Number of *Trichospilus diatraeae* (Hymenoptera: Eulophidae) progeny at 6 parasitoid-host ratios per *Tenebrio molitor* (Coleoptera: Tenebrionidae) pupa (12:12 h L:D at 25 ± 2 °C and 70 ± 10% RH) (*F* = 10.3936; *P* = 0.0001; *R*²_Treat = 0.6695).
The number of *T. diatraeae* descendants per host decreased at the highest ratios of female parasitoids per host. This suggests that *T. diatraeae* females have a strong tendency to avoid superparasitism (Sagarra et al. 2000a,b; Zanuncio et al. 2008; Pereira et al. 2009; Soares et al. 2009). Another factor that may explain the decreased numbers of parasitoid offspring at the highest ratios is that the host has a given carrying capacity above which food becomes a limiting factor for parasitoid development (Pereira et al. 2010).

The low rates of parasitism and adult emergence at parasitoid-host ratio 1:1 suggest that *T. molitor* pupa may have defense mechanisms against *T. diatraeae*. The host can have cellular defenses and reactions involving encapsulation and melanization of endoparasitoid eggs (Pencacchio & Strand 2006). Superparasitism could increase the survival of parasitoid progeny by overwhelming the cellular immune response of the host (Andrade et al. 2010). Parasitism by *P. elaeisis* on *B. mori* pupa showed similar trends to those in this study. Emergence of *P. elaeisis* descendants per *B. mori* pupa was observed only at a ratio of 45:1. The authors suggested that a given parasitoid-host ratio would neutralize the defense mechanisms of *B. mori* (Pereira et al. 2010).

The developmental period for *T. diatraeae*, from egg to adult emergence decreased at the highest ratios. However, the number of *T. diatraeae* per host did not affect the number of dead immatures inside *T. molitor* pupae. Reduced developmental period may be caused by competition between immature *T. diatraeae*, with physical combat or physiological suppression, which may reduce egg to adult development time of this parasitoid (Brodeur & Boivin 2004). Silva-Torres & Matthews (2003) suggested that high numbers of *Melitto-

The use of parasitoids for biological control programs depends on their development and reproduction in a preferred or suitable alternate host, which must present adequate nutritional conditions and low production cost. *Trichospilus diatraeae* can develop in *T. molitor* pupa and the information obtained in this study may facilitate efficient mass-rearing of this natural enemy for biological control of lepidopteran pests.

CONCLUSION

Tenebrio molitor pupa are adequate for rearing *T. diatraeae*. The ratio of 21:1 females per *T. molitor* pupa produced the most parasitoid offspring and reduced variation in the biological characteristics of this natural enemy (Table 1). At this parasitoid-host ratio, each *T. molitor* pupa supported the production of 246.5 parasitoids of which 88% were females, i.e., 216.9 females and 29.6 males; each *T. diatraeae* female produced 9.55 ± 0.48 female progeny, and the developmental time from egg to adult was 20.4 days.

ACKNOWLEDGMENTS

We thank the Brazilian institutions “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio ao Desenvolvimento do Ensino, and Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT)” and “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)”. We thank undergraduate student Gabriela Piñeyro for translating the abstract to Spanish. Science Editing Experts corrected the English of this manuscript.

REFERENCES CITED

ANDRADE, G. S., SERRÃO, J. E., ZANUNCIO, J. C., ZANUNCIO, T. V., LETE, G. L. D., AND POLANCZYK, R. A. 2010. Immunity of an alternative host can be overcome...
by higher densities of its parasitoids Palmistichus elaeisis and Trichospilus diatraeae. Plos One 05: 1-7.

